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Outline

Era of gravitational-wave astronomy has begun.

See talks from Campanelli, Cardoso, Chtziioannou, Damour, Di Vecchia,
Farr, Vecchio
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How can we, as particle theorists, help out?



Outline

1. Overview.

2. Brief review of basics.
— Scattering amplitudes and gravity.

3. Three examples where amplitudes help with grav. wave physics

— Higher orders. Towards Sth post-Minkowskian order, G>.

— Basic issues on defining spin. Puzzle and new results.

— Compact representations of observables:
Eikonal formula for spin.

4. Conclusions and Outlook.




Can Particle Theory Help with Gravitational Waves?

What does particle physics have to do with classical dynamics
of astrophysical objects?

unbounded trajectory bounded orbit

gauge theories, QCD, electroweak General Relativity
quantum field theory classical physics

Black holes and neutron stars are point particles as far as
long wavelength radiation is concerned.

Iwasaki (1971); Goldberger, Rothstein (2006); Vaydia, Foffa , Porto, Rothstein, Sturani;
Kol; Bjerrum-Bohr, Donoghue, Holstein, Plante, Pierre Vanhove; Levi, Steinhoff; Vines etc

Will explain that QFT scattering amplitudes are well suited for
perturbative gravitational wave calculations in post-Minkowskian
framework.



Approach to General Relativity

Our appoach does not start from usual Einstein Field equations.

geometry

Rg,, = 8nGT,,

1
2

R, —




Amplitude Approach to General Relativity

Our appoach does not start from usual Einstein Field equations.

— 1
R = =G T M

Gravitons are spin 2 particles

* Not suited for all problems. Works very well for asymptotically flat
space-times in context of perturbation theory.
*  Well suited for gravitational-wave physics from compact astrophysical objects




Gravity from Gauge Theory

Kawai, Lewellen, Tye; ZB, Carrasco, Johansson

/\ color factor

Kinematic numerator

gauge theory Atree ig"™ QZ CiTi™ o tor
1

1
D; « Feynman propagators

(QCD):
Ck = C; — Cj , , NS
nE = n; — N, Ci 7 Ty BN

2

. . . tree . n—2 n; sum over diagrams
Einstein gravity: M ™ = ix Z D. with only 3 vertices
1

i
niNk4'k5k2‘81€2'€384~55—|—...
Gravity and gauge theory kinematic numerators are the same!

Underlying physical reason still unclear.

Cries out for a unified description of gravity with gauge theory,
presumably along the lines of string theory. 7



From Tree to Loops: Generalized Unitarity Method

Use tree amplitudes to build higher order (loop) amplitudes.

E 2 — ﬁ 2 + m2 +«— on-shell \ ZB, Dixon, Dunbar and Kosower (1994)
R |
Two-particle cut: m * Systematic assembly of
: complete loop amplitudes

3 from tree amplitudes.
* Works for any number of
particles or loops.
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Three-particle cut: )
1 4

ZB, Dixon and Kosower;

on-shell
\ /B, Morgan;
Generalized

/ ) ; Britto, Cachazo, Feng;
. . P 3 Ossala,Pittau,Papadopoulos;
unitarity as a Ellis, Kunszt, Melnikov;
practical tool | i1 4  Forde; Badger;

/B, Carrasco, Johansson, Kosower
for lOOpS° and many others

Idea used in the “NLO revolution” in QCD collider physics
and high loop supergravity calculations.
Are applying it to gravitational wave problem.



Goal: Higher Precision.

Dynamics of black hole
inspiral for gravitational

waves.
0/ - o -—

-~

Inspiral Merger Ringdown

UV |

analytic part we want to help with u “

PN + EOB or Pheno Post — Newtonian Numerical Perturbation

Theory Relativity Theory

Small errors accumulate. Need for high precision.

From Antelis and Moreno, arXiv:1610.03567
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Future Detectors

Ground based improvements

today
~ 10—23_:
|N 7
am
2
210724
=
£
» future
Cosmic Einstein
10-25- Explorer Telescope
10 100 1000
Frequency / Hz

https://cosmicexplorer.org/sensitivity.html
Depending on parameters, sensitivity improvements up to factor of 100.

Also vast improvements at low frequency from space-based: Extreme
mass ratio inspirals (EMRI): LISA, TianQin.

Highly nontrivial theoretical challenge to match upcoming 10
experimental precision.



High-energy gravitational scattering and the general relativistic two-body problem

Thibault Damour*
Institut des Hautes Etudes Scientifiques, 35 route de Chartres, 91440 Bures-sur-Yvette, France
(Dated: October 31, 2017)

,\ technlque for translating the classical scattering functlon of t“o gravitationally interacting bod-

. s o i h NS FUL S & § b H A 1 41 aand 1 . |

/... and we urge amplitude experts to use their novel techniques to to)
compute the 2-loop scattering amplitude of scalar masses, from
which one could deduce the third post-Minkowskian effective

one-body Hamiltonian.”

tllmﬁl'v~—\t/4--ﬂ'[2"|'l'\ﬁie of two particles, and we urge amplitude experts to use their
novel techniques tocompute the 2-loop scattering amplitude of scalar masses, from which one could

deduce the third post-Minkowskian effective one-body Hamiltonian

~
(;:] . . . R . . . R ntly intro-
. Hard to resist an invitation with this kind of clarity! t daive
& T oo o Eror oot = ; - om the
~ e L o e T e 2 (gauge-invariant) scaftering function ® Iinking (half) the
ot nals from {ns;.)lraﬂlng and coalescing binary bl{mk hgles center of mass (c.m.) class{zlal gravitational scattering
@) has been significantly helped, from the theoretical side, angle y to the total energy, Erea = /3, and the total
‘e by the availability of a large bank of waveform templates, gular momentum. J. of the s:?;t em!

defined |5, 6] within the analytical effective one-body Y ’
", (EOB) formalism [7-11). The EOB formalism combines, l\ — &(Erear, J; My, ma, G) . (1.1)
7~ in a suitably resummed format, perturbative, analvtlca.l 2’ T
o results on the motion and radlatlon of compact binaries, The (dimensionless) scattering function can be expressed
5f)  with some non-perturbative information extracted from  as a function of dimensionless ratios, say
— numerical simulations of coalescing black-hole binaries 1
. (see [12] for a review of perturbative results on binary 5\ = ®(h,j;v), (1.2)
> systems, and [13] for a review of the numerical relativity
A~  of binary black holes). Until recently, the perturbativere- ~ Where we denoted
o) sults used to define the EOB conservative dynamics were p = Ereal . j= J _Jd (1.3)
v mostly based on the post-Newtonian (PN) approach to - M YT Gmyma GuM’ ’
- the general relativistic two-body interaction. The con- with
- servative two-body dynamics was derived, successively, myms u myms
f— at the second npost-Newtonian (2PN) [14. 15]. third post- M=mi4+mo l=——V=or = —+—— |
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PN versus PM expansion for conservative two-body dynamics

v? GM
f [ ¥

L=—-Mc+"—+
2 r

.

From Buonanno
Amplitudes 2018

SaUIA unsn[21pasd)

E(v) = _g’ v ... 1 non-spinning compact objects
OPN | 1PN | 2PN | 3PN 4PN SPN | ...
OPM: 1 v? vt v v® v'? ces
@ r |02/ | vtr | o5/ | 03/r
QP—M; 1/r2 | o2/r2 | ot/ o8 r |(0®)r2)
1/ |02 | ot/ | o8
/vt | o2/rt | vt/
1 — Mc?, 2 5 L — GM

current known

PN results PM results

® PM results

current known

2
overlap betw

re?
een

PN & PM results

unknown

(Westfahl 79, Westfahl & Goller 80, Portilla 79-80, Bel et al. 81, Ledvinka et al. 10,

Damour 16-17, Guevara 17, Vines |7, Bini & Damour |7-18,Vines in prep)




Post-Minkowskian Approach

Comments:

 Unbound orbits cleaner
theoretical environment.

* Asymptotic flat space
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eccentricity e Khalil, Buonanno, Steinhoff, Vines

Different approaches needed for high precision in all regions. EOB.
Buonanno and Damour
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Methods for Extracting Classical Physics.

There are now multiple alternative ways to extract classical physics.

Cheng, Solon, Rothstein;

EFT matChing to 2 bOdy Hamiltonian ZB, Cheung, Roiban, Shen, Zeng

Map to EOB Bini, Damour, Geralico
Calculate physical observables Kosower, Maybee, O’Connell
Fikonal ph ase Amati, Ciafaloni, Veneziano;

Di Vecchia, Heissenberg, Russo, Veneziano

Amplitude radial-action relation zB, parra-Martinez, Roiban, Ruf,
Shen, Solon, Zeng

Exponential representation Damgaard, Plante, Vanhove;
Bjerrum-Bohr, Plante, Vanhove
Heavy mass field thEOl'y Brandhuber, Chen, Travaglini, Wen
Damgaard, Haddad, Helset
World line formalisms Goldberger, Rothstein; Levi, SteinhofT;

Dlapa, Kélin, Liu, Porto;
Jakobson, Mogul, Plefka, Steinhoff;
Edison, Levi; etc

For pushing into new territory we still prefer EFT matching.

14



General Relativity: Unitarity + Double Copy

* Long-range force: Two matter lines must be separated by on-shell propagators.
e Classical potential: 1 matter line per loop is cut (on-shell).
Neill and Rothstein ; Bjerrum-Bohr, Damgaard, Festuccia, Planté, Vanhove; Cheung, Rothstein, Solon

Only independent unitarity cut for 2 PM.

A

2
Treat exposed lines on-shell (long range).

Pieces we want are simple!
1 4

Independent generalized unitarity cuts for 3 PM.

2 3 2 3 2 3
8 7
5 6
1 4 1 4 1 W 4
QY [ 4 J
Our amplitude tools fit perfectly with K ® O
extracting pieces we want. )[4 @

gravity loops 15



Generalized Unitarity Cuts

TS T
@y -

o

o

5St 1S6 2nd post-Minkowkian order
1 4

Cop = Z M tree(3s ghe _78) M tree( 78, __ehs 25) N[tree(ls,g)—hs, _6-’16’45)
hs . he==+
— Z Z-t[Agree(?)s’ 6h6, _73) Agree('?s’ _5h5’ 25) AZree(ls, 5—h5’ _6—h.6, 43)]
hs he==
X [Age(37, 6%, —7°) Ay (7°, —5"5,2%) AYee(42, 570 —6hs 1%)]

Problem of computing the generalized cuts in gravity is reduced
to multiplying and summing gauge-theory tree amplitudes.

This is then appropriately integrated and processed into observables

16



Amplitude in Conservative Classical Potential Limit

ZB, Cheung, Roiban, Shen, Solon, Zeng (BCRSSZ)
The O(G3) or 3PM conservative terms are:

(3 12m4 loo g2
I I/Gmi?é — [3 — 6v + 206v0 — 540% + 108v0? + 4vo® —
~

(1 —942) (1 — 52 3,43, 4.6
_ B8y ((11+ ?)U(f _(|_10) 0T )] 87 Cj4g m [37 (1—20%) (1 —50%)Fy — 32m*v° (1 — 202)3F2}
’ ,

48y (3 + 1202 — 404
M

m=ma+mp. fh=mamp/m. v =p/m, v=E/m,

¢ =FE\Ey/E?, E = E, + Es, o = p1 - pa/Mmims.
Amplitude remarkably compact.

Arcsinh and the appearance of a mass singularity is new feature.
Di Vecchia, Heissenberg, Russo,Veneziano; Damour

Derived conservative scattering angle has simple mass dependence.

Antonelli, Buonanno, Steinhoff, van de Meent, Vines
Comprehensive understanding: Damour

17



Conservative 3PM Hamiltonian

ZB, Cheung, Roiban, Shen, Solon, Zeng (2019)

The 3PM Hamiltonian:

H(p,r) =4/p*+mi+/p*+mi+V(p,r)
3 1
Cz
-3 () -

Newton in here V(p,r)
/ =1
v1:27712 v2m3 |3 dvo (1—20%) v2(1-¢)(1- 202)2
C1 — (1—20’2) Co — —(1—50‘2)— - s
2&S | ¢ |4 7€ 2v3¢? |
4v (3 + 1202 — 40*) arcsinhy / &+
c3 = VA/;Z 1—12 (3 — 6v + 206v0 — 5402 + 108v0? + 41/03) — ( o 2

vy (1 — 202) (1 — 502)

3vo (7 — 2002)

V2 (3 + 8v — 36 — 1502

— 80v0” + 1560?) (1

- 202)

21+ 7)1 +0) 2€ 43¢
23(3 — 4€)o (1 —202)° A1 —2¢) (1 - 202)°
+ WYE 2~6¢4
m=mg +mpg. p=mampg/m, v=p/m, v =E/m,

¢ =FE\Ey/E?,

E = FE| + Es,

0 = P1 'Pz/m1m2:

18




How do we know it is right?

Original checks:

« Compared to 4PN Hamiltonians after canonical transformation
 In test mass limit, m <<m,, matches Schwarzschild Hamiltonian

Damour, Jaranowski, Schifer; Bernard, Blanchet, Bohé, Faye, Marsat

Thibault Damour seriously questioned correctness.
Specific corrections proposed. Damour, arXiv:1912.02139v1

New calculations confirm our 3PM result:

1. Subsequent papers confirm our result
in 6PN overlap Bliimlein, Maier, Marquard, Schéfer;
’ Bini, Damour, Geralico

2. Calculations reproducing our 3PM results.
Cheung and Solon; Kalin, Liu, Porto; Bjerrum-Bohr, Damgaard, Planté, Vanhove

3. Adding real radiation removes mass singularity.
D1 Vecchia, Heissenberg, Russo,Veneziano; Damour

3PM results have passed highly nontrivial checks and careful scrutiny.

19



Higher Order Scalability: O(G%)

Methods scale well to higher orders Shen, Solon, Zeng (2022)

2W32W32W—32 3
1 ) 4 1= 4 1= i1 4
2 3 2 3 2 32—%}—3
1 (e 41 B OO
ng Q_W_;g 2—%}—3 2—(%}—3
1 p— \—y 41 gy gy 41 p— gy 41 N N 4

ng

1

p—g p—y 4

New feature: Tail effect. Gravitons bounce off of curved space.
Small and large eccentricity orbits controlled by different local Hamiltonians.

/B, Parra-Martinez, Roiban, Ruf,

20



Conservative Contribution O(G4)

7B, Parra-Martinez, Roiban, Ruf,
1st self force Iteration. No need to compute Shen, Solon, Zeng (2022)

A
'4 \

test particle
O(G*) amplitude /

cons 4 7.2 P o w2 rem j:},l ig,le,Q jr,ljr,B j’?,?
MP™ = GIM™V?|q|n? [M +v (4M4100 (B2) + MY + M )] + + + +
£ £

A

0 Z172273 Z1Za Z1 ¢ 21
D =4 — 2 tail effect
rccosh(o) 35 (1 — 1802 + 330*)
ME = 1+ 4 1o log (ZEL) 4 1 arccos ‘ b

Mj = ran® + s K(STE(57) +re K (551) +rr E*(551) . <— elliptic

2
Mflem — 18 + 79 log (g+1) + 110 arcc;)sh(a) + 111 log(cr) + 119 log (L) + 713 ar\c/cogsh(la) log (U+1) + 714 arcc;osill(a)
—|—115L12( )+I16L12(1+U)+117\/—[L12( \/ ) Lis (\/U;i ’]

r.. rational coefficients
v =mymsa/(m1 + ms) 0 = p1 - p2/mima. y

This is complete conservative contribution.

12044 , 212077 115017979 o~ 9823001200 ¢ 115240251793703 ,,

radgrav,f ,
M -5 Poo T 5g7p Poo T ~rgaennPes)” ~7eaa0sa0 P T 1038874636800 P

First 3 terms match 6PN results of Bini, Damour, Geralico!

* Some potential subtlety with Bluemlein, Maier, Marquard, Schafer; Foffa, Sturani.
— almost tracked down by Luz Almeida, Muller, Foffa, Sturani,

* Analytic continuation to bound case not trivial: tail effect.
21
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Comparison with Numerical Relativity
Khalil, Buonanno, Vines, Steinhoff;

Damour and Rettegno

——1PM
2PM
Ein ~1.02258 | 3PM cons
—3PM
.......... 4PM cons
—4PM
I NR

EOB improved 4PM

14 15 1.6 1.7 1.8 1.9 2

= angular mom,

4PM Conservative: ZB, Parra-Martinez, Roiban, Ruf. Shen, Solon, Zeng;
Damgaard, Hansen, Planté, Vanhove; Jakobsen, Gustav Mogull, Plefka, Sauer, Xu;

Bjerrum-Bohr, Plante,Vanhove.

4PM Dissipative: Manohar, Shen and Ridgeway; Dlapa, Kalen, Lui, Neef, Porto;
Damgaard, Hansen, Planté, Vanhove.

NR: Damour, Guercilena, Hinder, Hopper, Nagar, Rezzolla;

Surprisingly good agreement with numerical relativity!
Proves we are on a good track!

Motivates us to go on S PM order.

22



What is next?

There are many problems to work on:

1. Tail effect causes nontrivial analytic continuation between
unbound and bound cases starting at O(G*4).

Bini, Damour; Dlapa, Kalin, Liu, R Porto
2. Radiation.
3. Tidal effects.

4. Absorption of energy by black holes.

S. Push on to S PM O(G?3). This is nontrivial. Crucial for future.

6. Spin effects.



Example 1: Towards SPM

24



Structure of Higher Orders

Moving up in orders of PM new effects and features encountered:
1PM and 2PM: Fixed by geodesic motion, OSF.

\/ ds? = — (1 — %) di? + : llM dr? + r’dé? + r?sin%(0) d¢>
r _M

r

3PM: Interesting structure in high energy limit. 1SF, mi/m:

log(E 2/ mym,) Cancels against real radiation
Di Vecchia, Heissenberg, Russo,Veneziano; Damour

4PM: Tail effect, nontrivial analytic continuations, elliptic integrals,
noncancellation of poor high-energy behavior. Nonlocal in time effects.

2(o-1
Tt
5PM: 2SF, new nontrivial functions, memory effect. ;i ‘

6PM: Mixing with tidal operators, UV divergences. \ {
’ 25

Distinguish BHs from neutron stars.




Example 1: Towards SPM, O(G>)

7B, Herrmann, Roiban, Ruf, Smirnov, Smirnov

Scattering Amplitudes

Double copy
Generalized unitarity i Straightforward

Expansion in classical limit

Loop Integrand

Reduction to master integrals
DE’s for master integrals Hard Current Bottleneck
Solutions of DEs.

Integrated Amplitude

Eikonal, EFT matching computations .
Amplitude action relation, Stralghtforward

Pick your favorite formalism.

2-Body Hamiltonian or Observables

SPM problem nontrivial, so attack in stages. .



Deal With in Stages

/B, Herrmann, Roiban, Ruf, Smirnov, Smirnov

N e

QED OSF 1SF 2SF 2SF
Stages:
1. QED warmup. Potential mode contributions. Done. t/
2. 1 SF Conservative. Working on it.
3. 2 SF Conservative. Hard, but in reach
4. Radiative effects. Similar

SF ISF | 27 72SF _ e
Mspy = Mgy + vMgpy + v2 Mgy, YT tmy + ma)?

* Learn from each stage to push forward the next one.

27



Electrodynamics Warmup

/B, Herrmann, Roiban, Ruf, Smirnov, Smirnov (2023)

1. Electrodynamics is simpler: 23 families of integrals vs 395.

2. In 23 family overlap have identical complexity.
— soft expansion makesgravity and electrodynamics difficulty similar.

3. Diagrams shared across families: 25 percent of electrodynamics integrals
GR integrals.
/
X

Integral reduction: 10¢ integrals — 1107 master integrals in 23 families.

Standard tools work!

 FIREG6 + LiteRed, but tune code, algorithms and choice of

master integrals. A. Smirnov and Chuharev; Lee
V. Smirnov, Usovitsch

e Already have factor of ~ 1000 improvement compared to 4PM.

28



Sth Order Scattering Angle (Potentlal)

/B, Herrmann, Roiban, Ruf, Smirnov, Smirnov (2023)

5 4
a’(m; + m,)
SPL 1 2 (0) (D 4 ;2,2
Apot = 30 15E4 (62 — 1)52 X {70 +2(Wk TV )fk

k=1
Mass polynomiality, GSF expansion
Only potential modes. ) o .
P = 12 20858 112805 — 62501 — 3200° + 70502 fi=1, fo=GC(x), f3=Cop(x), fa=Coop(@)
o? 2
e fs = = C3(@) + Cga) + .
7'&1) =+vo2—-1|— (OZB _ ) — 800 (1602 + 23) , 7'{‘2
o2 _ Je = — () + O (x) — —
1,0 1,0 ™
(@) _ 4050 (15-440°) 15 (100> +20-3) fr= C ( )+2C5 0( )"‘CG 0( )— —2C6) (»L)‘F? ’
LT 16(1-402)® o3
— o’ 5606 Poad ot '/T 7<3
| ~204807+6656 1617872 +20000 fo= — Cg,’?)’g(w) + 08;8;8(;1;) 4 ZCS(I) 4+ <
—77400°—225600% 663502080
16 etc.
0 o] (129126(7(40i1_6i(;3+287) .
0 (e 12 Cyclotomic polylogs are natural
+ 1 .
+% (177604+819203+1082002+117760+3223)}, functions to use. Ablinger, Bluemlein, Schneider.
etc.

We can carry out 4-loop calculations using our setup. ’



Status of Gravity SPM Conservative

/B, Herrmann, Roiban, Ruf, Smirnov, Smirnov

 Key Message from QED: Standard tools work, with some care.
e Now marching on SPM gravity.

e 1SF terms in SPM gravity being calculated, 2SF harder but doable.

30



Example 2: Description of Spinning Objects in GR

31



Example 2: Spinning Objects

ZB, Luna, Roiban Shen, Zeng Sl
-
Two spinning black holes or neutron stars.
) [ ™
* Orbital angular momentum not conserved. & S,

* Orbital motion complicated, not in a plane. Many hundreds of papers

Suppose we toss two spinning black holes or neutron stars at each other.

1. What are the scattering angles?
2. How do spins and momenta change?

Various approaches to spin

e Worldline approaches Porto, Rothstein; Levi, Steinhoff.

Arkani-Hamed, Huang;

e Massive spinor helicity Chen, Chung, Huang, Kim

* Heavy Mass EFT Damgaard, Haddad, Helset; Aoude, Haddad, Helset
° Amplltlldes for low spins. Vaydia; Febres Cordero,Lin, Ruf, Zeng
* Amplitudes for generic spins. ;5 | .. Roiban Shen, Zeng:

ZB, Kosmopoulos, Luna, Roiban, Teng 32



Field Theory Formalism for General Spin
ZB, Luna, Roiban Shen, Zeng (2019)

S,

L
Back in 2019 we set up a field theory formalism for ‘;
dealing with problem of general spins. — /& S,

/ Wilson coeffs \

1 H Cgs2
L= 5(-1)°¢u(=V? = m*)¢" + = Rabead MM ¢° — =2 Rafypp, V2SSV, + .
. \ /
e = o~ cabed MgV (w)s Lorentz generators Higher dimension

operators
Rules for taking classical limit:

e(8,p1)M™=(8,p2) = S(p1, 8)™ (s, p1) - (8, p2) + O(¢")
Some features:

o Arbitrary spin field ¢..

* For simplicity field not an irreducible representation.

33



Puzzle at High Spin Order

Last year carried out calculations through G2 S5 Sl\% —A
ZB, Kosmopoulos, Luna, Roiban, Teng; Aoude, Haddad, Helset. v

Puzzle: We have more independent Wilson coefficients compared
to more standard worldline formulation.

1 H
L= 5(_1)S¢s(_v2 - m2)¢s + %RabcdgbsMabMCdgbs T

CESQ
2m

Match to worldline terms in G2 §3 scattering: Hy =1 Cgsz2 = Oy

Why do we have more Wilson coefficients?

* Physical effects on observables starting only at G2 $3.
e For black holes standard WL description looks complete.
* For generic objects such as neutron stars, extra coefficients.

e Only a single PN calculation has reached the order where this is

relevant. Levi and Yin

Rag,b5, V2SSV, + ...

34



Questions

ZB, Kosmopoulos, Luna, Roiban, Sheopner, Teng, Vines, to appear next week

1. What is a complete description of a spinning body in GR?
2. Can one construct a worldline theory matching our field-theory?

3. Should a classical spin be modeled as a definite-spin field or as
superposition of fields with different spins?

4. What two-body Hamiltonian matches theories with extra Wilson
coefficients?

Here we answer these questions

35



Electrodynamics as a Toy Model

ZB, Kosmopoulos, Luna, Roiban, Sheopner, Teng, Vines, to appear next week

Key simplification: Similar to GR except extra Wilson coefficients affect
observables linear in spin, not cubic.

To track the origin compare multiple formalisms:

1) 2 types field theories.
— Similar construction as earlier for GR, with reducible representation.
— Single transverse traceless quantum field in (s, s) Lorentz
representation.

2) Effect of spin supplementary condition (SSC) on worldlines. S"“p, =0

3) Extra Wilson coefficient and degrees of freedom for two-body
Hamiltonians.

36



Kinetic Term for Field Theories

. 1 : 5
FIE fom= —2FuF™ Lo =—(=1)"64(D* + m*)d

s

1. Original construction (except E&M here, not gravity)
2. Has extra states. Not irreducible representation of spin.
3.Only meant to be interpreted in classical limit.

FT2: min = —(—1)° [¢3(D2 +m?) s + s(Dos)(Dog) + .. ]

c.g. Lo—g = s (D2 + m2)¢gu1u2u3 + 3(Dﬂ¢uu2u3)(qu§ww3)

- 3¢MW3 (D2 + mQ)Q_ﬁyvus + 3¢uW3 DPDAngAMB + 395###3 DpD/\prA“g
3

+ §(Du¢ﬂpp)(qu;V/\)\) + 2(10(D2 + 4m2)95 + m(SODuQEW\A + @DugbuA)\)

FT1~ L5, +L5°-14...

min min

Different field theories to probe different effects.
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Standard World Line for Electrodynamics

ZB, Kosmopoulos, Luna, Roiban, Sheopner, Teng, Vines, to appear

Steinhoff’s dynamical mass worldline formalism:

o0

S[e’£7X7 Z, P, €, S] - /

—00

I 1 w A
<_(pﬂ o QA“)ZJ + §S;L1/Q'L + e(|p| — M(Z,p, S))

single Wil{o‘n coefficient O(S)

C - gp,sl“/pu + Xﬂ(eu() — ﬂb)> d/\ .
1

M =m — %5“ “E s Lagrange multiplier
Other potential &ﬁ“S“”F =0 bySSC SSC: SH'p, = 0
operator vanishes m P KM — 0

Dy = Du/\/ PHDu S = pF K" — KFp” + e’“’”"]}pSa
Two Wilson coefficient

~

(_1)8£non-min — ClF,u,z/¢sM'uV$3 +

Compare to field theory:

D1

DL Fu(Dy0 M D", + c.c)

At O(S) one more independent Wilson coefficient than worldline



Modified World Line for Electrodynamics

7B, Kosmopoulos, Luna, Roiban, Sheopner, Teng, Vines, to appear

o0

S[e,g,X,Z,p,e’S] — /

—00

. 1 . R
(—(pp — QAL + 55" + e(lp] — M(2, 5, s>>) d\

Cl v Dl A v A
M=m — %S'M FNV — EPMSM prpp

Pv = Du/+/DP'Dy

SHY IA)/.LKU . Kuﬁl/ + GMVpoﬁpSU
* No SSC

e Matches FT in the number of Wilson coefficients.

e Compton amplitude matches field theory % %

2iC?

P1-q2

FTlg
A4, cl.

f;pfi‘lp#

o ZC v v
= Ve E ] S [ U a4 s+

(p1-q2)
2iDy(2C; — Dy — 2 2K IDi—cC )
¢ B D D) o + 2 [ DV S ) )

m (Pl'Q2)
Ci(1—Cy+ D
_Gal-G 1)(f§”f3p“—f§"f2p")]}~
P1-q2

Y — K v v, H
fi & 4q; —&;4;
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2 Body Hamiltonian

usual Extra\

L-S; r- K,
r?

Hy = \/p? + mi /P2 + m+ VO, p) 1 VO (2, p) 72 StV pY)
magnetic dipole ~ 7

electric dipole
[S14, S15] = deinSip,  [Sia, K] = iegpKyy,, (For GRneed K2and KS)

73,515 = [pi, S15] =0 [ri, K1) = [pi, K1) =0 (K14, K1, = —i€ijnSik

To interpret Hamiltonian as classical:
replace commutators with Poisson bracket

Compton amplitudes from H2 match Compton from WL with no SSC &
FT1. Also two boys scattering matches.
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Results in Electrodynamics O(a? S)

1. Single quantum spin s state propagating, extra Wilson coefficients
decouple. Steinhoff and Kim; Haddad

2. If 2 or more states propagate with transitions:
— Extra Wilson coefficients allowed.
— Spin vector magnitude not preserved.

3. By introducing new worldline degrees of freedom by removing SSC
match field theory with extra Wilson coefficients. Identical results.

4. EFT Hamiltonian that matches has extra degrees of freedom. S and K.
Magnetic and electric dipoles.

Consistent picture from FT, WL and 2 body Hamiltonians:

At sufficiently high orders in perturbation theory (conservative)
description of spin requires extra Wilson coefficients.
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Return to Gravity
S\Q‘/
u/ S,

Now that we have tracked the origin in electrodynamics
two problems:

1. Need to redo analysis for gravity.

2. Identify physical systems via matching calculations where
these effects are measurable.
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Example 3: Eikonal Phase for Spin

43



Example 3: Eikonal-Phase Insight

Recall eikonal phase, geometric optics. Scattering amplitudes:
slowly varying ) .
N See Di Vecchia’s talk

M(q) ~ /d2_26b C(s,b,. ”)ez'x(b,s,...)ez-b.q

\ eikonal phase

Dominant part: stationary phase approximation.

Change in momentum given by derivative of
Ap =q=—Vpx(b) eikonal phase from stationary phase.

A completely natural object to study in classical limit of amplitudes
Directly extracted from gauge-invariant amplitude.

Expect there to be a scalar function—the eikonal phase—from which
all classical scattering observables with spin can be extracted.

May seem bold, but we can explicitly check.
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Example 3: Eikonal phase and spin.

ZB, Luna, Roiban, Shen, Zeng; ZB, Luna, Roiban, Sheopner, Teng, Vines <

Observables in scattering with spin.

Poisson bracket }
AO=0(t =+00) — Ot = —o0) / ‘/ S,
»

= (0.0} + 51 0601} + Drx, (1, 0 — 5 P06 1), 0} + OK*)

xDg = xg9 +Dr(x,9)

Oe{p.,S K} - of o ) 9

a=1

{51, 51} = €Sk, {51, Kij} = €Kik, {Kui, Ki;} = —€5551

eikonal
phase

1 d’q —ig-b R 1PL 9PL 3

Eikonal phase indeed encodes the motion (at least to checked order).
At this order same as radial action. Might be more natural.

 Remarkable that a single function encoded complicated dynamics.

e Can we find all order proof? . .
AOQ = e X7{0, X"}

Conjecture: 45



Outlook

Amplitude methods have a lot of promise and
their use has already been tested for a variety of <.
problems. |

To 5SPM order
and beyond!

* Pushing state of the art for high orders in G.

ZB, Cheung, Roiban, Parra-Martinez, Ruf, Shen, Solon, Zeng; Di Vecchia, Heissenberg, Russo,
Venezmno Damgaard Hansen, Plante Vanhove

¢ RadlathIl. Cristofoli, Gonzo, Kosower, O’Connell; Herrmann, Parra-Martinez, Ruf, Zeng; Di
Vecchia, Heissenberg, Russo, Veneziano; Herderschee, Roiban, Teng; Georgoudis,
Helssenberg Vazquez- Holm Brandhuber Brown, Chen De Angehs Gowdy ,
Travaglini

e Finite-size effect Cheung and Solon; Haddad and Helset; Kalin, Liu, Porto; Cheung,
C€-S1Z¢ cliects. Shah, Solon; ZB, Parra- Martinez, R01ban Sawyer Shen

° Spill- Vaidya; Geuvara, O’Connell, Vines; Chung, Huang, Kim, Lee; ZB, Luna, Roiban,
Shen, Zeng; Kosmopoulos, Luna; Febres Cordero, Kraus, Lin, Ruf, Zeng; Aoude
Haddad, Helset; ZN, Kosmopoulos, Luna, Roiban, Teng; etc.

¢ D1ss1pat10n. Goldberger and Rothstein; Aoude, Ochirov

The standard quantities of interest for the inspiral phase can all
be computed via amplitudes. Formalism far from exhausted. 4



Conclusions

Scattering amplitudes offer new perspective on gravitational-wave physics.

1. Novel way to look at perturbative gravity.
— Everything flows from graviton being a massless spin-2 particle.
— Double copy shows gravity follows from gauge theory.

2. Example 1: High orders, marching on SPM.
— Electrodynamics warmup complete.
— 5PM integrands easy.
— Marching on SPM integrals. 1 GSF part under control. 2 GSF harder.

3. Example 2: Description of spin appears incomplete at higher orders.
— Extra Wilson coefficients and degrees of freedom. Found in GR.
— Electrodynamics studied in great detail.

— Similar studies to be completed in gravity.

4. Example 3: Compact eikonal phase encodes physical scattering
observables for spinning case.

Amplitudes gives us new ways to think about gravitational waves.
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Compton Amplitudes

s - ZC v v
Ail:;_g - = (—1) &€& {S(Pl)w [m( 5 Q2pf:f/\ + f:ﬁf Q3pf5”\)p1,\ + o
+ 2iDy(2C, — Dy — 2) 2K (p1)up1 [Dl -

(Pl : 612)7712 m (pl . 612)2

Ci(1-C1+ D
_ 1(1 1+ 1)(f5pf3p” _ f;prp#)] } _
P1-q2

(qg + qg)f;pf3p/\p/1\

Plpféwféj'\m,\] +

Y — K v v H
fim =& di —elq

FT1 matches FT3 (positive norm) and matches modified WL2.

 Multiple quantum spin states with transitions needed.
* Negative norm states not relevant in classical limit.

 Extra degrees of freedom needed on WL.
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Gravitational radiation from scattering two black holes

Gravitational
radiation
at infinity.

Scattering amplitudes directly useful for determining radiatiem



Questions

ZB, Kosmopoulos, Luna, Roiban, Sheopner, Teng, Vines, to appear next week

1. What is a complete description of a spinning body in GR?
2. Can one construct a worldline theory matching our field-theory?

3. Our field-theory construction uses reducible representations of
rotation group (some with negative norm). What happen if only a
single (positive norm) quantum state propagates?

4. Can one build a field theory based on only positive-norm irreducible
representation displaying extra Wilson coefficients?

S. Should a classical spin be modeled as a definite-spin field or as
superposition of fields with different spins?

6. What two-body Hamiltonian matches theories with extra Wilson
coefficients?

Here we will answer these questions
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High Loop Integration

ZB, Parra-Martinez, Roiban, Ruf. Shen, Solon, Zeng

Developed a hybrid approach:

1. Method of regions to separate potential and radiation.
Beneke and Smirnov

2. Nonrelativistic integration. Velocity expand and then mechanically

integrate. Get first few orders in velocity. Boundary conditions.
Cheung, Rothstein, Solon

3. Integration by parts and differential equations. Imported from QCD.
Single Scale integl‘als! Chetyrkin, Tkachov; Laporta; Kotikov, Bern, Dixon and Kosower; Gehrmann, Remiddi.

Parra-Martinez, Ruf, Zeng

IBP: 0= ﬁ d®l; 0 N"(ly,pwm) Solve linear relations between integrals
. B 2m)PL ot Zy...Z, in terms of master integrals.

7

Solve DEs either as series or basis of functions.

0
DEs: 8—I ;naSter = simplified via IBP
Si

Smirnov, Chuharev;

Many tools available: We use FIRE6 + LiteRed Lee
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Spin Magnitude

* When extra degrees of freedom present (and do not decouple).
e Spin vector magnitude can change (conservative).

d d
—(Slef'}) =0 It (S% - K?) =0

(2 _ M2y (-C1+ D;+1)
dt dt :

4F1 Fo

1a BBy (K{VSY) - K1) S10) ()
bpoo(El + EQ)
Spin vector magnitude conserved at 1PL order if K(t=0)=0

2 2 2
wpn ((s9)"+ (s2)) ()
2PL: AS? = AKj =
Hk© 50 Hk© 0 b2 p2.(Ey + Ey)?

1PL (tree): AS% _ AK% _ 4+ O(OzQ)

+0(a”)

Spin vector magnitude not conserved at 2PL order

Extra Wilson coefficients linked to changes in spin vector magnitude
54



Towards SPM

/B, Herrmann, Roiban, Ruf, Smirnov, Smirnov

+ 48 other independent
generalize unitarity cuts

e Integrand construction straightforward using generalized unitarity even
at 6PM (five loops).
— generalized unitarity
— double copy

Done

e Construction of master integrals and DEs
— 5PM master integrals and DEs all known except for a few

Mostly done
— Series solutions straightforward, analytic results harder. 4

e Integral reduction of amplitude master integrals.
— only difficult step.
— Key realization: with some care standard methods work.
— improve coding, choices of masters, and ibp system chosen carefully.

SPM problem nontrivial, so attack in stages.
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Two Loops and 3 PM

2 3 2—) 3 2 3
8
5
1 4 1) 4 1 4
 More complicated than one loop, but no problem.

* To interface easily with integration, rearrange unitarity cuts into
conventional-looking diagrams.

Y X TX
Y X

|

D




(_ 1)S‘Cnon-mln ch Nz qbsj\[’“/ gbs

Results

L @Dy

,,(Dpcbs]Wp“D”qu + c.c)

C D _
ZQQ 2 0 Foyp(DP $S"SY by — c.c) — Zf 20uFp(Daths M M, — c.c)
m?
Field theory Lagrangian Amplitude | External state
AFT1s spin-s
FT1 'CEM + Emin + ‘Cnon-min )
AFTle generic
FT2 ‘CEM + Elsnm + Enon-min -AFT2 SpiIl-S
s,5—1 s,5—1 AFTSS spin—s
FT3 Lam+ L5+ L0
i nonTmm AFT3g indefinite spin

o7



4 Loop Integrals

IBPs used to create differential equations for master integrals:

cyclotomic polylog
OzL(x,€) =€ E w(x) AwZ(z,€)
weW fi=1, fa=CQ(x), fs=Coo(x). fa=Cooole).
2
11 1 2z 142z 22-1 fs = — C%%z) + C20(x) + T
W= {4," 14z z—1" 1422 1+x+22’ 1—;1'—|-1:2} ° 1o 20 42 |
Vs

fo= — Cg”g (z) 4+ Ci”g(;zr) 16

_p1°p2_ 1 0,0 1,0 0,0 1,0 7

0 = — — (1 — ’02)1/2 fr = C3)5(2)+2C37 (2)+Cg o (x)—2C¢ g (»l«')-l-E,
2
7 7
o= = COD8() + CE88() + T8 + 5.
]. + 582 2 2
_ T 21¢
0= 5, tOW) fo= = CO83() + COL (@) — T500(@) — 5.
fro = CO90(x) + 20840(x) + B () — 2088 (x)
Cyclotomic polylogs are natural + éWQCg(J,.) + &953
functions to use.
fa = — CY8S() + CR8() — 5,
Ablinger, Bluemlein, Schneider. 21¢

fiz = — G () + Cylo () + —323 :

All functions in amplitude can be rewritten in terms of ordinary polylogs cg



S PL Scattering Angle (Potentlal)

5th post-Lorentzian

(=l

12 — .

5 4
a-(m m
4L = (my + my) < |04 Z (Vr(l) " yzr(z))ﬁ(
0
p 30J5E4 (0-2 _ 1)5/2 0 ~ k k
- Mass polynomiality, GSF expansion
Only P otential modes. (2 4050 (15-4402) 15 (1002+20-3) POy > P
T T e (1—a02)? o
. + —204807+66560°+178720°+200000*
) = —5 — o6 o® — 6250% — o3 502 16
! o? 20807+ 128 02 32007410 n —774003—2256002—66350—2080 We can get tO end Of d
+ 2400 + 65, 16 ' '
. ot 2 R e 4 loop calculation.
= Vo = 80 (16074 25 © 16 (402 — 1)° Integrals doable!
A _ 90 (6Zi S (35007 4 310) . L 30200 —3;7 —40+3)
OO N 57600 . % (17760 +81920° 4108200 +117760+3223)}
o (02 — 1)'3/2 ( ) @ 30 (160 + 3602 — 1102 — 60 + 3)
r$ =120 (62 —1)"" (202 - 1) , 3= pu
i =120 (62 = 1) (02 + 0 — 1), +20 (2120° + 3500° + 3280 + 319) ,

(2 2880(c+1)(30+1)
ry = 5 ,
o2 —1

r® =480 (02 - 1) (202~ 1) ,

7'5(,1) = r%) 240(0% — 1)2,

1511) =120(62 = 1)(0% + 20 — 1), O _ 50 (52 - 1)5/27
re) =g =r{y) =0, ) = —480 (02— 1) (6 — o — 1) ,

l%) = —135 (02 - 1)2 ,

r3) = —480 (02— 1) (6> =20 — 1),
GO NN O N B

s s 11 .
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Basic Puzzle

S e,
How can 1t be that the basic WL discription of ‘% -

conservative dynamics of spinning objects has V\_/& S,
missing interactions when compared to the field theory?

It seems surprising:

No evidence in the many dozens of PN spin studies that anything 1s
missing.

Origin of the SSC and spin gauge symmetry seems completely reasonable.
You might worry that negative norm states are a problem in classical limit.

You might worry that high spin states in our constructio are not transverse
1s a problem.

On the other hand it evades checks:

Effects disappears for blackholes. Extra Wilson coefficients play no role
(to the order where we work).

So far, only a single WL paper has reached high enough order to even
have a chance to find anything.
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Quantum Field Theory and Scattering Amplitudes

Scattering amplitudes give us quantum mechanical description of
events at particle colliders.

/I

> €

fid L « 3
B0 AT -l SN

Large Hadron Collider ATLAS Detector

particle scattering

quark qg q

gluon qg q_
Higgs boson event Tree Feynman diagram loop diagram
higher order

At first sight, does not seem to have much to do with gravitational waves 61



What are we after?

< o
s’

 Replace scattering in General Relativity with a two body
potential that is easy to use in bound-state problem.
« Extract physics juice, leaving behind complexity of

general relativity.

Gm1 mo

V(I‘, p) — =

r

Just like Newton’s potential, except:

« Compatible with special relativity (all orders in velocity)
« Valid through O(G3).
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2 Body Potentials and Amplitudes

Iwasaki; Gupta, Radford; Donoghue; Holstein, Donoghue; Holstein and A. Ross; Bjerrum-Bohr,
Donoghue, Vanhove; Neill, Rothstein; Bjerrum-Bohr, Damgaard, Festuccia, Planté. Vanhove;
Chueng, Rothstein, Solon; Chung, Huang, Kim, Lee; etc.

Tree-level: Fourier transform gives classical potential.

a3 0 iar it Newtonian potential follows
Vir) ~ / (273 e "TTAYC(q) g  from Feynman diagrams
(s
Beyond 1 loop things quickly become
much less obvious: Y

e  What I learned in grad schoolon /4 and ¢l .- _.— ... .~

Ay o 2

Loops have classical pieces.
o 1/h"scaling of at L loop.

* Double counting and iteration. eisclassical /h
« Cross terms between 1/ and h.

Piece of loops are classical: Our task is to efficiently extract these pieces.

We harness EFT to clean up confusion 63



Effective Field Theory is a Clean Approach

Build EFT from which we can read off potential. Goldberger and Rothstein

. . . Neill, Rothstein
Wflnt a Newtonla.n like potential, Cheung, Rothstein, Solon (2018)
with GR corrections

A, B scalars
o f(—k) (0, + /K2 + m?2 .
Liin = /k Al(=k) (zat TR mA) Alk) represents spinless
) black holes
+/k Bt (—k) (Zat + 1/ k2 + mQB) B(k)
M Trq
Lint = _/ V(k, k') AT(K')A(k) BT (—k') B(—k) |4
k,k/
potential we want to obtain Mo %

; ; 2 body Hamiltonian
H(p,r) = \/Pz +mi+ \/p2 +m5+V(p,7)  inc.o.m. frame.

Match amplitudes of this theory to the full theory in classical limit to
extract a classical potential of the type Newton would like.

Our gravitational-wave theory friends want Hamiltonians. 64



4 Loop Integrals

/B, Herrmann, Roiban, Ruf, Smirnov, Smirnov
IBPs used to create differential equations for master integrals:

cyclotomic polylog
OzL(x,€) =€ E w(x) AwZ(z,€)
weW fi=1, fa= C(())(‘l) , f3= C(()),’(())(‘U)f fa= Cg,’g,’g(‘l")ﬂ
2
1 1 1 2 1+ 2z 20 — 1 _ 0,0/ . 0,0/ T
wW=1- . , , . fs = —Cig(x) + Cyp(x) + —,
{LL.' 1+x o—1" 14+22" 14+z+22 1—;1'—|-1:2} 1o 20 42
T
Je = — CS,S(I) + Ci,g(l) ~ 16
_p1°p2_ 1 0,0 1,0 0,0 1,0 s
0= MM — (1 _ ,02)1/2 fr = C35(2)+2C3% (2)+Cg o (x)—2Cg () 3
2
7 7
fo= — CO(w) + CORA(w) + - CB(x) + 2.
14 582 ot 4 2
2
o= O
o (¢7)

Cyclotomic polylogs are natural
functions to use.

Ablinger, Bluemlein, Schneider.

All functions in amplitude can be rewritten in terms of ordinary polylogs 65



full general relativity
(complicated)

Amplitude methods
double copy

tree amplitude

generalized
unitarity
h—0

loop integrand

loop
integration

GR loop amplitude

EFT Matching

identical
physics

Cheung, Rothstein, Solon

effective theory
(simpler)

build
ansatz

Potential V(r)

Feynman
diagrams

loop integrand

loop
integration

— EFT loop amplitude

Roundabout, but robust mean to extracts potential.
New methods bypass this, directly giving radial action. 66



Summary

In a very precise sense:

Gravity ~ (gauge theory) X (gauge theory)

* Gives us a good way to carry out calculations.
* Use it to do difficult calculations, to answer questions
of physical interest.

Examples:

* S loop supergravity to study nonrenormalizability of
gravity theories.

7B, Carrasco, Chen, Edison, Johansson, Roiban, Parra-Martinez, Zeng (2018)

* G4 corrections to Newton’s potential from GR.

7B, Cheung, Roiban, Shen, Solon, Zeng (2019)
ZB, Parra-Martinez, Roiban, Ruf. Shen, Solon, Zeng (2021) 67




KLT Relation Between Gravity and Gauge Theory

: : : . .. KLT (1985)
Kawai-Lewellen-Tye string relations in low-energy limit:

% gravity P gauge-theory color ordered
]ere(l,Q,?), 4) = —islgAffee(l, 2,3,4) Azree(l, 2,4,3),
ME™©¢(1,2,3,4,5) = is10534A5(1,2,3,4,5) AF®(2,1,4,3,5)
+ ”1:81382414?68(1, 3.2,4, 5) Agree (3, 1.4.2, 5)

Gravity Gauge Gauge
Theory Theory

Generalizes to explicit all-leg form. 7B, Dixon, Perelstein, Rozowsky

1. Gravity is derivable from gauge theory.
2. Standard Lagrangian methods offer no hint why this is possible.
3. Itis very general property of gravity.
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Importance of higher orders for LIGO/Virgo

LIGO/Virgo Collaboration arXiv:1602.03841
Binary pulsar confirms

T I S V __________ 4 iii quadrupole radiation
E | : f | ﬁ f 3 formula and not much
¢l HuseTaylor . ] ¢be
F &~ gravitational radiation ;

LIGO/Virgo tests PN

107 ' """""" B B B """"""" ””””””” = terms from GR

-

100k SR SR e e R oo -

_—
m

107!

<—— LIGO
<—— Binary pulsar

I GW150914
2L Yoo VWY J0737-3039

OPN 05PN IPN 15PN 2PN 25PN 3PN  3.5PN

f f f f f

Newton Einstein Ohta (1974) Blanchet (2000)  Blanchet (2015)
(1686) (1938) Damour (1981) Damour (2000)  Damour (2014)

LIGO/Virgo sensitive to high PN orders.

TTIT
LI
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Duality Between Color and Kinematics

ZB, Carrasco, Johansson (2007)

. momentum dependent 21/ %
coupling— - color factor " Kinematic factor }n—uﬁ
constan abe . 3

— g (k1 — ]{32)p + cyclic) B> e

Color factors based on a Lie algebra: [T?, TP = ; fobc¢
Jacobi Identity falagbfba4a3 + fa4a2bfba3a1 + fa4a1bfba2a3 —0

Use 1=s/s=t/t=u/u
z;'}'n-( % to assign 4-point diagram

to others.
s=(k1+k2)? t=(ki+kas)?
Alree = g2 (2o 4 T 4 Tt ) w= (k1 + k)
S t U
Color factors satisty Jacobi 1dent1ty. Cy = Cs — Ct

Numerator factors satisty similar identity: |74,

Ng — Nt

Proven at tree level and extends to higher points

7B, Carrasco, Johansson; Kiermaier; Bjerrum-Bohr, Damgaard, Sondergaard, Vanhove; Cachazo, etc 70



Post Newtonian Approximation

For orbital mechanics:

GM
2
v~y — K1
Expand in G and )~ R ‘/ /‘

«

/

virial theorem

In center of mass frame: m=ma+mp. v=u/M,

nw=mampg/m, Pr=P-R

H P? B Gm <«— Newton

7 2 R
1 Pt 3uPY Gm Pr?v 3P%2 P2 G2m?2
+ =< — + + — — —
c 8 8 R 9 92 92 2 R2

2
N ¥\ 1PN: Einstein, Infeld, Hoffmann;
Droste, Lorentz

Hamiltonian known to 4PN order.
2PN: Ohta, Okamura, Kimura and Hiida.
3PN: Damour, Jaranowski and Schaefer; L. Blanchet and G. Faye.
4PN: Damour, Jaranowski and Schaefer; Foffa (2017), Porto, Rothstein, Sturani (2019).
71



