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A Gedankenexperiment

There is both an electromagnetic and gravitation version of this
gedankenexperiment; the discussion applies to either/both.
Well prior to time t = 0, Alice started with her particle with
spin in the x-direction and sent it though a Stern-Gerlach
apparatus, thereby putting it into a 50%-50% superposition of
spin “up” and spin “down.” Prior to t = 0, Bob kept his
particle in a trap.
Beginning at time t = 0, Alice sends her particle through a
“reversing Stern-Gerlach apparatus” and determines its
coherence (e.g., by measuring its x-spin).
At time t = 0, Bob releases his particle from the trap and
attempts to obtain “which path” information on Alice’s particle
by measuring the strength of the Coulomb/Newtonian field of
Alice’s particle.
If Alice and Bob complete their measurements within a light
travel time of each other will Alice’s superposition remain
coherent?



Spacetime Diagram of the Gedankenexperiment
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Will Alice’s particle maintain coherence?



Fundamental Limit on Coherence of Alice’s Particle
Emission of entangling quantum electromagnetic/gravitational
radiation. Estimate of effect in electromagnetic case: When
Alice “closes the superposition” of the components of her
particle, the effective dipole DA will be reduced to zero in time
TA. The corresponding radiated energy will be

E ∼
(
DA
T 2
A

)2

TA .

This energy will appear in the form of photons of frequency
∼ 1/TA, so the number of entangling photons will be

N ∼
(
DA
TA

)2

.

If N & 1, the components of Alice’s particle will be entangled
with emitted photons, and the coherence of her particle will be
destroyed, independently of what Bob does.



Resolution of the Apparent Paradox
If Alice performs the recombination of her particle “quickly”
(TA < DA) she will destroy the coherence of her particle by
emission of radiation. No paradox will arise if Bob is able to get
“which path” information.
By performing her experiment adiabatically (TA � DA), Alice
can ensure that N � 1 and thus that she doesn’t destroy the
coherence of her particle. But then Bob will have to be
correspondingly far from Alice in order to do his measurement
at spacelike separation from Alice’s recombination, so his
“signal” will be weak. In that case, vacuum fluctuations prevent
Bob from acquiring sufficient “which path” information to result
in a contradiction. Indeed, we showed that if Alice and Bob
follow the protocols of the gedankenexperiment, then Bob can
be interpreted as measuring the “on-shell” photons/gravitons
emitted by Alice’s particle during recombination—even though
he is spacelike separated from this recombination!—so Bob can
never acquire enough “which path” information to cause a
paradox. (But that would be a subject for a different talk!)



A New Twist to the Paradox: Black Holes
Now suppose a black hole is present and Bob performs the
measurements from inside the black hole:



New Twist: Black Holes

A black hole is not a particularly good place to set up an
experiment, since Bob cannot remain stationary and
(presumably) will fall into the singularity inside the black hole
within a finite time. Nevertheless, the Coulomb/Newtonian
field of Alice’s particle will penetrate into the black hole, and if
Bob can acquire some (limited) “which path” information if he
turns on his measuring apparatus after falling into the black
hole. But if T is arbitrarily large, a sequence of Bob’s should be
able to acquire arbitrarily good “which path” information.

Since Bob’s measurements cannot be relevant to Alice’s
experiment, the black hole itself must be harvesting “which
path” information. In the remainder of this talk, I will explain
how black holes do this.



Decoherence of Alice’s Particle Due to Emission of
Radiation

Suppose Alice is in Minkowski spacetime and after
recombination, she keeps her recombined particle stationary
forever. At asymptotically late times, the state of the total
system is of the form

1√
2

(
|↑;A〉i+ ⊗ |Ψ1〉I + + |↓;A〉i+ ⊗ |Ψ2〉I +

)
where |Ψ1〉I + and |Ψ2〉I + represent the quantum states of the

electromagnetic radiation at future null infinity corresponding
to whether Alice’s particle followed “path 1” (spin |↑〉) or “path
2” (spin |↓〉) . The decoherence of Alice’s superposition is

D = 1− |〈Ψ1|Ψ2〉I + | .



Decoherence in the Presence of a Black Hole

Now suppose Alice does her experiment in the presence of a
black hole. Then the final state is now

1√
2

(
|↑;A1〉i+ ⊗ |Ψ1〉I + |Φ1〉H + + |↓;A2〉i+ ⊗ |Ψ2〉I + |Φ2〉H +

)
where |Φ1〉H + and |Φ2〉H + represent the quantum states of the

electromagnetic radiation that passes through the event horizon
of the black hole. As previously discussed, if TA � DA, the
decohering radiation that reaches infinity will be negligible, i.e.,
|〈Ψ1|Ψ2〉I + | ≈ 1. The decoherence of Alice’s superposition is

DBH = 1− |〈Φ1|Φ2〉H + | .



Electromagnetic Radiation Through the Horizon
Let na denote the (affinely parametrized) normal to the
horizon. Electromagnetic radiation through the horizon is
described by the pullback, EA, of the “electric field” Ea = Fabn

b

to the horizon, H +, (where capital latin indices are used for
dual vector fields on the horizon that are orthogonal to na, i.e.,
having “purely angular” components). For a static point charge
outside the horizon, we have EA = 0, i.e., there is no radiation
through the horizon. However, Er 6= 0, on H +, where
Er = Fabl

anb where la is a past directed null vector with
lana = 1.
Now, suppose that the point charge is moved to a new location.
By Maxwell’s equations,

DAEA = −∂VEr

so there will necessarily be some radiation through the horizon.
Furthermore,

∫
DAEAdV is constrained by the initial and final

values of Er, and is independent of how slowly the charge is
moved.



Radiation of Through the Horizon

If the point charge is moved very slowly, the total energy
radiated into the black hole ∝

∫
EAEAr

2dΩV dV can be made
arbitrarily small. However, as I shall now explain, if the charge
remains in its new position forever, the number of photons
radiated into the black hole is infinite!
For an unperturbed black hole formed by gravitational collapse,
the state of the electromagnetic field on the horizon of the black
hole is described by the Unruh vacuum. However, we will be
concerned here only with low frequency phenomena
(ω � c3/GM), in which case the Unruh and Hartle-Hawking
vacua near the horizon are essentially indistinguishable. In the
Fock space associated with the Hartle-Hawking vacuum, a
“particle” corresponds to a solution that is purely positive
frequency with respect to affine parameter on the horizon.



Soft Photons

A classical charge-current source will perturb the state of the
quantum field from the Unruh/Hartle-Hawking vacuum to a
coherent state associated with the classical retarded solution. In
a gauge where Aan

a = 0, the number of photons radiated
through the horizon is given by

〈N〉H + =
1

π~

∫
r2dΩ

∫ ∞
0

ωdω|ÂA(ω, xA)|2

where ÂA is the Fourier transform of AA with respect to affine
parameter V . In this gauge, EA = −∂VAA, so since∫
EAdV 6= 0, it follows that AA does not return to its initial

value at late times. But this implies that ÂA diverges as 1/ω as
ω → 0, which, in turn, implies that 〈N〉H + =∞. This is a
precise analog of the infrared divergences that occur in
scattering theory (for d = 4).



Infrared Divergence

Thus moving a point charge to a different location and leaving
it there forever results in the radiation of an infinite number of
“soft photons” through the horizon!



How Large is ∆AA?

Radial electric field of a point charge located a distance b from
the black hole:

Er ∼
q

b2

If the charge is moved a distance d� b, we have

∆Er ∼
qd

b3

Since we have

∆Er = −
∫
dV DAEA =

∫
dV DA∂VAA = DA(∆AA)

and the horizon is at r ∼M , we obtain

|∆AA| ∼
M2qd

b3



Radiation When Point Charge is Moved Back to
Original Position after time T

The infrared divergence is avoided if the charge is moved back
to its original position. Now we obtain

〈N〉H + ∼ |∆AA|2 lnV ∼ M4q2d2

b6
lnV

But V = eκT with κ = 1/4M , so

〈N〉H + ∼ M3q2d2

b6
T



Alice’s experiment

In a stationary lab outside of the black hole, Alice puts her
particle in a spatial superposition, keeps it in the superposition
for a (proper) time T , and then recombines the particle. The
above estimate for 〈N〉H + holds for the number of “entangling
soft photons” emitted into the black hole in this process. If
〈N〉H + & 1, then her particle will have decohered. Thus,
Alice’s particle will decohere in a time

TD ∼
b6

M3q2d2

∼ 1043 years

(
b

a.u.

)6

·
(
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M

)3

·
(
e

q
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·
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m

d

)2

(But TD ∼ 5 minutes if Alice’s lab is at b = 6M rather than at
1 a.u.)



Gravitational Case
The analysis of the gravitational case follows in close analogy
with the electromagnetic case, with the electric part of the Weyl
tensor Eab = Cacbdn

cnd playing the role analogous to Ea. For a
static point mass, the only nonvanishing component of Eab on
the horizon is Err = Cacbdl

anclbnd. Radiation through the
horizon is described by the pullback, EAB, of Eab to the
horizon. In parallel with Maxwell’s equations, the Bianchi
identity yields

DAEAB = −∂VErB, DAErA = −∂VErr

which implies
DADBEAB = ∂2VErr .

Similarly, we now have

EAB = −1

2
∂2V hAB .



Gravitational Decoherence

An important difference that occurs in the gravitational case is
that Alice does not create a “mass dipole” in the
superposition—her lab moves oppositely to cancel the mass
dipole of the superposition. Thus, it is now the effective mass
quadrupole md2 of the superposition that now enters, rather
than the effective electrostatic dipole qd. Otherwise, the
analysis proceeds in complete parallel, and decoherence time is
now

TGR
D ∼ b10

M5m2d4

∼ 10 µs
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Generalizations

The only crucial property of black holes used in the above
analysis is that the event horizon is a Killing horizon. A closely
parallel analysis (in both the electromagnetic and gravitational
cases) holds in other cases where a Killing horizon is present.
This includes the case where Alice’s lab is accelerating in
Minkowski spacetime (Rindler horizon) and the case of de Sitter
spacetime (cosmological horizon). For an inertial lab in de
Sitter spacetime, in the electromagnetic case, we have

TD ∼
R3
H

q2d2

whereas in the gravitational case, we have

TD ∼
R5
H

m2d4
.



Conclusions

Black holes—and more generally, Killing horizons—harvest
information about quantum superpositions of spatially
separated components. They do so by absorbing “soft
photons/gravitons” associated with the long range fields sourced
by the matter comprising these components. Eventually, a
black hole will decohere any quantum superposition. Although
this is not likely to be of practical importance for experiments,
it remains to be explored as to whether this could be of
fundamental significance for our understanding of the nature of
black holes in a quantum theory of gravity.


