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Standard gravity is based on
Newton’s Law:

F =
G m1m2

r2

It leads to General Relativity,
with curved space-time everywhere.
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But an easier start may be
to base gravity

on the Shapiro effect, or

Gravitational lensing :
δu− = −8πG p− log(x̃1 − x̃2) .

It leads to curvature only on
2-dimensional subspaces.
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We must use the eternal (or
stationary) black hole as
background.

This will be justified a posteriori:
quantised particles give divergent
Shapiro effects, and therefore we
can only consider classical time
segments not longer than
MBH log(MBH/MPlanck),

during which the stationary

Schwarzschild solution is fine.

Position operators for late

particles will not commute with

those of the early particles.
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Schwarzschild Metric in a spacetime (r , t, θ, ϕ):

ds2 =
1

1− 2GM
r

dr2 −
(
1− 2GM

r

)
dt2 + r2dΩ2 ;

Ω ≡ (θ, ϕ) ,

dΩ ≡ (dθ, sin θ dϕ) .

Horizon singularity at r → 2GM .
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An essential role is played by the Kruskal-Szekeres (or ‘tortoise’)
coordinates x , y , defined by

x y =
( r

2GM
− 1

)
er/2GM ;

y/x = et/2GM .

ds2 =
32(GM)3

r
e−r/2GM dx dy + r2dΩ2 .

No horizon singularity , but two horizons.

At r → 2GM, we have x = 0 : future event horizon, and
y = 0 : past event horizon.

For every point (r , t, θ, ϕ), there are two points in these new
coordinates: with every (x , y , θ, ϕ) there is also (−x ,−y , θ, ϕ).
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Schwarzschild KS
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In Schwarzschild coordinates (left) you see one
outside region (white) and one inside region (blue)

In the more regular Kruskal-Szekeres (KS) coordinates(right)
you see two outside regions and two inside regions (blue)
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The physics of unbounded Lorentz boosts, in two frames:

We now want to see how the Shapiro effect works on in- and out-
particles on the black hole

δp
−

in

δu
−

out

in the out-frame,

δp
+

out

δu
+

in

in the in-frame.
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The Shapiro effect.

δu− = G p−f (Ω, Ω′) with (1−∆Ω) f (Ω, Ω′) = 8πG δ2(Ω, Ω′) .

Here, Ω is the solid angle at which the out-particle leaves,
and Ω′ is where the in-particle entered the black hole horizon.

u± are the positions at the horizon, i.e., the time at which the
particles enter or leave the horizon.

p± are their momenta.

In case of many particles: p± → p±(Ω) , u± → u±(Ω) .
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Spherical Harmonics: δu−`m =
8πG

`2 + `+ 1
p−`m .

And now comes quantum mechanics:

This gives algebra: [u+, u−] = iλ , λ ≡ 8πG

`2 + `+ 1
.

Therefore, wave functions in u− are the Fourier transforms of
those in u+.

The different (`,m) modes all decouple.
These are one-dimensional (highly trivial) equations.

The Fourier transform is unitary! And therefore information is
preserved !!
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The Fourier transform is unitary,
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but only if

−∞ < u+ <∞
−∞ < u− <∞

working with
only positive
u± would give

information
loss!

We need a unitary mapping from the interval [0, ∞] to [0, ∞].

But this is easy. Use: Fourier transform maps even functions onto
even functions and odd onto odd !
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The fact that we may use only even functions means that:

The data in region II are identical to the data in region I .

They are clones of one another.
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But our message does not end here. Problem: in region II
time runs backwards!.

Therefore, region II is only clone of region I , if the wave function

obeys: ψII = ψI
∗

Solve the equations with the constraint that the wave functions in
I and II are the same !

Calculations: this does give a unitary evolution law!
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But, we must pull Re(ψ) and Im(ψ) apart. They form the
quantum vector of a binary clock! The clock must be part of the
dynamics: at given (`,m), we may allow ony one quantum variable.

This may mean that we may have to give up the conservation law
associated with rotations in the complex plane. There should not
be additively conserved charges.

This should have been expected: black holes cannot obey any
global conservation law.

N. Gaddam, S. Kumar, C. Ripken

The complex conjugation, ψ ↔ ψ∗, requires further discussion.

16 / 20



In my interpretation of QM, the fact that the wave functons in
region I and II are clones, implies that exactly the same
phenomena occur in region I and II ,

as if they were simply described as in the
Schwarzshild coordinates, not the KS coordinates!

This suggests that our result can easily be generalised to more
complicated events such as the coalescence of two black holes, or
other complex phenomena.
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According to Hawking,
a stationary black hole emits particles with radiation temperature

(?) kTHawking = ~c3

8πG

1

MBH

In present theory, we are not dealing with thermal states (Grand
Canonical Ensemble), but we an use a microcanonical ensemble:
total energy of all states is fixed. In standard statistical mechanics;
the results will be as usual: the probability of a state is

P ∝ e−βE , which for a quantum system is periodic when

time → time +iβ .
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〈Ei 〉 = kT = 1/β ; β is periodicity in imaginary time τ

τ = t/4GMBH ; (x , y)→ (x eτ , y e−τ ), so that
τ → τ + 2πi is a symmetry for all solutions in KS coordinates.

Hawking derives that β = 1/THawking = 2π in natural units. But
now we have only the cloned states, symmetric under

(x , y)↔ (−x ,−y), so that β
?
= 2π is to be replaced by

β = π , T = 2THawking = ~c3

4πG

1

MBH
.

An Ambiguity of the equivalence principle and Hawking’s temperature,

J. of Geometry and Physics 1 (1984) 45-52.
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Happy Centuriversary
to the

Niels Bohr Institute !
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