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Outline

I Color Glass Condensate, saturation basics
I Forward scattering, NLO in CGC
I Non-flow particle correlations
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Gluon saturation
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A heavy ion event at the LHC

How does one understand what happened here?
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Heavy ion collision in spacetime

The purpose in heavy ion collisions: to create QCD matter,
i.e. system that is large and lives long

compared to the microscopic scale

t � 1
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Concentrate here on the earliest stage
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Gluon saturation, Glass and Glasma

Small x : the hadron/nucleus wavefunction is
characterized by saturation scale Qs � ΛQCD.

H
pT ∼ Qs: strong fields Aµ ∼ 1/g

I occupation numbers ∼ 1/αs

I classical field approximation
I small αs, but nonperturbative
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CGC: Effective theory for wavefunction of nucleus
I Large x = color charge ρ, probability distribution Wy [ρ]

I Small x = classical gluon field Aµ + quantum flucts.

Glasma: field configuration of two colliding sheets of CGC. (Here y ∼ ln
√

s)
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Gluon saturation in IMF: nonlinear interactions
Saturation when phase space density of gluons large

I Number of gluons xG(x ,Q2)
I Size of one gluon ∼ 1/Q2

I Transverse space available πR2
p

I Coupling αs

Estimate in terms of gluon numbers
Nonlinearities important when

πR2
p ∼ αsxG(x ,Q2)

1
Q2

Solve for Q2 = Q2
s ; “saturation scale”

(LHC kinematics: Qs ≈ 1 .. 2GeV)



7/17

Gluon saturation in dipole picture: unitarity

σ̂

P

γ∗ z

1 − z

rT

I Consider DIS, qq̄ component of γ∗

I Scattering amplitude: unitarity limit N ≤ 1
(probability < 1)

I Two gluon exchange:

N (r) ∼ αsxG(x ,Q2 ∼ 1/r2)

πR2
p

r2

2-gluon exchange wrong when Q2 ∼ 1
r2 . Q2

s ∼ αsxG(x,Q2
s )

πR2
p

even if αs(Q2)� 1

Gluon saturation in target rest frame
I Degree of freedom is scattering amplitude (not number of partons)
I Saturation appears as unitarity constraint

=⇒ Built into formalism; does not look dynamical.
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Forward particle production
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Eikonal scattering off target of glue

A

How to measure small-x glue?
I Dilute probe through target color field
I At high energy interaction is eikonal

Eikonal scattering amplitude: Wilson line V

V = P exp

{
−ig

∫ x+

dy+A−(y+, x−,xT )

}
≈

x+→∞
V (xT )

I Amplitude for color dipole

N (r = |xT − yT |) = 1−
〈

1
Nc

Tr V †(xT )V (yT )

〉
I 1/Qs is Wilson line ⊥ correlation length
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Dilute-dense process at LO
Physical picture at small x

DIS

I γ∗ → qq̄ dipole interacts with target
color field

I Total cross section:
2×Im-part of γ∗ → γ∗ amplitude

“Dipole model”: Nikolaev, Zakharov 1991
Fits to HERA data: e.g. Golec-Biernat, Wüsthoff 1998

Forward hadrons in pA

q(x ,Q2) Dq→h(z,Q2)

I q/g from probe: collinear pdf
I |amplitude|2 ∼ dipole
I Independent fragmentation
I Produced q/q pT from target: ∼ Qs

“Hybrid formalism”; Dumitru, Jalilian-Marian 2002

Both involve same dipole amplitude N = 1− S
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Dilute-dense process at LL

Add one soft gluon: large logarithm of energy/x

DIS

q+

k+
g

I Soft gluon: large logarithm∫
xBj

dk+
g

k+
g
∼ ln

1
xBj

Forward hadrons

q(x ,Q2) Dq→h(z,Q2)

I Soft gluon k+ → 0: same large log
I Collinear gluon kT → 0:

DGLAP evolution of pdf & FF
Dumitru et al 2005

Absorb large log into renormalization of target: BK equation Balitsky 1995, Kovchegov 1999
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Dilute-dense process at NLO

Add one gluon, but not necessarily soft

DIS

q+

z = k+
g /q+

I DIS impact factor
Balitsky & Chirilli 2010, Beuf 2017

Forward hadrons

q(x ,Q2) Dq→h(z,Q2)

I NLO single inclusive
Chirilli et al 2011

I Leading small-k+ gluon already in BK-evolved target
I Need to subtract leading log from cross section:

σNLO =

∫
dz
[ σsub︷ ︸︸ ︷
σ(z)− σ(z = 0) +

absorb in BK︷ ︸︸ ︷
σ(z = 0)

]
z =

k+
g

P+
tot
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NLO to NLL

NLO evolution equation:
I Consider NNLO DIS
I Extract leading soft logarithm
I Lengthy calculation:

Balitsky & Chirilli 2007

I But additional resummations needed
for practical phenomenology

(+ many diagrams at same order)

I α2
s ln2(1/x): two iterations of LO BK

I α2
s ln 1/x : NLO BK

I α2
s : part of NNLO impact factor (not

calculated)
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NLO calculations in CGC: recent progress

→ σ ∼
LO︷ ︸︸ ︷
O(1) +

LL︷ ︸︸ ︷
O(αs ln 1/x) +

NLO︷ ︸︸ ︷
O(αs) +

NLL︷ ︸︸ ︷
O(α2

s ln 1/x)

I BK/JIMWLK evolution Balitsky, Chirilli 2008, Grabovsky, Lublinsky, Mulian et al 2012

+ collinear resummations Iancu, Triantafyllopoulos et al ∼ 2015

I Total DIS cross section mq = 0 Balitsky, Chirilli 2010, Beuf 2011-2017, HERA fit Hänninen et al 2020 ;
massive quarks Beuf, T.L., Paatelainen 2021 Also inclusive γ + 2j Roy, Venugopalan 2019

I Diffractive dijets in DIS Boussarie et al 2014 , Diffractive structure functions
I Exclusive light vector mesons (with PDA’s) Boussarie et al 2016 Exclusive quarkonium

(with NRQCD) Escobedo, T.L. 2019, Penttala et al 2020, 2021

I Single inclusive particles in fwd rapidity hh-collisions Chirilli, Xiao, Yuan + others 2011 –

I Forward rapidity dijets in pA Partial results: Mulian & Iancu, Ayala et al
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Azimuthal correlations
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Domains in the target color field

Physical origin for initial state particle correlations

1/Qs

How is color field seen by individual quark?

I Momentum transfer from target E-field
I “Domains” of size ∼ 1/Qs

(Note actual calculation has Wilson lines, with
correlation length, not explicit domains)

I Several probe particles inside domain:
multiparticle azimuthal correlations.

I ∼ Q2
s S⊥ domains (S⊥= size of interaction area, πR2

A, πR2
p)

I ∼ Nc
2 colors

I Relative correlation ∼ 1
Nc

2Q2
s S⊥

=⇒ stronger in small systems

I Both momentum & coordinate space =⇒ relevant for both flow & non-flow
I Next: 2 different kinds of “non-flow correlation”
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Non-flow correlation 1: modified dijet
Saturation qualitatively explains striking RHIC results

p+p → π0π0+X, √s = 200 GeV
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However, jury is still out:
I Normalization: affected by ∆ϕ-independent

pedestal (careful: subtract vs. divide!)

I Peak width more sensitive to saturation
— but affected by fragmentation

I Lot of effort in theory at NLO, but no
NLO-data comparison yet
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http://arxiv.org/abs/1105.5112v3
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Non-flow correlation 2: purely multigluon
“Glasma graph,” “ridge”

2 approaches with ultimately same origin for correlations (but not very transparently)

[dN1/d
3p]

LO

[dN1/d
3q]

LO

Initial configuration

for nucleus 1

JIMWLK evolution
for nucleus 1

from Ybeam to Yq

JIMWLK evolution
for nucleus 1

from Yq to Yp

“Dense-dense” symmetric calculation:
CYM or kT -factorization approximation

Dilute-dense:
I Uncorrelated collinear quarks

from probe
I Scatter from color field (same

“hybrid formalism” as for single inclusive)
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Conclusions

I Existence of gluon saturation: unambiguous consequence of unitarity
— But: At what energy scale? In which observable? Less clear cut.

I Detailed probes of color fields: dilute-dense collisions:
high energy DIS, forward rapidity pA

I Gluon fields contribute to correlation structure in high energy collisions: in
coordinate space and directly in momentum space
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Note on power counting and kinematics
Collinear 2→ 2 process, measure only 1 particle:

integral over large rapidity interval ∆y = ln x>
x<

log(x)
6− 5− 4− 3− 2− 1− 0

) (
ar

b.
 u

ni
ts

)
2

dN
/d

(lo
g 

x

5−10

4−10

3−10

2−10

1−10

PYTHIA pp 8.8 TeV

 < 4η < 2 GeV - 3.5 < 
T

 -  p0 D

 < 4.5η < 6 GeV - 4 < 
T

 - 4 < pγ 

x< x>x>
I In the CGC the power counting assumes αs ln ∆y ∼ 1 =⇒ integrated gluon

absorbed into BFKL/BK/JIMWKL-evolved renormalized target at x<
I The gluon recoil also gives intrinsic kT =⇒ e.g. J/Ψ has pT distribution at LO in

CGC (vs. only at NLO in collinear)
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Inclusive J/ψ in LHCb/ALICE kinematics

Cross sections for pPb Ducloué, T.L. Mäntysaari 1503.02789
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Most of normalization uncertainty from scale in collinear PDF, and in αs



3/7

RpA for inclusive J/ψ

RpA: scale uncertainty cancels
=⇒ determined by optical Glauber & value of Qs (HERA)
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Isolated photon RpA
Ducloué, T.L. Mäntysaari, arXiv:1710.02206
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To see saturation effects at weak coupling pT :
need LHC energy and preferrably fwd kinematics.
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More RpA’s: DY, D: very much same story
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Ducloué, T.L. Mäntysaari, arXiv:1612.04585
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For comparison: light hadrons
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Why is π0 different?

Largely artefact of CGC power counting.
LO CGC processes are
Photons

1→ 2 kinematics:
even large photon kT
can have target kT ∼ Qs

=⇒ suppression
(Eventually need to resum Sudakov)

Pions

1→ 1 kinematics:
large pion pT always from target kT � Qs
Becomes 1→ 2 at NLO
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