CGC and forward physics

T. Lappi

University of Jyväskylä

Seminar @ NBI, June 2021

1/17 《 ロ > 《 문 > 《 문 > 《 문 > 종) = '이 Q @

Outline

- Color Glass Condensate, saturation basics
- ► Forward scattering, NLO in CGC
- Non-flow particle correlations

Gluon saturation

A heavy ion event at the LHC

How does one understand what happened here?

Heavy ion collision in spacetime

The purpose in heavy ion collisions: to create QCD **matter**, i.e. system that is large and lives long compared to the microscopic scale

Heavy ion collision in spacetime

The purpose in heavy ion collisions: to create QCD **matter**, i.e. system that is large and lives long compared to the microscopic scale

Concentrate here on the earliest stage

Small x: the hadron/nucleus wavefunction is characterized by saturation scale $Q_s \gg \Lambda_{QCD}$.

Small x: the hadron/nucleus wavefunction is characterized by saturation scale $Q_s \gg \Lambda_{QCD}$.

- ${f p}_{
 m T}\sim {m Q}_{
 m s}$: strong fields $A_{\mu}\sim 1/g$
 - occupation numbers $\sim 1/\alpha_s$
 - classical field approximation
 - small α_s , but nonperturbative

Small x: the hadron/nucleus wavefunction is characterized by saturation scale $Q_s \gg \Lambda_{QCD}$.

- ${f p}_{
 m T}\sim {m Q}_{
 m s}$: strong fields $A_{\mu}\sim 1/g$
 - occupation numbers $\sim 1/\alpha_s$
 - classical field approximation
 - small α_s , but nonperturbative

CGC: Effective theory for wavefunction of nucleus

- Large $x = \text{color charge } \rho$, **probability** distribution $W_{\gamma}[\rho]$
- Small x = classical gluon field A_{μ} + quantum flucts.

5/17

Small x: the hadron/nucleus wavefunction is characterized by saturation scale $Q_s \gg \Lambda_{QCD}$.

- ${f p}_{
 m T}\sim {m Q}_{
 m s}$: strong fields $A_{\mu}\sim 1/g$
 - occupation numbers $\sim 1/\alpha_s$
 - classical field approximation
 - small α_s , but nonperturbative

CGC: Effective theory for wavefunction of nucleus

- Large $x = \text{color charge } \rho$, **probability** distribution $W_{\gamma}[\rho]$
- Small x = classical gluon field A_{μ} + quantum flucts.

Glasma: field configuration of two colliding sheets of CGC. (Here $y \sim \ln \sqrt{s}$)

Gluon saturation in IMF: nonlinear interactions

Saturation when phase space density of gluons large

- Number of gluons $xG(x, Q^2)$
- Size of one gluon $\sim 1/Q^2$
- Transverse space available πR_p^2
- Coupling α_s

Estimate in terms of gluon numbers

Nonlinearities important when

$$\pi R_p^2 \sim \alpha_s x G(x, Q^2) \frac{1}{Q^2}$$

Solve for $Q^2 = Q_s^2$; "saturation scale"

(LHC kinematics: $\textit{Q}_{s}\approx1$.. 2GeV)

Gluon saturation in dipole picture: unitarity

- Consider DIS, $q\bar{q}$ component of γ^*
- Scattering amplitude: unitarity limit $\mathcal{N} \leq 1$ (probability < 1)
- Two gluon exchange:

$$\mathcal{N}(\mathbf{r}) \sim rac{lpha_{s} \mathbf{x} \mathbf{G}(\mathbf{x}, \mathbf{Q}^{2} \sim 1/r^{2})}{\pi R_{p}^{2}} r^{2}$$

2-gluon exchange wrong when $Q^2 \sim \frac{1}{r^2} \lesssim Q_s^2 \sim \frac{\alpha_s x G(x, Q_s^2)}{\pi R_p^2}$ even if $\alpha_s(Q^2) \ll 1$

Gluon saturation in target rest frame

- Degree of freedom is scattering amplitude (not number of partons)
- Saturation appears as unitarity constraint

 \implies Built into formalism; does not look dynamical.

Forward particle production

Eikonal scattering off target of glue

How to measure small-x glue?

- Dilute probe through target color field
- At high energy interaction is eikonal

Eikonal scattering amplitude: Wilson line V

$$V = \mathbb{P} \exp \left\{ -ig \int^{x^+} dy^+ A^-(y^+, x^-, \mathbf{x}_{\mathcal{I}}) \right\} \underset{x^+ \to \infty}{\approx} V(\mathbf{x}_{\mathcal{I}})$$

Amplitude for color dipole

$$\mathcal{N}(r = |\mathbf{x}_{T} - \mathbf{y}_{T}|) = 1 - \left\langle \frac{1}{N_{c}} \operatorname{Tr} V^{\dagger}(\mathbf{x}_{T}) V(\mathbf{y}_{T}) \right\rangle$$

• $1/Q_s$ is Wilson line \perp correlation length

8/17

Dilute-dense process at LO

Physical picture at small x

► Total cross section:

 $2 \times \text{Im-part of } \gamma^* \rightarrow \gamma^*$ amplitude

"Dipole model": Nikolaev, Zakharov 1991 Fits to HERA data: e.g. Golec-Biernat, Wüsthoff 1998

Forward hadrons in pA

- q/g from probe: collinear pdf
- $|amplitude|^2 \sim dipole$
- Independent fragmentation
- Produced $q/q p_T$ from target: $\sim Q_s$

"Hybrid formalism"; Dumitru, Jalilian-Marian 2002

Both involve same dipole amplitude $\mathcal{N} = 1 - S$

Dilute-dense process at LL

Add one **soft** gluon: large logarithm of energy/x

Absorb large log into renormalization of target: BK equation Balitsky 1995, Kovchegov 1999

Dilute-dense process at NLO

Add one gluon, but not necessarily soft

- Leading small- k^+ gluon already in BK-evolved target
- Need to subtract leading log from cross section:

$$\sigma_{NLO} = \int dz \left[\overbrace{\sigma(z) - \sigma(z=0)}^{\sigma_{sub}} + \overbrace{\sigma(z=0)}^{absorb \text{ in BK}} \right] \quad z = \frac{k_g^+}{P_{tot}^+}$$

NLO to NLL

NLO evolution equation:

- Consider NNLO DIS
- Extract leading soft logarithm
- Lengthy calculation: Balitsky & Chirilli 2007
- But additional resummations needed for practical phenomenology

(+ many diagrams at same order)

- $\alpha_s^2 \ln^2(1/x)$: two iterations of LO BK
- $\alpha_s^2 \ln 1/x$: NLO BK
- ► a²_s: part of NNLO impact factor (not calculated)

NLO calculations in CGC: recent progress

- BK/JIMWLK evolution Balitsky, Chirilli 2008, Grabovsky, Lublinsky, Mulian et al 2012
 + collinear resummations lancu, Triantafyllopoulos et al ~ 2015
- ► Total DIS cross section $m_q = 0$ Balitsky, Chirilli 2010, Beuf 2011-2017, HERA fit Hänninen et al 2020 ; massive quarks Beuf, T.L., Paatelainen 2021 Also inclusive $\gamma + 2j$ Roy, Venugopalan 2019
- ► Diffractive dijets in DIS Boussarie et al 2014 , Diffractive structure functions
- Exclusive light vector mesons (with PDA's) Boussarie et al 2016 Exclusive quarkonium (with NRQCD) Escobedo, T.L. 2019, Penttala et al 2020, 2021
- Single inclusive particles in fwd rapidity hh-collisions Chirilli, Xiao, Yuan + others 2011 -
- Forward rapidity dijets in pA Partial results: Mulian & lancu, Ayala et al

Azimuthal correlations

Domains in the target color field

Physical origin for initial state particle correlations

How is color field seen by individual quark?

- Momentum transfer from target E-field
- "Domains" of size ~ 1/Q_s
 (Note actual calculation has Wilson lines, with correlation length, not explicit domains)
- Several probe particles inside domain: multiparticle azimuthal correlations.
- $ightarrow \sim Q_{
 m S}^2 S_{\perp}$ domains (S_1= size of interaction area, $\pi R_A^2, \pi R_P^2$)
- $\blacktriangleright \sim N_c^2$ colors
- ► Relative correlation $\sim \frac{1}{N_c^2 Q_s^2 S_\perp} \implies$ stronger in small systems
- Both momentum & coordinate space \implies relevant for both flow & non-flow
- Next: 2 different kinds of "non-flow correlation"

Non-flow correlation 1: modified dijet

Saturation qualitatively explains striking RHIC results

STAR, [arXiv:1102.0931]

However, jury is still out:

- Normalization: affected by Δφ-independent pedestal (careful: subtract vs. divide!)
- Peak width more sensitive to saturation

 but affected by fragmentation
- Lot of effort in theory at NLO, but no NLO-data comparison yet

PHENIX, [arXiv:1105.5112], PRL

Non-flow correlation 2: purely multigluon

"Glasma graph," "ridge"

2 approaches with ultimately same origin for correlations (but not very transparently)

"Dense-dense" symmetric calculation: CYM or k_T -factorization approximation Dilute-dense:

- Uncorrelated collinear quarks from probe
- Scatter from color field (same "hybrid formalism" as for single inclusive)

16/17

Conclusions

- Existence of gluon saturation: unambiguous consequence of unitarity
 But: At what energy scale? In which observable? Less clear cut.
- Detailed probes of color fields: dilute-dense collisions:

high energy DIS, forward rapidity pA

 Gluon fields contribute to correlation structure in high energy collisions: in coordinate space and directly in momentum space

Note on power counting and kinematics

Collinear $2 \rightarrow 2$ process, measure only 1 particle:

integral over large rapidity interval $\Delta y = \ln \frac{x_{>}}{x_{>}}$

1/7

- ► In the CGC the power counting assumes $\alpha_s \ln \Delta y \sim 1 \implies$ integrated gluon absorbed into BFKL/BK/JIMWKL-evolved renormalized target at $x_<$
- ► The gluon recoil also gives intrinsic $\mathbf{k}_T \implies$ e.g. J/Ψ has p_T distribution at LO in CGC (vs. only at NLO in collinear)

Inclusive J/ψ in LHCb/ALICE kinematics

Cross sections for pPb Ducloué, T.L. Mäntysaari 1503.02789

Most of normalization uncertainty from scale in collinear PDF, and in $\alpha_{\rm s}$

$R_{ m pA}$ for inclusive J/ψ

R_{pA} : scale uncertainty cancels

 \implies determined by optical Glauber & value of Q_s (HERA)

Isolated photon R_{pA}

Ducloué, T.L. Mäntysaari, arXiv: 1710.02206

LHC energy

RHIC energy

To see saturation effects at weak coupling p_T : need LHC energy and preferrably fwd kinematics.

4/7

More R_{pA} 's: DY, D: very much same story

R_{pA} for D-mesons Ducloué, T.L. Mäntysaari, arXiv: 1612.04585

Double ratio of J/ψ to DY Ducloué 1701.08730 (Cf. J/ψ energy loss models)

For comparison: light hadrons

Photons

 π^0 : suppression not as large

Why is π^0 different?

Largely artefact of CGC power counting. LO CGC processes are **Pions**

Photons

 $1 \rightarrow 2$ kinematics: even large photon k_T can have target $k_T \sim Q_s$

 \implies suppression

(Eventually need to resum Sudakov)

 $1 \rightarrow 1$ kinematics: large pion p_T always from target $k_T \gg Q_s$ Becomes $1 \rightarrow 2$ at NLO