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Bekenstein-Hawking formula for black hole entropy is universal

S0 =
A
4

in ~ = c = GN = kB = 1 unit

A: area of the event horizon

In a generic theory of gravity coupled to multiple U(1) gauge
fields and other fields in D dimensions, the black hole can carry

– U(1) charges Qk

– angular momentum Ji in Cartan subalgebra of SO(D-1)

– mass M

Then
S0 = f0(Q,M,J)

Q, J have multiple components in general 2



In classical two derivative theories in D dimensions

f0(λ
D−3Q, λD−3M, λD−2J) = λD−2 f0(Q,M,J)

To take macroscopic limit, we take

M ∼ λD−3, Q ∼ λD−3, J ∼ λD−2

and take λ large

Then
S0 ∼ λD−2

The fields associated with the black hole also has simple
dependence on λ, e.g.

gµν ∼ λ2

Note: In D=4 we can also have magnetic charges scaling as λ,
but they are topological and do not fluctuate
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The Bekenstein-Hawking formula is expected to receive
corrections due to stringy effects and quantum effects

General structure:

S = λD−2 f0 + power suppressed terms + C lnλ+ · · ·

Focus of attention in today’s lecture will be the terms ∝ lnλ

These are determined purely from IR physics

– spectrum of massless fields and their interactions

Nevertheless any UV complete theory that is able to count black
hole microstates must reproduce these results in the large λ
limit
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Logarithmic corrections from gravitational path integral

Euclidean continuation of a black hole leads to a conical
singularity at the horizon, unless

1. The euclidean time τ and the azimuthal angles φ are
periodically identified as

(τ, φ) ≡ (τ + β, φ− iωβ)

2. The time components of the gauge fields take specific
asymptotic values

Aτ = −iµ

β, ω, µ are fixed in terms of M,Q,J for classical black hole

Interpretation: Gibbons, Hawking

β = ∂S0
∂M =inverse temperature, ω = 1

β
∂S0
∂J =angular velocity

µ = 1
β
∂S0
∂Q =chemical potential 5



Scaling from S0 ∼ λD−2, M,Q ∼ λD−3, J ∼ λD−3

β ∼ ∂S0

∂M
∼ λ, µ ∼ 1

β

∂S0

∂Q
∼ 1, ω ∼ 1

β

∂S0

∂J
∼ λ−1

β, ω, µ are dominant modes at infinity

e.g. Aτ ∼ i(µ+ Q r3−D)

In quantum theory we treat β, ω, µ as independent variables,
providing boundary condition to the path integral

The path integral over all fields with these boundary conditions
gives the grand canonical partition function:

Z(β, µ, J) = Tr
[
e−βE−βµ.Q−βω.J

]
6



Origin of logarithmic corrections:

1. In the path integral, one loop contribution of massless fields
generate lnλ corrections to ln Z

Fursaev, Solodukhin, · · · , Review: arXiv:1104.3712 by Solodukhin; A.S. arXiv:1205.0971

2. We need to construct the entropy from the grand canonical
partition function by taking appropriate Laplace transform:

eS =

∫
dβ dµdω eβE+βµ.Q+βω.J Z(β, µ, J)

– can also generate logarithmic corrections to the entropy
A.S. arXiv:1205.0971
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Example: Result for Kerr black hole in pure gravity in D=4(
212
45
− 1
)

lnλ

Any quantum theory of gravity that can count black hole
microstates should reproduce this result.

At present such a counting is not possible in string theory.

This can be remedied using supersymmetric black holes. 8



Supersymmetric (BPS) black holes have zero temperature

⇒ instead of having a single large length scale, we have two
different large scales

M, Q ∼ λD−3 and β ≡ ∂S
∂M →∞

– difficult to extract log correction

Remedy: Work in the near horizon geometry:

AdS2 × (squashed)SD−2 Mann, Solodukhin hep-th/9604118; · · ·

ds2 = v1

(
dr2

r2 − 1
+ (r2 − 1)dτ2

)
+ v2 ds2

D−2

v1,v2 ∼ λ2

We can compute logarithmic correction to the partition function
in this geometry following the same guidelines 9



Some differences:

1. The partition function computes the path integral at fixed
mass, charge and angular momentum since these modes
dominate as r→∞

⇒ the path integral directly computes the entropy in the
microcanonical ensemble and no change of ensemble is needed.

2. We integrate over modes living in the near horizon geometry

– different set of eigenvalues and eigenfunctions than those in
the full geometry 10



List of BPS black holes for which the logarithmic correction has been predicted / tested

The theory scaling of charges logarithmic contribution microscopic

Type II on T6 (D = 4,N = 8 SUSY) Qi ∼ λ, S0 ∼ λ2 −8 lnλ
√

N = 6 supersymmetric theories Qi ∼ λ, S0 ∼ λ2 −4 lnλ ?

in D = 4

N = 5 supersymmetric theories Qi ∼ λ, S0 ∼ λ2 −2 lnλ ?

in D = 4

N = 4 supersymmetric CHL Qi ∼ λ, S0 ∼ λ2 0
√

models in D=4 and type II on

K3× T2 with nv matter multiplet

N = 3 supersymmetric theories in Qi ∼ λ, S0 ∼ λ2 2 lnλ ?

D = 4 with nv matter multiplets

N = 2 supersymmetric theories Qi ∼ λ, S0 ∼ λ2 1
6 (23 + nH − nV) lnλ ?

in D = 4 with nV vector and

nH hyper multiplets

BMPV in type IIB on T5/ZZN Q1,Q5, n ∼ λ2, − 1
4 (nV − 3) lnλ

√

or K3× S1/ZZN with nV vectors J ∼ λ3, S0 ∼ λ3

(D=5,N =4 or 2 SUSY)

Table:
Banerjee, Gupta, A.S.; Banerjee, Gupta, Mandal, A.S.; A.S.; Ferrara, Marrani; Charles, Larsen 11



Success of this procedure for BPS black holes suggests that
similar agreement must hold also for non-BPS black holes

– any UV complete theory that is able to count black hole
microstates must reproduce the IR results

However it is somewhat unsatisfactory that the methods used
for non-BPS and BPS calculations differ in details

– modes living in the full geometry vs near horizon geometry

– use of grand canonical ensemble vs microcanonical ensemble

The goal of this talk will be to rectify this 12



Recent developments
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Iliesiu, Kologlu and Turiaci described a procedure for computing
supersymmetric index using full black hole geometry at finite
temperature Iliesiu, Kologlu, Turiaci arXiv:2107.09062

Earlier work on AdS by Cabo-Bizet, Cassani, Martelli, Murthy, arXiv:1810.11442

Our goal will be to use this formalism to compute logarithmic
correction to the BPS black hole entropy 14



J0: A Cartan generator of SO(D-1), k: momentum

J′ will represent Cartan generators other than J0

Supersymmetric index:

I = TrQ,J′,k=0
[
e−βH(−1)F(2J0)

n] , (−1)F ≡ e2πiJ0

The trace is taken over states at fixed Q, J′ and k=0

The trace gets contribution from only those states that break 2n
(or less) J′-invariant supersymmetries

A generic non-BPS state will break all (> 2n) supersymmetries
and will not contribute to this index for sufficiently small n

This index is expected to pick up the degeneracy of the
supersymmetric states with fixed Q,J′,k = 0

Bachas, Kiritsis hep-th/9611205; Gregori, Kiritsis, Kounnas, Obers, Petropoulos, Pioline hep-th/9708062
Dabholkar, Gomes, Murthy, A.S.
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I = TrQ,J′,k=0
[
e−βH(−1)F(2J0)

n] ≡ eSBPS−βMBPS

Examples:

1. In D=4 the rotation group is SU(2)

J0 is the third generator of the rotation group, J′ trivial

The corresponding eSBPS has been counted in N = 4,8
supersymmetric theories

2. In D=5 the rotation group is SO(4) = SU(2)L × SU(2)R

We can take J0 = J3R, J′ = J3L

Index is a function of J3L and electric charges

eSBPS has been counted in N=2, 4 supersymmetric
compactifications (BMPV black holes) 16



Macroscopic analysis: Index from gravitational path integral

The path integral in the full space-time geometry computes:

Z = Tr
[
e−βE−βµ.Q−βω.J

]
Set βω0 = 2πi and insert (2J0)

n in the path integral

Z = Tr
[
e−βH−µQ−βω′.J′−2πiJ0(2J0)

n
]
= Tr

[
e−βH−µQ−βω′.J′(−1)F(2J0)

n
]

Compare this with the index

I = eSBPS−βMBPS = TrQ,J′,k=0
[
e−βH(−1)F(2J0)

n]
In the index I we take the trace for fixed Q, k=0, J′ while in Z we
sum / integrate over Q, k, J′ keeping µ, ω′ fixed

Z can be regarded as a sum / integral over Q, k, J′ with I as
integrand 17



Z =

∫
dnvQ dn′cJ′ dnTk e

[
SBPS−βMBPS−βk2/2M−βω′.J′−βµ.Q

]

n′c: number of generators J′ = rank of SO(D-1) -1

nv: number of U(1) gauge fields, i.e. dimension of Q

k: momenta invariant under ω′.J′

⇒ an nT dimensional space of momenta to integrate over

The integrand is sharply peaked around k=0 and Q,J′
determined from ∂SBPS/∂Q = βµ, ∂SBPS/∂J′ = βω′

Gaussian integral around the saddle point produces λ
dependent result

e.g. k integration gives ∼ (M/β)nT/2 ∼ e
nT
2 (D−4) lnλ

Q, J′ integrals give
(

det∂
2SBPS
∂Q2

)−1/2 (
det∂

2SBPS
∂J′2

)−1/2
∼ λ

nv(D−4)+n′c(D−2)
2
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Net result:

SBPS = ln Z + βMBPS + βω′.J′ + βµ.Q + CE lnλ

with J′, Q evaluated at the saddle, and

CE = −1
2
[(nv + nT)(D− 4) + n′c(D− 2)]

n′c: number of generators J′

nv: number of U(1) gauge fields, i.e. dimension of Q 19



We now need to evaluate the logarithmic correction to ln Z by
evaluating the gravitational path integral

Power counting⇒ such contributions come from one loop
contribution of massless fields 20



Kb: Kinetic operator for massless bosonic fields

Kf: Kinetic operator for massless fermionic fields

One loop contribution to Z from massless fields:

(det Kb)
−1/2(det Kf)

1/2

Correction to ln Z:

δln Z = −1
2

ln det Kb +
1
2

ln det Kf = −
1
2

Tr ln Kb +
1
2

Tr ln Kf

λ dependence arises from Kb ∼ λ−2, Kf ∼ λ−1

– can be evaluated using the heat kernel expansion 21



Result
δ ln Z = CLlnλ+ · · ·

CL =

∫
d4x K(x)

K(x) can be computed from the knowledge of Kb and Kf
Seeley; DeWitt; · · · Vassilevich, hep-th/0306138

In N ≥ 2 supergravity in D=4, K(x) is proportional to the
Gauss-Bonnet term Charles, Larsen arXiv:1505.01156; Karan, Panda arXiv:2012.12227

⇒ CL ∝ Euler number

For D odd, CL = 0 22



Zero mode contribution:

Kb and / or Kf may have zero eigenvalues arising from broken
symmetries like translation, rotation, supersymmetry

– cannot be treated as part of the determinant

1. Remove their contribution from δ ln Z

e.g. a bosonic non-zero mode contributes (1/λ2)−1/2 ∼ λ to Z

⇒ lnλ to ln Z

We need to subtract (ln λ) from δln Z for each bosonic zero mode

Similarly we add (ln λ)/2 to δln Z for each fermionic zero mode 23



Example: Counting of the number of rotational zero modes nR

– must be generated by rotation outside the Cartan subalgebra
of the group so that it deforms the solution

– must be invariant under eβω
′.J′ so that it satisfies the required

periodicity as we go around the euclidean time circle.

In D=4, J′ is trivial and rotations about 1 and 2 axes generate
zero modes

In D=5, J′ = J3L and rotations about 1 and 2 axes of SU(2)R
generate zero modes

⇒ in both D=4 and D=5, nR = 2

⇒ we need to subtract 2 lnλ from lnZ

Similar analysis can be done for counting the translational zero
modes and broken supersymmetry zero modes. 24



2. We need to find the actual λ dependent contribution to Z from
the zero mode integrals

Zero modes typically arise from some broken symmetries

We express the integral over the zero modes as integral over the
broken symmetry parameters and carry out the integral

e.g. in D dimensions the integration measure over the metric
fluctuations hµν is Dhµν ≡ λ(D−4)/2dhµν

– ensures
∫

Dhµνexp[−
∫

dDx
√

det ggµρgνσhµνhρσ] = 1

Rotational zero modes are of the form hµν = c(Dµfν + Dνfµ)

c: rotation parameter, fµ: λ independent functions, fµ ∼ λ2

⇒ Dhµν ∼ λ2+(D−4)/2dc ⇒ λD/2 in Z for each zero mode 25



Similar procedure can be used for other zero modes.

Fermion zero modes are associated with broken supersymmetry

– saturated by the zero mode part of (2J0)
n

26



Net logarithmic correction from zero modes

CZ lnλ

CZ ≡
1
2

nT (D− 4) +
1
2

nR (D− 2)

Net logarithmic correction to SBPS:

(CE + CL + CZ) lnλ =

[
1
2

nR (D− 2)−1
2

n′c (D− 2)−1
2

nV(D− 4)+CL

]
lnλ

CL =

∫
Full geometry

K(x)

CE = −1
2
[(nv + nT)(D− 4) + n′c(D− 2)]

n′c = 0,1 in D=4,5, CL = 0 in D=5, nR = 2 in D=4,5.

This reproduces all the macroscopic results described in the
earlier table 27



Logarithmic correction to the index, computed from the near
horizon geometry and the full geometry gives the same result· · ·

· · · even though the intermediate steps are quite different

⇒ the index computed from the full geometry correctly
reproduces the microscopic results when they are known

e.g. in theories with 16, 32 supersymmetries in D=4, 5 28



Conclusion

29



Although this analysis has only reproduced known results, the
agreement is significant due to several reasons:

1. The computation using the full geometry uses integration
over the same set of modes and same ensemble as that for
non-supersymmetric black holes

– gives us confidence in the results for non-supersymmetric
black holes for which there is no independent test of the formula

2. In principle, the computation using the full geometry can be
used to take into account all configurations that contribute to
the index

e.g. multi-centered black holes

3. This formalism may be better suited for exact computation of
supersymmetric index from gravitational path integral, e.g. via
localization 30


