Taming a resurgent renormalon

David Broadhurst, Open University, UK, at the Bohr-100 meeting, Copenhagen, 2 August 2022

Perturbative expansions in quantum field theory diverge for at least two reasons. The number of diagrams increases dramatically with the loop number. Renormalization may make the contribution of some diagrams very large. I shall give an example of the second problem, from an ultra-violent renormalon of ϕ^{3} theory in 6 dimensions, where we can compute to very high loop-order. Taming this renormalon involves my recent work on resurgence with Michael Borinsky in arXiv:2202.01513. This challenge is much more demanding than the corresponding problem for Yukawa theory in 4 dimensions.

1. Two sources of divergence
2. Dyson-Schwinger equation and asymptotic expansion
3. Padé-Borel summation with alternating signs
4. Trans-series and resurgent hyperasymptotic expansions
5. Comments and conclusions

Too many diagrams: An example of a divergent perturbation expansion in field theory by Angas Hurst in 1951 considers the super-renormalizable case of ϕ^{3} theory in $D=4$ space-time dimensions. For any number of external legs, the number of primitive n-loop digrams increases factorially with n. Below production threshold, each diagram gives a positive integral over Feynman parameters, bounded from below geometrically.
A renormalon: On high order estimates in QED by Benny Lautrup in 1977 considers the magnetic moment of the electron. At n loops there is a single gauge-invariant diagram whose contribution grows factorially with n.

Imaginary coupling: Divergence of perturbation theory in quantum electrodynamics by Freeman Dyson in 1952 remarks that convergence in $\alpha=e^{2} /(4 \pi)$, would make sense of a non-unitary theory with imaginary coupling giving $\alpha<0$ and a nightmarish world in which electrons repel positrons. Recent work: Instantons or renormalons? A comment on ϕ^{4} theory in the MS scheme by Gerald Dunne and Max Meynig in 2022 uses recent perturbative results to investigate a suggestion by Gerard 't Hooft that renormalons do not contribute to anomalous dimensions in a mimimal subtraction scheme.

2 Dyson-Schwinger equation and asymptotic expansion

Consider the perturbation expansion generated by a single divergent diagram, via the non-linear Dyson-Schwinger equation

contributing to the self-energy term Σ in the inverse propagator $q^{2}(1-\Sigma)$, for a massless scalar particle with a ϕ^{3} interaction, in the critical space-time dimension $D=6$, for which the coupling constant is dimensionless.

The dependence of Σ on the external momentum q comes solely from renormalization. At n loops, we get a contribution that is a polynomial of degree n in the logarithm $\log \left(q^{2} / \mu^{2}\right)$, multiplied by a^{n} where $a=\lambda^{2} /(4 \pi)^{3}, \lambda$ is the coupling constant and μ is the renormalization scale.
If we use momentum-space subtraction, so that Σ vanishes at $q^{2}=\mu^{2}$, the dependence on momentum is completely determined by the anomalous dimension, with

$$
\gamma(a)=-\left.q^{2} \frac{\mathrm{~d} \Sigma}{\mathrm{~d} q^{2}}\right|_{q^{2}=\mu^{2}} \quad \text { giving } \quad \frac{\mathrm{d} \log (1-\Sigma)}{\mathrm{d} \log q^{2}}=\gamma\left(\frac{a}{(1-\Sigma)^{2}}\right) .
$$

How many n-loop Feynman diagrams for this problem?

The number of distinct diagrams at n loops is the number T_{n} of rooted trees with n nodes, which gives the sequence
$1,1,2,4,9,20,48,115,286,719,1842,4766,12486,32973,87811,235381$, up to 16 loops. The iterated structure: tree $=$ root + branches, with every branch being itself a tree, gives the asymptotic growth

$$
\begin{gathered}
T_{n}=\frac{b}{n^{3 / 2}} c^{n}(1+O(1 / n)) \\
b=0.43992401257102530404090339143454476479808540794011 \ldots \\
c=2.95576528565199497471481752412319458837549230466359 \ldots
\end{gathered}
$$

At $\mathbf{2 5 0}$ loops the number of Feynman diagrams is T_250=517763755754613310897899496398412372256908589980657316 271041790137801884375338813698141647334732891545098109934676

This is not the main source of the problem. If the contribution of each diagram was bounded, there would be a finite radius of convergence for the perturbation expansion. The divergence of the series comes from renormalization, which makes the n-loop term grow factorially. This is called a renormalon singularity.

At 4 loops, we have a rainbow, a chain and two more interesting diagrams:

The sum of rainbows converges. Chains can be summed by Borel transformation.

$$
\begin{aligned}
\gamma_{\text {rainbow }}=\frac{3-\sqrt{5+4 \sqrt{1+a}}}{2} & =-\frac{a}{6}+11 \frac{a^{2}}{6^{3}}-206 \frac{a^{3}}{6^{5}}+4711 \frac{a^{4}}{6^{7}}+O\left(a^{5}\right) \\
\gamma_{\text {chain }}=-\int_{0}^{\infty} \frac{6 \exp (-6 z / a) \mathrm{d} z}{(z+1)(z+2)(z+3)} & =-\frac{a}{6}+11 \frac{a^{2}}{6^{3}}-170 \frac{a^{3}}{6^{5}}+3450 \frac{a^{4}}{6^{7}}+O\left(a^{5}\right) \\
\gamma \sim \sum_{n>0} G_{n} \frac{(-a)^{n}}{6^{2 n-1}} & =-\frac{a}{6}+11 \frac{a^{2}}{6^{3}}-376 \frac{a^{3}}{6^{5}}+\mathbf{2 0 2 4 1} \frac{a^{4}}{6^{7}}+O\left(a^{5}\right)
\end{aligned}
$$

with large integers G_{n} in the alternating asymptotic series for γ. Note that $G_{4}=20241>4711+3450$, because of two further diagrams, above. In one we have a chain inside a double rainbow. In the other, a double rainbow is chained with the primitive divergence. This interplay is coded by rooted trees.

At 500 loops I determined the integer coefficient

Abstract

G500=206261451966080541451119356265266407905816117576895601520616328670543304097 62369668214104674763068056454522518617422020409397336434904863988900797769773644 47129884863324773181376863120291798830884688213932683869821267125662274428136514 68974978228592824043044373847281757207937081063432528806815509319762088807291996 54549245884853496719417048678199825379018355919198123075612308008976364608893906 00835837012056033720017238115336850340799075684336975651857656078799282745256216 85768456030809283727097722850488278232311177219444745322287340871435443707536590 64304859950724683157717734493071321199539578218428617617722892100276682781401203 04983974209704793621909710059353724523231635766062166284812903992269403282699432 81718327508638643305481989940132234093616573076862094588977827344981584305605437 66475002382217933275761312682929603923397580260987048907414858143897114762331252 08694985337972553885925402003826420205441859988844001867088083850782378303677991 14077650584544145709672328391394562704209221732180879565868213522109303655045186 92714017665002971967455255310508358729281544729403249398746232320441525286283859 23093041626365262630100048817481274793707664791767175677240144896307853488347045 21622394885797995125083750860330519417878429051836575477220881369445751634601965 33191009573619480068718080810533581305996863996579338522874547127421808710757882 86996199556804886954946559116947132125235605586627322129268965041445488085748194 82341875039156647569797757032552836429751077302524927736861138479038542006096835 73747720303607608007740173613335602076396299832459826245418033598839559699294537 37336134624690115674194793212055897162647586497730033948880084738561472545509216

with 1675 decimal digits. The number of diagrams has merely 231 digits.

This was achieved in work with Dirk Kreimer that resulted in a third-order differential equation

$$
\begin{aligned}
& 8 a^{3} \gamma\left\{\gamma^{2} \gamma^{\prime \prime \prime}+4 \gamma \gamma^{\prime} \gamma^{\prime \prime}+\left(\gamma^{\prime}\right)^{3}\right\}+4 a^{2} \gamma\left\{2 \gamma(\gamma-3) \gamma^{\prime \prime}+(\gamma-6)\left(\gamma^{\prime}\right)^{2}\right\} \\
& +2 a \gamma\left(2 \gamma^{2}+6 \gamma+11\right) \gamma^{\prime}-\gamma(\gamma+1)(\gamma+2)(\gamma+3)=a
\end{aligned}
$$

with quartic non-linearity.
Our interest in this problem came from his discovery of the Hopf algebra of the iterated subtraction of subdivergences, whose utility we illustrated in this example, with a single primitive divergence leading to undecorated rooted trees.
For the corresponding diagrams in Yukawa theory, in its critical dimension $D=4$, we found a first-order equation with merely quadratic non-linearity, which we solved using the complementary error function, thereby achieving explicit all-orders results for both the anomalous dimension and the self energy. The expansion coefficients in this simpler case enumerate connected cord diagrams.

We also investigated the $D=4$ and $D=6$ examples in the more cumbersome minimal subtraction scheme, where one retains finite parts of Σ at $q^{2}=\mu^{2}$. Here one encounters unwieldy products of zeta values with weights that increase linearly with the loop-number. Recently Paul-Hermann Balduf has shown how to absorb these into a rescaling of μ that can be expanded in the coupling a.

3 Padé-Borel summation with alternating signs

We sought to resum the factorially divergent alternating series by an Ansatz

$$
\gamma(a)=-\frac{a}{6 \Gamma(\beta)} \int_{0}^{\infty} P(a x / 3) \exp (-x) x^{\beta-1} \mathrm{~d} x, \quad P(z)=\frac{N(z)}{D(z)} .
$$

The expansion coefficients of $P(z)=1+O(z)$ are obtained from those those of $\gamma(a) / a$ by dividing the latter by factorially increasing factors, producing a function P which we expected to have a finite radius of convergence in the Borel variable z, with singularities on the negative z-axis, as for the sum of chains.

The Padé trick is to convert the expansion of P, up to n loops, into a ratio N / D of polynomials of degrees close to $n / 2$. Then one can check how well this method reproduces G_{n+1}. We found that this works rather well with $\beta \approx \mathbf{3}$.
For example, we fitted the first 29 values of G_{n} with a ratio of polynomials of degree 14 and found a pole, coming from the denominator $D(z)$, at $z=-0.994$. The other 13 poles occurred further to the left, with $\Re z<-1$. Moreover the numerator $N(z)$ gave no zero with $\Re z>0$. Then this method reproduced the first 15 decimal digits of G_{30}. Gerald Dunne has recently shown that this method works even better with $\beta=\frac{35}{12}$, for reasons that I shall now explain.

4 Trans-series and resurgent hyperasymptotics

There is an old and rather loose argument, going back to Freeman Dyson in 1952, that we should not expect realistic field theories to give convergent expansions in the square of a coupling constant. If they did, we could get sensible answers for a pathological non-unitary theory with an imaginary coupling constant, such as an electrodynamics in which electrons repel positrons.
There is an amusing converse of this suggestion. If you find an expansion that is Borel summable, then study it at imaginary coupling, where ϕ^{3} theory gives the Yang-Lee edge singularity in condensed matter physics, using PT symmetry.
So now I recast the Broadhurst-Kreimer problem, in the manner of Borinksy, Dunne and Meynig, by setting $g(x)=\gamma(-3 x) / x$, to obtain an ODE that is economically written as

$$
(g(x) P-1)(g(x) P-2)(g(x) P-3) g(x)=-3, \quad P=x\left(2 x \frac{\mathrm{~d}}{\mathrm{~d} x}+1\right)
$$

and has an unsummable formal perturbative solution
$g_{0}(x) \sim \sum_{n=0}^{\infty} A_{n} x^{n}=\frac{1}{2}+\frac{11}{24} x+\frac{47}{36} x^{2}+\frac{2249}{384} x^{3}+\frac{356789}{10368} x^{4}+\frac{60819625}{248832} x^{5}+O\left(x^{6}\right)$.

The expansion coefficients behave as

$$
A_{n}=S_{1} \Gamma\left(n+\frac{\mathbf{3 5}}{\mathbf{1 2}}\right)\left(1-\frac{\mathbf{9 7}}{\mathbf{4 8}}\left(\frac{1}{n}\right)+O\left(\frac{1}{n^{2}}\right)\right)
$$

at large n, with a Stokes constant

$$
S_{1}=0.087595552909179124483795447421262990627388017406822 \ldots
$$

that can be determined, empirically, by considering a solution

$$
g(x)=g_{0}(x)+\sigma_{1} x^{-\beta} \exp (-1 / x) h_{1}(x)+O\left(\sigma_{1}^{2}\right)
$$

and retaining terms linear in σ_{1} in the ODE. This yields a linear homogeneous ODE for $h_{1}(x)$, which permits a solution that is finite and regular at $x=0$ if and only if $\beta=\frac{35}{12}$. Normalizing σ_{1} by setting $h_{1}(0)=-1$, we obtain the expansion of

$$
h_{1}(x) \sim \sum_{k=0}^{\infty} B_{k} x^{k}=-1+\frac{\mathbf{9 7}}{\mathbf{4 8}} x+\frac{53917}{13824} x^{2}+\frac{3026443}{221184} x^{3}+\frac{32035763261}{382205952} x^{4}+O\left(x^{5}\right)
$$

which gives the first-instanton correction to the perturbative solution, suppressed by $\exp (-1 / x)$.

By developing the series A_{n} and B_{k}, I was able to determine $\mathbf{3 0 0 0}$ digits of S_{1} in

$$
A_{n} \sim-S_{1} \sum_{k \geq 0} \Gamma\left(n+\frac{35}{12}-k\right) B_{k}
$$

This is an example of resurgence: information about A_{n} resurges in B_{k}, and vice versa, because both $A(x)=g_{0}(x)$ and $B(x)=h_{1}(x)$ know about the same physics. Hyperasymptotic expansions involve the study of how B_{n} behaves at large n, which involves another set of numbers C_{k}, at small k, and so on, and so on.

Large A's need smaller B's, especially to guide them, and larger B 's need smaller C 's, and so ad infinitum.

Hyperasymptotic investigation involves terms suppressed by $\exp (-m / x)$, with action $m>1$. For this third-order ODE, there are $\mathbf{3}$ solutions to the linearized problem, namely

$$
g(x)=g_{0}(x)+\sigma_{m}\left(x^{-\frac{35}{12}} e^{-\frac{1}{x}}\right)^{m} h_{m}(x)+O\left(\sigma_{m}^{2}\right), \quad m \in\{1,2,3\}
$$

with $h_{2} / x^{5}=C$ and $h_{3} / x^{5}=D$ finite and regular near the origin.

Then we use the linearized ODE to develop the expansions

$$
\begin{aligned}
& C(x)=h_{2}(x) / x^{5}=-1+\frac{151}{24} x-\frac{63727}{3456} x^{2}+\frac{7112963}{82944} x^{3}-\frac{7975908763 x}{23887872} x^{4}+O\left(x^{5}\right), \\
& D(x)=h_{3}(x) / x^{5}=-1+\frac{227}{48} x+\frac{1399}{4608} x^{2}+\frac{814211}{73728} x^{3}+\frac{3444654437}{42467328} x^{4}+O\left(x^{5}\right) .
\end{aligned}
$$

Before presenting the trans-series, I remark on some of its general features.

1. The terms suppressed by $\exp (-2 / x)$ involve σ_{2} and σ_{1}^{2}. The former are given by C and the latter are determined by an inhomogeneous linear ODE, whose solution is ambiguous, up to a multiple of the homogeneous solution $h_{2}=x^{5} C$, since we can shift σ_{2} by a multiple of σ_{1}^{2}.
2. In the terms suppressed by $\exp (-3 / x)$ there a second ambiguity, since we can shift σ_{3} by a multiple of σ_{1}^{3}.
3. Ambiguities of inhomogeneous solutions occur at places in expansions where logarithms first arise. This happens when the power of x in an expansion is a multiple of 5 .
4. The highest power of $\log (x)$, in terms with action m, is $\lfloor m / 2\rfloor$.

The terms in the trans-series with action $m \leq 4$ are of the form

$$
\begin{gathered}
g=\sum_{m \geq 0} g_{m}\left(x^{-\frac{35}{12}} e^{-\frac{1}{x}}\right)^{m}, \quad L=\frac{21265}{2304} x^{5} \log (x), \\
g_{0}=A, \quad g_{1}=\sigma_{1} B, \quad g_{2}=\sigma_{2} x^{5} C+\sigma_{1}^{2}(F+C L), \\
g_{3}=\sigma_{3} x^{5} D+\sigma_{1} \sigma_{2} x^{5} E+\sigma_{1}^{3}(I+(D+E) L), \\
g_{4}=\sigma_{1} \sigma_{3} x^{5} G+\sigma_{2}^{2} x^{10} H+\sigma_{1}^{2} \sigma_{2} x^{5}(J+2 H L)+\sigma_{1}^{4}\left(K+(G+J) L+H L^{2}\right) .
\end{gathered}
$$

Denoting the coefficients of x^{n} in functions by subscripts, we found that the choices

$$
\frac{F_{5}}{2!}=\frac{I_{5}}{3!}=\frac{32642693907919}{36691771392}
$$

greatly simplify of our system of hyperasymptotic expansions. Then

$$
\begin{gathered}
B_{n} \sim-2 S_{1} \sum_{k \geq 0} F_{k} \Gamma\left(n+\frac{35}{12}-k\right) \\
+4 S_{1} \sum_{k \geq 0} C_{k} \Gamma\left(n-\frac{25}{12}-k\right)\left(\frac{21265}{4608} \psi\left(n-\frac{25}{12}-k\right)+d_{1}\right), \\
d_{1}=-43.332634728250755924500717390319380703460728022278 \ldots
\end{gathered}
$$

with $\psi(z)=\Gamma^{\prime}(z) / \Gamma(z)=\log (z)+O(1 / z)$, shows the $m=1$ term, at large n, looking forward to $m=2$ terms, at small k.

For the asymptotic expansion of the second-instanton coefficients, we found

$$
C_{n} \sim-S_{1} \sum_{k \geq 0} E_{k} \Gamma\left(n+\frac{35}{12}-k\right)+S_{3} \sum_{k \geq 0} B_{k}(-1)^{n-k} \Gamma\left(n+\frac{25}{12}-k\right) .
$$

The first sum looks forwards to $m=3$ in the trans-series, where coefficients of

$$
E(x)=-4+\frac{371}{12} x-\frac{111785}{1152} x^{2}+\frac{8206067}{18432} x^{3}-\frac{18251431003}{10616832} x^{4}+O\left(x^{5}\right)
$$

appear. It does not contain the coefficients D_{k} of the third instanton, which decouples from the asymptotic expansion for the second instanton.
The second sum has alternating signs, looks backwards to $m=1$ and is suppressed by a factor of $1 / n^{5 / 6}$. This can be understood using alien calculus. Likewise,

$$
\begin{aligned}
F_{n} \sim & -3 S_{1} \sum_{k \geq 0} I_{k} \Gamma\left(n+\frac{35}{12}-k\right) \\
& +2 S_{1} \sum_{k \geq 0}\left(3 D_{k}+2 E_{k}\right) \Gamma\left(n-\frac{25}{12}-k\right)\left(\frac{21265}{4608} \psi\left(n-\frac{25}{12}-k\right)+d_{1}\right) \\
& -2 S_{3} \sum_{k \geq 0} B_{k}(-1)^{n-k} \Gamma\left(n-\frac{35}{12}-k\right)\left(\frac{21265}{4608} \psi\left(n-\frac{35}{12}-k\right)+f_{1}\right)
\end{aligned}
$$

looks forwards to I_{k}, D_{k} and E_{k}, at $m=3$, and backwards to B_{k} at, $m=1$.

The new constants are

$$
\begin{aligned}
S_{3} & =2.1717853140590990211608601227903892302479464193027 \ldots \\
f_{1} & =-40.903692509228515003814479126901354785263669553014 \ldots
\end{aligned}
$$

Two more were discovered in the backward looking terms of

$$
\begin{gathered}
I_{n} \sim-4 S_{1} \sum_{k \geq 0} K_{k} \Gamma\left(n+\frac{35}{12}-k\right) \\
+2 S_{1} \sum_{k \geq 0}\left(3 G_{k}+2 J_{k}\right) \Gamma\left(n-\frac{25}{12}-k\right)\left(\frac{21265}{4608} \psi\left(n-\frac{25}{12}-k\right)+d_{1}\right) \\
-4 S_{3} \sum_{k \geq 0} F_{k}(-1)^{n-k} \Gamma\left(n-\frac{35}{12}-k\right)\left(\frac{21265}{4608} \psi\left(n-\frac{35}{12}-k\right)+f_{1}\right) \\
-8 S_{3} \sum_{k \geq 0} C_{k}(-1)^{n-k} \Gamma\left(n-\frac{95}{12}-k\right) Q\left(n-\frac{95}{12}-k\right), \\
Q(z)=\left(\frac{21265}{4608}\right)^{2}\left(\psi^{2}(z)+\psi^{\prime}(z)\right)+2 c_{1}\left(\frac{21265}{4608}\right) \psi(z)+c_{2}, \\
c_{1}=-41.031956764302710583921068101545509453704897898188 \ldots \\
c_{2} / c_{1}^{2}=1.0002016472131992595822805380838324188011572304276 \ldots
\end{gathered}
$$

We believe that $\mathbf{6}$ constants suffice for the complete description of resurgence.

Conjecture: The trans-series and its resurgence take the forms

$$
\begin{gathered}
g(x)=\sum_{m=0}^{\infty}\left(x^{-\frac{35}{12}} e^{-\frac{1}{x}}\right)^{m} \sum_{i=0}^{\lfloor m / 2\rfloor} \sum_{j=0}^{\lfloor(m-2 i) / 3\rfloor} \sigma_{1}^{m-2 i-3 j} \widehat{\sigma}_{2}^{i} \widehat{\sigma}_{3}^{j} x^{5(i+j)} \sum_{n \geq 0} a_{i, j}^{(m)}(n) x^{n}, \\
\widehat{\sigma}_{2}=\sigma_{2}+\frac{21265}{2304} \sigma_{1}^{2} \log (x), \quad \widehat{\sigma}_{3}=\sigma_{3}+\frac{21265}{2304} \sigma_{1}^{3} \log (x), \\
a_{i, j}^{(m)}(n) \sim-(s+1) S_{1} \sum_{k \geq 0} a_{i, j}^{(m+1)}(k) \Gamma\left(n+\frac{35}{12}-k\right) \\
+S_{1} \sum_{k \geq 0}\left(4(i+1) a_{i+1, j}^{(m+1)}(k)+6(j+1) a_{i, j+1}^{(m+1)}(k)\right) \Gamma\left(n-\frac{25}{12}-k\right)\left(\frac{21265}{4608} \psi\left(n-\frac{25}{12}-k\right)+d_{1}\right) \\
\quad+\frac{1}{4} S_{3} \sum_{k \geq 0}\left(4(s+1) a_{i-1, j}^{(m-1)}(k)+6(j+1) a_{i-2, j+1}^{(m-1)}(k)\right)(-1)^{n-k} \Gamma\left(n+\frac{25}{12}-k\right) \\
-2(s-2 i-1) S_{3} \sum_{k \geq 0} a_{i, j}^{(m-1)}(k)(-1)^{n-k} \Gamma\left(n-\frac{35}{12}-k\right)\left(\frac{21265}{4608} \psi\left(n-\frac{35}{12}-k\right)+f_{1}\right) \\
-S_{3} \sum_{k \geq 0}\left(8(i+1) a_{i+1, j}^{(m-1)}(k)+6(j+1) a_{i, j+1}^{(m-1)}(k)\right)(-1)^{n-k} \Gamma\left(n-\frac{95}{12}-k\right) Q\left(n-\frac{95}{12}-k\right) \\
-\left(f_{1}-c_{1}\right) S_{3} \sum_{k \geq 0}\left(2(i+1) a_{i+1, j-1}^{(m-1)}(k)+6(i+j) a_{i, j}^{(m-1)}(k)\right)(-1)^{n-k} \Gamma\left(n-\frac{35}{12}-k\right),
\end{gathered}
$$

with $s=m-2 i-3 j$ and $Q(z)=\left(\frac{21265}{4608}\right)^{2}\left(\psi^{2}(z)+\psi^{\prime}(z)\right)+2 c_{1}\left(\frac{21265}{4608}\right) \psi(z)+c_{2}$.

5 Comments and conclusions

1. The conjecture exhibits $\mathbf{1 7}$ resurgent terms, all of which have been intensively tested at high precision, for all actions $m \leq 8$.
2. The 6 Stokes constants have been determined to better than $\mathbf{1 0 0 0}$ digits.
3. Excellent freeware, from Pari-GP in Bordeaux, was vital to this enterprise.
4. First and second derivatives of Γ and suppressions by $1 / n^{5 / 6}$ make Richardson acceleration infeasible. I used systematic matrix inversion.
5. The presence of logarithms in trans-series has been ascribed to resonant actions. Michael Borinsky and I find this misleading. We showed that a closely analogous second-order problem is both resonant and log-free.
6. We have been guided by helpful advice from Gerald Dunne and encouraged by the programme and workshops on Applicable Resurgent Asymptotics hosted by the Isaac Newton Institute in Cambridge.
7. For physicists who wonder, as I did, why one might consider imaginary coupling, I remark that the idea goes back 70 years, to Freeman Dyson, who was a notable inquirer into both mathematics and quantum field theory.
