What IS THE iE FOR THE S-MATRIX?

Hofie Sigridar Hannesdottir

Congratulations NBI On >100 YEARS!

Picture: Hólmfríơur Dagný Friðjónsdóttir

Motivation

What are the imprints of causality on the S-matrix?

Different notions of causality for the S-matrix, with rich history (microcausality, macrocausality, Bogoliubov causality, no Shapiro time advances)

Bogoliubov, Schutzer, Tiomno, van Kampen, Gell-Mann, Goldberger, Thirring, Wanders, Iagolnitzer, Eden, Landshoff, Peres, Branson, Omnes, Chandler, Pham, Stapp, Rohrlich, Stoddart, 't Hooft, Veltman, Adams, Arkani-Hamed, Dubovsky, Grinstein, O'Connell, Wise, Giddings, Porto, Camanho, Edelstein, Maldacena, Zhiboedov, Tomboulis, Minwalla

Here: Implement the causal is prescription in perturbation theory and study its implications.

Motivation

Causality generally thought as encoded in the complex analytic structure of the S-matrix.

Complexification of S-matrix standard at this point, multiple practical reasons (dispersion relations, on-shell recursion relations, crossing symmetry).

Can we complexify the S-matrix, while being consistent with causality?

$$
\mathbf{S}\left(s, t_{*}\right) \stackrel{?}{=} \lim _{\varepsilon \rightarrow 0^{+}} \mathbf{S}_{\mathbb{C}}\left(s+i \varepsilon, t_{*}\right)
$$

Notation

Transfer matrix and matrix elements:

$$
S=\mathbb{1}+i T \quad\langle\text { out }| T \mid \text { in }\rangle=\boldsymbol{\delta}_{\text {in }, \text { out }} \mathbf{T}_{\mathrm{in} \rightarrow \text { out }}
$$

For $2 \rightarrow 2$ scattering:

$$
s=\left(p_{1}+p_{2}\right)^{2} \quad t=\left(p_{2}+p_{3}\right)^{2} \quad u=\left(p_{1}+p_{3}\right)^{2}
$$

Momentum conservation, solve for u :

$$
s+t+u=\sum_{i=1}^{4} M_{i}^{2}
$$

Introduction

For $2 \rightarrow 2$ scattering of lightest particle at low momentum transfer $\left|t_{*}\right|$:

Real on s-axis, so by the Schwarz reflection principle

$$
\operatorname{Im} \mathbf{T}\left(s, t_{*}\right)=\operatorname{Disc}_{s} \mathbf{T}_{\mathbb{C}}\left(s, t_{*}\right)
$$

Introduction

For $2 \rightarrow 2$ scattering of lightest particle at low momentum transfer $\left|t_{*}\right|$:

How does this picture extend to $\left\{\begin{array}{c}\text { massless particles? } \\ \text { UV/IR divergences? } \\ \text { unstable particles? }\end{array}\right.$

Motivation

When is the imaginary part (unitarity, cutting rules)

$$
\operatorname{Im} \mathbf{T}\left(s, t_{*}\right)=\frac{1}{2 i}\left(\mathbf{T}\left(s, t_{*}\right)-\overline{\mathbf{T}\left(s, t_{*}\right)}\right)
$$

equal to the discontinuity (dispersion relations)?

$$
\operatorname{Disc}_{s} \mathbf{T}_{\mathbb{C}}\left(s, t_{*}\right)=\lim _{\varepsilon \rightarrow 0^{+}} \frac{1}{2 i}\left(\mathbf{T}_{\mathbb{C}}\left(s+i \varepsilon, t_{*}\right)-\mathbf{T}_{\mathbb{C}}\left(s-i \varepsilon, t_{*}\right)\right)
$$

Outline

1. Unitarity:

- Normal and anomalous thresholds

2. Causality:

- Feynman is, kinematic ie, branch-cut deformations

3. Locality (time permitting):

- Fluctuations around branch points

1. Unitarity

Holomorphic Cutting Rules

$$
\begin{gathered}
\text { Use } S S^{\dagger}=\mathbb{1} \text {, and } S=\mathbb{1}+i T, \\
\frac{1}{2 i}\left(T-T^{\dagger}\right)=\frac{1}{2} T T,{ }^{\dagger} \quad \operatorname{Im} \mathbf{T}_{\mathrm{in} \rightarrow \mathrm{in}}=\frac{1}{2} \int_{I} \delta_{\mathrm{in}, I}\left|\mathbf{T}_{\mathrm{in} \rightarrow I}\right|^{2} .
\end{gathered}
$$

Expand in $T^{\dagger}=T\left(\mathbb{1}-i T^{\dagger}\right)$:

$$
\frac{1}{2 i}\left(T-T^{\dagger}\right)=-\frac{1}{2} \sum_{c=1}^{\infty}(-i T)^{c+1} \text {. }
$$

Normal \& Anomalous Thresholds

Holomorphic Cutting Rules

In general, expansion implies the holomorphic cutting rules

See also Cutkosky, Coster, Stapp, Bourjaily, HSH,

Normal \& Anomalous Thresholds

Thresholds: Classical configurations when phase space opens up, potential branch points of amplitudes

Normal thresholds

Anomalous thresholds
(not related to anomalies)

Why not in PREVIOUS $2 \rightarrow 2$ EXAMPLE?

Thresholds occur when process is allowed classically

Lightest particle cannot decay
\rightarrow the two incoming (outgoing) particles meet at a vertex
\rightarrow only normal thresholds in physical regions

Anomalous Threshold in Standard Model

Location of peak
(finite width will result
in Breit-Wigner like softening)

$$
\cos \theta=1-\frac{2 s\left(m_{K^{+}}^{2}-\left(m_{\pi^{0}}+m_{\pi^{+}}\right)^{2}\right)\left(m_{K^{+}}^{2}-\left(m_{\pi^{0}}-m_{\pi^{+}}\right)^{2}\right)}{m_{\pi^{+}}^{2}\left(s-\left(m_{K^{+}}+m_{p}\right)^{2}\right)\left(s-\left(m_{K^{+}}-m_{p}\right)^{2}\right)} .
$$

2. CAUSALITY

Algebraic conditions for Causality

Goal: Find $i \varepsilon$ prescription consistent with causality
Here: Investigate in perturbation theory
Result: algebraic conditions for branch cuts, branch points and causality in terms of worldine action \mathcal{V} :

$$
\begin{array}{rlll}
\mathcal{V}=0 & \text { for any } \alpha ' s & \Leftrightarrow & \text { branch cut } \\
\partial_{\alpha_{e}} \mathcal{V}=0 & \text { for any } \alpha ' s & \Leftrightarrow & \text { branch point } \\
\operatorname{Im} \mathcal{V}>0 & \text { for all } \alpha ' s & \Leftrightarrow & \text { causal branch }
\end{array}
$$

SCHWINGER-PARAMETRIZATION OF BUBBLE

$$
\mathcal{I}_{\text {bub }}(s)=\lim _{\varepsilon \rightarrow 0+} \int_{\mathbb{R}^{1, \mathrm{D}-1}} \frac{\mathrm{~d}^{\mathrm{D}} \ell}{i \pi^{\mathrm{D} / 2}} \frac{1}{\left[\ell^{2}-m_{1}^{2}+i \varepsilon\right]\left[(p-\ell)^{2}-m_{2}^{2}+i \varepsilon\right]}
$$

Introduce Schwinger parameters α_{e} for every internal line:

$$
\frac{-1}{q_{e}^{2}-m_{e}^{2}+i \varepsilon}=\frac{i}{\hbar} \int_{0}^{\infty} \mathrm{d} \alpha_{e} \exp \left[\frac{i}{\hbar}\left(q_{e}^{2}-m_{e}^{2}+i \varepsilon\right) \alpha_{e}\right]
$$

SCHWINGER-PARAMETRIZATION OF BUBBLE

Performing momentum integrals results in

$$
\mathcal{I}_{\text {bub }}=(-i \hbar)^{\mathrm{D} / 2-2} \lim _{\varepsilon \rightarrow 0^{+}} \int_{0}^{\infty} \frac{\mathrm{d} \alpha_{1} \mathrm{~d} \alpha_{2}}{\left(\alpha_{1}+\alpha_{2}\right)^{\mathrm{D} / 2}} \exp \left[\frac{i}{\hbar}\left(\mathcal{V}+i \varepsilon\left(\alpha_{1}+\alpha_{2}\right)\right)\right]
$$

where \mathcal{V} is the worldline action:

$$
\mathcal{V}=s \frac{\alpha_{1} \alpha_{2}}{\alpha_{1}+\alpha_{2}}-m_{1}^{2} \alpha_{1}-m_{2}^{2} \alpha_{2}
$$

SCHWINGER-PARAMETRIZATION

For any Feynman integral:

$$
\begin{gathered}
\mathcal{I}=(-i \hbar)^{-d} \lim _{\varepsilon \rightarrow 0^{+}} \int_{0}^{\infty} \frac{\mathrm{d}^{\mathrm{E}} \alpha}{\mathcal{U}^{\mathrm{D} / 2}} \mathcal{N} \exp \left[\frac{i}{\hbar}\left(\mathcal{V}+i \varepsilon \sum_{e=1}^{\mathrm{E}} \alpha_{e}\right)\right] \\
\mathcal{V}=\frac{\mathcal{F}}{\mathcal{U}} \quad \mathcal{U}=\sum_{\substack{\text { spanning } \\
\text { trees } T}} \prod_{e \notin T} \alpha_{e} \mathcal{F}=\sum_{\substack{\text { spanning } \\
\text { twourtres } \\
T_{L} \cup H T_{R}}} p_{L}^{2} \prod_{e \notin T_{L} \cup T_{R}} \alpha_{e}-\mathcal{U} \sum_{e=1}^{\mathrm{E}} m_{e}^{2} \alpha_{e} \\
\text { Takeaway points: } \\
\text { Algebraic formula for any Feynman integral } \\
\text { Integration over exponential of worldline action }
\end{gathered}
$$

SINGULARITIES AND BRANCH CUTS

$$
\mathcal{I}=\Gamma(d) \lim _{\varepsilon \rightarrow 0^{+}} \int \frac{\mathrm{d}^{\mathrm{E}} \alpha}{\mathrm{GL}(1)} \frac{\tilde{\mathcal{N}}}{\mathcal{U}^{\mathrm{D} / 2}(-\mathcal{V}-i \varepsilon)^{d}}
$$

\mathcal{V} : ratio of polynomials in α 's, homogenous with degree 1

Using this Schwinger-parametrization, we find

$$
\begin{array}{rlll}
\mathcal{V}=0 & \text { for any } \alpha^{\prime} \text { s } & \Leftrightarrow & \text { branch cut } \\
\partial_{\alpha_{e}} \mathcal{V}=0 & \text { for any } \alpha^{\prime} \text { s } & \Leftrightarrow & \text { branch point }
\end{array}
$$

Causality requires

$$
\operatorname{Im} \mathcal{V}>0 \quad \text { for all } \alpha \text { 's } \quad \Leftrightarrow \quad \text { causal branch }
$$

PhYsical sheet

$$
\begin{array}{rlll}
\mathcal{V}=0 & \text { for any } \alpha \text { 's } & \Leftrightarrow & \text { branch cut } \\
\partial_{\alpha_{e}} \mathcal{V}=0 & \text { for any } \alpha^{\prime} \text { s } & \Leftrightarrow & \text { branch point }
\end{array}
$$

Feynman integral lays out branch points and branch cuts

Physical sheet: Values of external variables accessible from physical region using analytic continuation, without crossing branch cuts

By definition: Singularities with all $\alpha_{e} \geqslant 0$ potentially on the physical sheet, others are not

LANDAU EQUATIONS

We found condition for leading-singularity branch points:

$$
\partial_{\alpha_{e}} \mathcal{V}=0
$$

Referred to as Landau equations, give conditions for singularities

Bjorken, Landau, Nakanishi, Brown,

LANDAU EQUATIONS IN MOMENTUM SPACE

Either $\alpha_{i}=0$ or $\ell_{i}^{2}=m_{i}^{2}, \quad \& \quad \sum \pm \alpha_{i} \ell_{i}=0$ around every loop.

For bubble integral,

$$
\ell^{2}=m_{1}^{2} \quad(p-\ell)^{2}=m_{2}^{2} \quad \alpha_{1} \ell^{\mu}+\alpha_{2}(\ell-p)^{\mu}=0
$$

Solutions are codimension ≥ 1 constraints on external kinematics:

$$
s=\left(m_{1}+m_{2}\right)^{2} \quad s=\left(m_{1}-m_{2}\right)^{2}
$$

Back to causality

We are now equipped with the condition:

$$
\operatorname{Im} \mathcal{V}>0 \quad \text { for all } \alpha \text { 's } \quad \Leftrightarrow \quad \text { causal branch }
$$

Can we exploit it to improve on is prescription?

DIFFERENT iE PRESCRIPTIONS, OVERVIEW

Feynman is
-displaces branch points -unphysical mass scale ε

Kinematic $i \varepsilon$
-does not work for unstable particles ε higher multiplicity

Branch-cut deformations
-reveal physical sheet without modifying branch points

Problem with kinematic ie

Branch cut when $M_{1}>m_{1}+m_{2}+\ldots$

On shell, capture $M_{1}^{2} \pm i \varepsilon$ as $s \mp i \varepsilon+t+u=\sum_{i=1}^{4} M_{i}^{2}$
\rightarrow Singularity along entire s-axis

BRANCH-CUT DEFORMATIONS

Perform phase rotations of Schwinger parameters

$$
\begin{aligned}
& \hat{\alpha}_{e}=\alpha_{e} \exp \left(i \varepsilon \partial_{\alpha_{e}} \mathcal{V}\right)=\alpha_{e}\left[1+i \varepsilon \partial_{\alpha_{e}} \mathcal{V}+\mathcal{O}\left(\varepsilon^{2}\right)\right] \\
& \hat{\mathcal{V}}=\mathcal{V}+i \varepsilon \sum_{e=1}^{\mathrm{E}} \alpha_{e} \underbrace{\left(\partial_{\alpha_{e}} \mathcal{V}\right)^{2}}+\mathcal{O}\left(\varepsilon^{2}\right) \\
&=0 \text { at branch points } \\
&>0 \text { away from branch points }
\end{aligned}
$$

Im $\hat{\mathcal{V}} \geq 0$: Reveal physical sheet without modifying branch points

BRANCH-CUT DEFORMATIONS

Advantages over Feynman $i \varepsilon$:
(i) Rotates branch cuts (ii) ε is small, not infinitesimal

Analyticity from Branch-cut Deformations

For $2 \rightarrow 2$ scattering of stable particles in perturbation theory, regardless of existence of Euclidean region:

Analyticity in a strip around s-channel physical-region

Example I: Necessity of Deformations

Box diagram, external masses $\mathbf{M}=\mathbf{0}$, internal masses \boldsymbol{m}

Action:

$$
\mathcal{V}_{\mathrm{box}}=\frac{s \alpha_{1} \alpha_{3}+u \alpha_{2} \alpha_{4}}{\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}}-m^{2}\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}\right)
$$

Branch points:

$$
s=4 m^{2}, u=4 m^{2}, s u+4 m^{2} t=0
$$

When do branch-cuts Overlap?

Use $s>4 m^{2}, u>4 m^{2}, s+t_{*}+u=0$:

$$
t_{*}<-8 m^{2}
$$

Landau Curves

Analytic Expression

The box example is simple enough for an analytic expression:

$$
\mathcal{I}_{\text {box }}(s, t)=\lim _{\varepsilon \rightarrow 0^{+}}\left[\mathcal{I}_{\text {box }}^{\mathbb{C}, s}(s+i \varepsilon, t)+\mathcal{I}_{\text {box }}^{\mathbb{C}, u}(s-i \varepsilon, t)\right]
$$

with $\quad \mathcal{I}_{\text {box }}^{\mathrm{C}, s}=-\frac{x y}{8 m^{4} \beta_{x y}}\left\{\log \left(\frac{\beta_{x}-1}{\sqrt{x}}\right)\left[\log \left(\frac{\beta_{x y}-1}{\beta_{x y}-\beta_{x}}\right)-\log \left(\frac{\beta_{x y}+1}{\beta_{x y}+\beta_{x}}\right)\right]\right.$

$$
+\log \left(\frac{\beta_{x}+1}{\sqrt{x}}\right)\left[\log ^{-}\left(\frac{\beta_{x y}-1}{\beta_{x y}+\beta_{x}}, \operatorname{Im} s\right)-\log ^{+}\left(\frac{\beta_{x y}+1}{\beta_{x y}-\beta_{x}},-\operatorname{Im} s\right)\right]
$$

$$
+\operatorname{Li}_{2}\left(\frac{-\beta_{x}+1}{\beta_{x y}-\beta_{x}}\right)+\operatorname{Li}_{2}^{+}\left(\frac{\beta_{x}+1}{\beta_{x y}+\beta_{x}}, \operatorname{Im} s\right)
$$

$$
\left.-\operatorname{Li}_{2}\left(\frac{\beta_{x}-1}{\beta_{x y}+\beta_{x}}\right)-\operatorname{Li}_{2}^{-}\left(\frac{-\beta_{x}-1}{\beta_{x y}-\beta_{x}},-\operatorname{Im} s\right)\right\}
$$

$$
\begin{aligned}
& x=-\frac{4 m^{2}}{s}, \quad y=-\frac{4 m^{2}}{u}, \\
& \beta_{x}=\sqrt{1+x} \quad \beta_{y}=\sqrt{1+y} \\
& \beta_{x y}=-i \sqrt{-1-x-y} .
\end{aligned}
$$

Unitarity Cuts

s-channel cuts:

$\operatorname{Cut}_{13}^{s} \mathcal{I}_{\text {box }}=\frac{\pi x y}{16 \beta_{x y}}\left\{\log \left[-\left(\beta_{x y}-\beta_{x}\right)^{2}\right]-\log \left[-\left(\beta_{x y}+\beta_{x}\right)^{2}\right]\right\} \Theta\left(s-4 m^{2}\right)$

Use Cuts for Dispersion Relations?

$$
\begin{gathered}
\text { Imaginary part } \leftrightarrow \text { Unitarity cuts } \\
\text { Discontinuity } \leftrightarrow \text { Dispersion relations }
\end{gathered}
$$

Since $\operatorname{Im} \neq$ Disc, can we still use dispersion relations?

RELATing Im to Disc

Using the Schwinger-parametrized form, find

$$
\operatorname{Im} \mathcal{I}=\mathcal{I}_{D}^{+}+\mathcal{I}_{D}^{-}, \quad \operatorname{Disc}_{s} \mathcal{I}=\mathcal{I}_{D}^{+}-\mathcal{I}_{D}^{-}
$$

with

$$
\mathcal{I}_{D}^{ \pm}(s, t)=\pi \int \frac{\mathrm{d}^{\mathrm{E}} \alpha}{\mathrm{GL}(1)} \frac{\tilde{\mathcal{N}}}{\mathcal{U}^{\mathrm{D} / 2}} \delta^{(d-1)}(\mathcal{V}) \Theta\left(\pm \partial_{s} \mathcal{V}\right)
$$

Learn:

1. Im and Disc split into two components with $\Theta\left(\pm \partial_{s} \mathcal{V}\right)$
2. $I m=$ Disc when $\mathcal{I}_{D}^{-}=0$

RELATing Im to Disc

Here, we use
to get

$$
\mathcal{V}_{\mathrm{box}}=\frac{s \alpha_{1} \alpha_{3}+u \alpha_{2} \alpha_{4}}{\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}}-m^{2}\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}\right)
$$

$$
\begin{gathered}
\partial_{s} \mathcal{V}_{\text {box }}=\frac{\alpha_{1} \alpha_{3}}{\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}}-\frac{\alpha_{2} \alpha_{4}}{\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}} \\
\mathcal{V}_{s} \\
\mathcal{I}_{D}^{+} \text {corresponds to } \mathcal{V}_{s}>\mathcal{V}_{u} \\
\mathcal{I}_{D}^{-} \text {corresponds to } \mathcal{V}_{s}<\mathcal{V}_{u}
\end{gathered}
$$

RELATing Im to Disc

Three cases:
a. $t_{*}>-8 m^{2}$: No overlap of branch cuts
b. $-16 m^{2}<t_{*}<-8 m^{2}$: Amplitude splits into components with branch cuts for

$$
\operatorname{Im} \mathcal{I}=\mathcal{I}_{D}^{+}+\mathcal{I}_{D}^{-}, \quad \operatorname{Disc}_{s} \mathcal{I}=\mathcal{I}_{D}^{+}-\mathcal{I}_{D}^{-}
$$

c. $t_{*}<-16 m^{2}$: Box branch cut spoils the split of the amplitude

Analytically continue Cuts in s And u

EXAMPLE II: BRANCH-CUT ALONG s-AXIS

Triangle diagram, external masses $M>2 m$

Action:

$$
\mathcal{V}_{\mathrm{tri}}=\frac{u \alpha_{1} \alpha_{2}+M^{2} \alpha_{3}\left(\alpha_{1}+\alpha_{2}\right)}{\alpha_{1}+\alpha_{2}+\alpha_{3}}-m^{2}\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)
$$

Branch points: $\quad u=4 m^{2}, s_{\text {tri }}=\frac{M^{4}}{m^{2}}-t$

Approach from LHP

$$
\mathcal{V}_{\text {tri }}=\frac{u \alpha_{1} \alpha_{2}+M^{2} \alpha_{3}\left(\alpha_{1}+\alpha_{2}\right)}{\alpha_{1}+\alpha_{2}+\alpha_{3}}-m^{2}\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)
$$

$$
\operatorname{Im} \mathcal{V}_{\text {tri }}=-\operatorname{Im} s \frac{\alpha_{1} \alpha_{2}}{\alpha_{1}+\alpha_{2}+\alpha_{3}}>0
$$

\rightarrow Approach physical region from LHP

Analytic Expressions in LHP and UHP

$$
\begin{array}{rlrl}
\mathcal{I}_{\text {tri }}^{\mathrm{LHP}}(s, t)= & \frac{z}{4 M^{2} \beta_{z}} \sum_{\zeta \in\{-1,1\}}\left\{\zeta \operatorname{Li}_{2}\left(\frac{1+\frac{z}{2}-\zeta \beta_{z}}{1+\frac{z}{2}+\zeta \beta_{y} \beta_{z}}\right)+\zeta \operatorname{Li}_{2}\left(1-\frac{1+\frac{z}{2}+\zeta \beta_{z}}{1+\frac{z}{2}+\zeta \beta_{y} \beta_{z}}\right)\right. \\
& +2 \operatorname{Li}_{2}\left(\frac{1+\beta_{z}}{1+\zeta \beta_{z} \beta_{y z}}\right)-2 \operatorname{Li}_{2}\left(\frac{1-\beta_{z}}{1+\zeta \beta_{z} \beta_{y z}}\right)-2 \pi i \log \left(\frac{1+\beta_{z}}{1+\beta_{z} \beta_{y z}}\right) & \\
& \left.+\zeta \log \left(\frac{1+\frac{z}{2}+\zeta \beta_{z}}{1+\frac{z}{2}+\zeta \beta_{y} \beta_{z}}\right)\left[\pi i+\log \left(-1+\frac{1+\frac{z}{2}+\zeta \beta_{z}}{1+\frac{z}{2}+\zeta \beta_{y} \beta_{z}}\right)\right]\right\} & \\
\mathcal{I}_{\text {tri }}^{\mathrm{UHP}}(s, t)= & \frac{z}{4 M^{2} \beta_{z}} \sum_{\zeta \in\{-1,1\}}\left\{\zeta \operatorname{Li}_{2}\left(\frac{1+\frac{z}{2}-\zeta \beta_{z}}{1+\frac{z}{2}+\zeta \beta_{y} \beta_{z}}\right)+\zeta \operatorname{Li}_{2}\left(1-\frac{1+\frac{z}{2}+\zeta \beta_{z}}{1+\frac{z}{2}+\zeta \beta_{y} \beta_{z}}\right)\right. & \\
& +2 \lim _{\varepsilon \rightarrow 0^{+}} \mathcal{I}_{\text {tri }}^{\mathrm{LHP}}(s-i \varepsilon, t) \\
& \left.\frac{1+\beta_{z}}{1+\zeta \beta_{z} \beta_{y z}}\right)-2 \operatorname{Li}_{2}\left(\frac{1-\beta_{z}}{1+\zeta \beta_{z} \beta_{y z}}\right)+2 \pi i \log \left(\frac{1+\beta_{z}}{1+\beta_{z} \beta_{y z}}\right) & y=-\frac{4 m^{2}}{u}, \quad z=-\frac{4 M^{2}}{u}, \\
& \left.+\zeta \log \left(\frac{1+\frac{z}{2}+\zeta \beta_{z}}{1+\frac{z}{2}+\zeta \beta_{y} \beta_{z}}\right)\left[-\pi i+\log \left(-1+\frac{1+\frac{z}{2}+\zeta \beta_{z}}{1+\frac{z}{2}+\zeta \beta_{y} \beta_{z}}\right)\right]\right\} & \beta_{y}=\sqrt{1+y}, & \beta_{z}=\sqrt{1+z}
\end{array}
$$

Analytic Expression

As expected, separate analytic expressions in LHP and UHP:

Unitarity Cuts

s-channel cuts:

$$
\operatorname{Im} \mathcal{I}_{\mathrm{tri}}=-\frac{\pi z}{2 M^{2} \beta_{z}} \begin{cases}\log \left(-\frac{1-\beta_{z} \beta_{y z}}{1+\beta_{z} z_{y z}}\right) & \text { if } 4 M^{2}-t<s<s_{\mathrm{tri}}, \\ \log \left(\frac{1-\beta_{z}, y_{z}}{1+\beta_{z} \beta_{y z}}\right) & \text { if } s_{\text {tri }}<s,\end{cases}
$$

Unitarity Cuts

u-channel cuts:

$\operatorname{Im} \mathcal{I}_{\mathrm{tri}}=-\frac{\pi z}{4 M^{2} \beta_{z}}\left[2 \log \left(-\frac{1-\beta_{z} \beta_{y z}}{1+\beta_{z} \beta_{y z}}\right)+\log \left(-\frac{1+\frac{z}{2}+\beta_{y} \beta_{z}}{1+\frac{z}{2}-\beta_{y} \beta_{z}}\right)-i \pi\right]$ if $s<s_{\text {norm }}$

RELATing Im to Disc

Recall,

$$
\operatorname{Im} \mathcal{I}=\mathcal{I}_{D}^{+}+\mathcal{I}_{D}^{-}, \quad \operatorname{Disc}_{s} \mathcal{I}=\mathcal{I}_{D}^{+}-\mathcal{I}_{D}^{-}
$$

with splits by

$$
\Theta\left(\pm \partial_{s} \mathcal{V}\right)
$$

Here:

$$
\operatorname{Im} \mathcal{I}_{\text {tri }}=-\operatorname{Disc}_{s} \mathcal{I}_{\text {tri }}
$$

$$
\operatorname{Disc}_{s} \mathcal{I}_{\text {tri }}=\frac{\pi z}{4 M^{2} \beta_{z}} \begin{cases}2 \log \left(-\frac{1-\beta_{z} \beta_{y z}}{1+\beta_{z} \beta_{z z}}\right)+\log \left(-\frac{1+\frac{z}{2}+\beta_{y} \beta_{z}}{1+\frac{2}{2}-\beta_{y} \beta_{z}}\right)-\pi i & \text { if } s<s_{\text {norm }} \\ 2 \log \left(-\frac{1-\beta_{z} \beta_{z}}{1+\beta_{z} \beta_{y z}}\right) & \text { if } s_{\text {norm }}<s<s_{\text {tri }}, \\ 2 \log \left(\frac{1-\beta_{z} y_{y z}}{1+\beta_{z} \beta_{y z}}\right) & \text { if } s_{\text {tri }}<s\end{cases}
$$

Landau Curves

Example ili: Summing over Diagrams

Example iii: Summing over Diagrams

Numerical result:

3. LOCALITY

Fluctuations around Branch Points

In addition to finding saddle points of the action \rightarrow Landau branch points

Fluctuations around saddle points \rightarrow expansion around branch points (assumes isolated branch points, generic masses)

$$
\mathcal{I} \approx \mathcal{I}_{0} \lim _{\varepsilon \rightarrow 0^{+}} \begin{cases}{\left[-\Delta \partial_{\Delta} \mathcal{V}^{*}-i \varepsilon\right]^{\rho}} & \text { for } \rho<0 \\ \log \left[-\Delta \operatorname{sgn}\left(\partial_{\Delta} \mathcal{V}^{*}\right)-i \varepsilon\right] & \text { for } \rho=0\end{cases}
$$

Branch point at $\Delta=0 \quad \rho=\frac{\mathrm{LD}-\mathrm{E}-1}{2}\left\{\begin{array}{l}\mathrm{L}: \text { number of loops } \\ \mathrm{D}: \text { dimensions } \\ \mathrm{E}: \text { number of edges in Feynman diagram }\end{array}\right.$

NATURE OF SINGULARITIES

Isolated codimension-2 branch points (e.g. $s=3 m^{2}=M^{2}$) would imply non-analyticity

Assuming analyticity, find

$$
\mathrm{E}-\mathrm{LD} \leq 1
$$

Combining with previous result, singularities are of the form

$$
\frac{1}{\Delta} \quad \frac{1}{\sqrt{\Delta}} \quad \log (\Delta)
$$

Codimension-2 BRANCH POINTS

Are codimension-2 branch points always intersections of codimension- 1 ones?

Conclusions

Unitarity:

- Implies anomalous thresholds

Causality:

- How to approach the physical regions
- Branch-cut deformations preserve analytic structure

Locality:

- Kinematic singularities at most poles

MANY OPEN QUESTIONS

- Unstable particles? Higher-point processes?

- Quantify \& measure anomalous thresholds?
- What is the error when approaching from UHP? $(\Gamma / \mathrm{m})^{\#}$?
- Generalized dispersion relations?
- Double dispersion relations?

Thanks!

