What is the $i\varepsilon$ for the S-matrix?

Hofie Sigridar Hannesdottir

Institute for Advanced Study

2204.02988 with Sebastian Mizera

Congratulations NBI on >100 years!

	Prófessar I	Viels Bohr	uerdi areir
	ivrir hinni	nym hen	nsmynd
		En éfröhum äbearen	fern var nokknik orft
		ch encount aregicar	THE FOILE CONNER STIL
		tim ad skille hern f	hilar.
			Jusieus, area highast enilosenes i nar
			FEIMARE ENVIRONMENTE
ъ	brandenne, bou bet days taur-		LIPLANE FORA
	And has been by her many him.		Repeater hitte a paide
		"Openitor Montor" its spills III Conto-	
		holdstor steam of a h had,	
	have a	half, ideal similari its.	
		En paper when the SE treb-	
			Effor of references halfs our
	ARAEFECED		
	Susan and a sub-		
			Mr along Peoplohas allella a
		Figst terrify angin the had rule in	
		of fully delivery. Non-sets being	the on phiner has

Picture: Hólmfríður Dagný Friðjónsdóttir Aug. 3rd 2022

MOTIVATION

What are the imprints of causality on the S-matrix?

Different notions of causality for the S-matrix, with rich history (microcausality, macrocausality, Bogoliubov causality, no Shapiro time advances)

Bogoliubov, Schutzer, Tiomno, van Kampen, Gell-Mann, Goldberger, Thirring, Wanders, Iagolnitzer, Eden, Landshoff, Peres, Branson, Omnes, Chandler, Pham, Stapp, Rohrlich, Stoddart, 't Hooft, Veltman, Adams, Arkani-Hamed, Dubovsky, Grinstein, O'Connell, Wise, Giddings, Porto, Camanho, Edelstein, Maldacena, Zhiboedov, Tomboulis, Minwalla

Here: *Implement* the causal *ic* prescription in perturbation theory and study its *implications*.

MOTIVATION

Causality generally thought as encoded in the **complex analytic structure** of the S-matrix.

Complexification of S-matrix standard at this point, multiple practical reasons (dispersion relations, on-shell recursion relations, crossing symmetry).

Can we complexify the S-matrix, while being consistent with causality?

$$\mathbf{S}(s,t_*) \stackrel{?}{=} \lim_{\varepsilon \to 0^+} \mathbf{S}_{\mathbb{C}}(s+i\varepsilon,t_*)$$

NOTATION

Transfer matrix and matrix elements:

 $S = \mathbb{1} + iT$ $\langle \text{out} | T | \text{in} \rangle = \delta_{\text{in, out}} \mathbf{T}_{\text{in} \to \text{out}}$

For $2 \rightarrow 2$ scattering: $s = (p_1 + p_2)^2$ $t = (p_2 + p_3)^2$ $u = (p_1 + p_3)^2$

Momentum conservation, solve for u:

$$s + t + u = \sum_{i=1}^{4} M_i^2$$

INTRODUCTION

For $2\rightarrow 2$ scattering of lightest particle at low momentum transfer $|t_*|$:

Real on *s*-axis, so by the Schwarz reflection principle

 $\operatorname{Im} \mathbf{T}(s, t_*) = \operatorname{Disc}_s \mathbf{T}_{\mathbb{C}}(s, t_*)$

INTRODUCTION

For $2\rightarrow 2$ scattering of lightest particle at low momentum transfer $|t_*|$:

MOTIVATION

When is the imaginary part (*unitarity*, *cutting rules*)

$$\operatorname{Im} \mathbf{T}(s, t_*) = \frac{1}{2i} \left(\mathbf{T}(s, t_*) - \overline{\mathbf{T}(s, t_*)} \right)$$

equal to the discontinuity (dispersion relations)?

$$\operatorname{Disc}_{s} \mathbf{T}_{\mathbb{C}}(s, t_{*}) = \lim_{\varepsilon \to 0^{+}} \frac{1}{2i} \Big(\mathbf{T}_{\mathbb{C}}(s + i\varepsilon, t_{*}) - \mathbf{T}_{\mathbb{C}}(s - i\varepsilon, t_{*}) \Big)$$

OUTLINE

- 1. Unitarity:
 - Normal and anomalous thresholds

s

- 2. Causality:
 - Feynman ie, kinematic ie, branch-cut deformations
- 3. Locality (time permitting):
 - Fluctuations around branch points

1. UNITARITY

HOLOMORPHIC CUTTING RULES

Use
$$SS^{\dagger} = 1$$
, and $S = 1 + iT$,
 $\frac{1}{2i}(T - T^{\dagger}) = \frac{1}{2}TT$, $\operatorname{Im} \mathbf{T}_{\mathrm{in} \to \mathrm{in}} = \frac{1}{2} \sum_{I} \boldsymbol{\delta}_{\mathrm{in},I} |\mathbf{T}_{\mathrm{in} \to I}|^2$.

Expand in $T^{\dagger} = T(\mathbb{1} - iT^{\dagger})$:

$$\left| \frac{1}{2i} (T - T^{\dagger}) = -\frac{1}{2} \sum_{c=1}^{\infty} (-iT)^{c+1}. \right|$$

NORMAL & ANOMALOUS THRESHOLDS

HOLOMORPHIC CUTTING RULES

In general, expansion implies the holomorphic cutting rules

See also Cutkosky, Coster, Stapp, Bourjaily, HSH, McLeod, Schwartz, Vergu, Matak, Blazek

NORMAL & ANOMALOUS THRESHOLDS

Why not in previous $2 \rightarrow 2$ example?

Thresholds occur when process is allowed classically

Lightest particle cannot decay \rightarrow the two incoming (outgoing) particles meet at a vertex \rightarrow only **normal thresholds** in physical regions

ANOMALOUS THRESHOLD IN STANDARD MODEL

2. CAUSALITY

ALGEBRAIC CONDITIONS FOR CAUSALITY

Goal: Find $i\varepsilon$ prescription consistent with causality

Here: Investigate in perturbation theory

Result: algebraic conditions for branch cuts, branch points and causality in terms of worldline action \mathcal{V} :

$\mathcal{V} = 0$	for any α 's	\Leftrightarrow	branch cut
$\partial_{\alpha_e} \mathcal{V} = 0$	for any α 's	\Leftrightarrow	branch point
$\operatorname{Im} \mathcal{V} > 0$	for all α 's	\Leftrightarrow	causal branch

SCHWINGER-PARAMETRIZATION OF BUBBLE

$$\mathcal{I}_{\text{bub}}(s) = \lim_{\varepsilon \to 0+} \int_{\mathbb{R}^{1,\text{D}-1}} \frac{\mathrm{d}^{\text{D}}\ell}{i\pi^{\text{D}/2}} \frac{1}{[\ell^2 - m_1^2 + i\varepsilon][(p-\ell)^2 - m_2^2 + i\varepsilon]}$$

Introduce Schwinger parameters α_e for every internal line:

$$\frac{-1}{q_e^2 - m_e^2 + i\varepsilon} = \frac{i}{\hbar} \int_0^\infty \mathrm{d}\alpha_e \exp\left[\frac{i}{\hbar}(q_e^2 - m_e^2 + i\varepsilon)\alpha_e\right]$$

SCHWINGER-PARAMETRIZATION OF BUBBLE

Performing momentum integrals results in

$$\mathcal{I}_{\text{bub}} = (-i\hbar)^{\text{D}/2-2} \lim_{\varepsilon \to 0^+} \int_0^\infty \frac{\mathrm{d}\alpha_1 \,\mathrm{d}\alpha_2}{(\alpha_1 + \alpha_2)^{\text{D}/2}} \exp\left[\frac{i}{\hbar} \left(\mathcal{V} + i\varepsilon(\alpha_1 + \alpha_2)\right)\right]$$

where ${\cal V}$ is the worldline action:

$$\mathcal{V} = s \frac{\alpha_1 \alpha_2}{\alpha_1 + \alpha_2} - m_1^2 \alpha_1 - m_2^2 \alpha_2$$

SCHWINGER-PARAMETRIZATION

For any Feynman integral:

$$\mathcal{I} = (-i\hbar)^{-d} \lim_{\varepsilon \to 0^+} \int_0^\infty \frac{\mathrm{d}^{\mathrm{E}} \alpha}{\mathcal{U}^{\mathrm{D}/2}} \mathcal{N} \exp\left[\frac{i}{\hbar} \left(\mathcal{V} + i\varepsilon \sum_{e=1}^{\mathrm{E}} \alpha_e\right)\right]$$

with
$$\mathcal{U} = \frac{\mathcal{F}}{\mathcal{U}} \qquad \qquad \mathcal{U} = \sum_{\substack{\mathrm{spanning}\\\mathrm{trees}\,T}} \prod_{e \notin T} \alpha_e \qquad \qquad \mathcal{F} = \sum_{\substack{\mathrm{spanning}\\\mathrm{two-trees}\\T_L \sqcup T_R}} p_L^2 \prod_{e \notin T_L \sqcup T_R} \alpha_e - \mathcal{U} \sum_{e=1}^{\mathrm{E}} m_e^2 \alpha_e$$

Takeaway points:

Algebraic formula for any Feynman integral Integration over exponential of worldline action

SINGULARITIES AND BRANCH CUTS

$$\mathcal{I} = \Gamma(d) \lim_{\varepsilon \to 0^+} \int \frac{\mathrm{d}^{\mathrm{E}} \alpha}{\mathrm{GL}(1)} \frac{\widetilde{\mathcal{N}}}{\mathcal{U}^{\mathrm{D}/2}(-\mathcal{V} - i\varepsilon)^d},$$

 \mathcal{V} : ratio of polynomials in α 's, homogenous with degree 1

Using this Schwinger-parametrization, we find

$$\mathcal{V} = 0$$
 for any α 's \Leftrightarrow branch cut
 $\partial_{\alpha_e} \mathcal{V} = 0$ for any α 's \Leftrightarrow branch point

Causality requires

$$\operatorname{Im} \mathcal{V} > 0$$
 for all α 's \Leftrightarrow causal branch

PHYSICAL SHEET

 $\mathcal{V} = 0$ for any α 's \Leftrightarrow branch cut $\partial_{\alpha_e} \mathcal{V} = 0$ for any α 's \Leftrightarrow branch point

Feynman integral lays out branch points and branch cuts

Physical sheet: Values of external variables accessible from physical region using analytic continuation, without crossing branch cuts

LANDAU EQUATIONS

We found condition for leading-singularity branch points:

$$\partial_{\alpha_e} \mathcal{V} = 0$$

Referred to as Landau equations, give conditions for singularities

 p_3

 $- p_4$

 p_5

Bjorken, Landau, Nakanishi, Brown, Mühlbauer, Klausen, Mizera, Telen.

LANDAU EQUATIONS IN MOMENTUM SPACE

Either $\alpha_i = 0$ or $\ell_i^2 = m_i^2$, & $\sum \pm \alpha_i \ell_i = 0$ around every loop.

For bubble integral,

$$\ell^2 = m_1^2 \qquad (p-\ell)^2 = m_2^2 \qquad \alpha_1 \ell^\mu + \alpha_2 (\ell-p)^\mu = 0$$

Solutions are codimension ≥ 1 constraints on *external* kinematics:

$$s = (m_1 + m_2)^2$$
 $s = (m_1 - m_2)^2$

BACK TO CAUSALITY

We are now equipped with the condition:

$\operatorname{Im} \mathcal{V} > 0$ for all α 's \Leftrightarrow causal branch

Can we exploit it to improve on $i\varepsilon$ prescription?

DIFFERENT $i\mathcal{E}$ PRESCRIPTIONS, OVERVIEW

Feynman *i* ε -displaces branch points -unphysical mass scale ε Kinematic *ie* -does not work for unstable particles & higher multiplicity

Branch-cut deformations -reveal physical sheet without modifying branch points

Problem with kinematic $i\mathcal{E}$

Branch cut when $M_1 > m_1 + m_2 + \dots$

 \rightarrow Singularity along entire s-axis

$$a_e \neq a_e \exp[i \epsilon a_e v]$$
$$= a_e (1 + i \epsilon \partial_{a_e} v + ...)$$

BRANCH-CUT DEFORMATIONS

Perform phase rotations of Schwinger parameters

$$\hat{\alpha}_{e} = \alpha_{e} \exp(i\varepsilon \,\partial_{\alpha_{e}} \mathcal{V}) = \alpha_{e} \left[1 + i\varepsilon \,\partial_{\alpha_{e}} \mathcal{V} + \mathcal{O}(\varepsilon^{2}) \right]$$
$$\hat{\mathcal{V}} = \mathcal{V} + i\varepsilon \sum_{e=1}^{\mathbb{H}} \alpha_{e} (\partial_{\alpha_{e}} \mathcal{V})^{2} + \mathcal{O}(\varepsilon^{2})$$
$$= 0 \text{ at branch points}$$
$$> 0 \text{ and points}$$

Im $\hat{\mathcal{V}} \geq 0$: **Reveal physical sheet** without modifying branch points

BRANCH-CUT DEFORMATIONS

Advantages over Feynman $i\varepsilon$:

(i) Rotates branch cuts (ii) ε is small, not infinitesimal

ANALYTICITY FROM BRANCH-CUT DEFORMATIONS

For $2\rightarrow 2$ scattering of *stable* particles in perturbation theory, *regardless* of existence of Euclidean region:

Analyticity in a strip around s-channel physical-region

EXAMPLE I: NECESSITY OF DEFORMATIONS

u

Box diagram, external masses M=0, internal masses m

$$s \xrightarrow{p_2} \alpha_2 \xrightarrow{\alpha_3} \alpha_4 p_1 \xrightarrow{\alpha_1} p_3$$

Action:

$$\mathcal{V}_{\text{box}} = \frac{s \,\alpha_1 \alpha_3 + u \,\alpha_2 \alpha_4}{\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4} - m^2 (\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4)$$

Branch points: $s = 4m^2$, $u = 4m^2$, $su + 4m^2t = 0$

WHEN DO BRANCH-CUTS OVERLAP?

Use $s\!>\!4m^2,\;u\!>\!4m^2,\;s\!+t_*\!+u\!=\!0\!:$ $t_*<-8m^2$

ANALYTIC EXPRESSION

The box example is simple enough for an analytic expression:

$$\mathcal{I}_{\mathrm{box}}(s,t) = \lim_{\varepsilon \to 0^+} \left[\mathcal{I}_{\mathrm{box}}^{\mathbb{C},s}(s+i\varepsilon,t) + \mathcal{I}_{\mathrm{box}}^{\mathbb{C},u}(s-i\varepsilon,t) \right]$$

with
$$\begin{aligned} \mathcal{I}_{\text{box}}^{\mathbb{C},s} &= -\frac{xy}{8m^4\beta_{xy}} \bigg\{ \log \bigg(\frac{\beta_x - 1}{\sqrt{x}} \bigg) \bigg[\log \bigg(\frac{\beta_{xy} - 1}{\beta_{xy} - \beta_x} \bigg) - \log \bigg(\frac{\beta_{xy} + 1}{\beta_{xy} + \beta_x} \bigg) \bigg] \\ &+ \log \bigg(\frac{\beta_x + 1}{\sqrt{x}} \bigg) \bigg[\log^- \bigg(\frac{\beta_{xy} - 1}{\beta_{xy} + \beta_x}, \operatorname{Im} s \bigg) - \log^+ \bigg(\frac{\beta_{xy} + 1}{\beta_{xy} - \beta_x}, -\operatorname{Im} s \bigg) \bigg] \\ &+ \operatorname{Li}_2 \bigg(\frac{-\beta_x + 1}{\beta_{xy} - \beta_x} \bigg) + \operatorname{Li}_2^+ \bigg(\frac{\beta_x + 1}{\beta_{xy} + \beta_x}, \operatorname{Im} s \bigg) \\ &- \operatorname{Li}_2 \bigg(\frac{\beta_x - 1}{\beta_{xy} + \beta_x} \bigg) - \operatorname{Li}_2^- \bigg(\frac{-\beta_x - 1}{\beta_{xy} - \beta_x}, -\operatorname{Im} s \bigg) \bigg\} \end{aligned}$$

UNITARITY CUTS

USE CUTS FOR DISPERSION RELATIONS?

Imaginary part \leftrightarrow Unitarity cuts Discontinuity \leftrightarrow Dispersion relations

Since $\text{Im} \neq \text{Disc}$, can we still use dispersion relations?

Relating Im to Disc

Using the Schwinger-parametrized form, find

$$\operatorname{Im} \mathcal{I} = \mathcal{I}_D^+ + \mathcal{I}_D^-, \qquad \operatorname{Disc}_s \mathcal{I} = \mathcal{I}_D^+ - \mathcal{I}_D^-.$$

with

$$\mathcal{I}_{D}^{\pm}(s,t) = \pi \int \frac{\mathrm{d}^{\mathrm{E}}\alpha}{\mathrm{GL}(1)} \frac{\widetilde{\mathcal{N}}}{\mathcal{U}^{\mathrm{D}/2}} \delta^{(d-1)}(\mathcal{V}) \,\Theta(\pm \partial_{s}\mathcal{V}),$$

Learn:

1. Im and Disc split into two components with $\Theta(\pm \partial_s \mathcal{V})$

2. Im = Disc when
$$\mathcal{I}_D^- = 0$$

Relating Im to Disc

t

RELATING IM TO DISC

Three cases:

a. $t_* > -8m^2$: No overlap of branch cuts b. $-16m^2 < t_* < -8m^2$: Amplitude splits into components with branch cuts for either $s > 4m^2$ or $u > 4m^2$ \downarrow \downarrow \downarrow \mathcal{I}_D^+ \mathcal{I}_D^- Im $\mathcal{I} = \mathcal{I}_D^+ + \mathcal{I}_D^-$, $\operatorname{Disc}_s \mathcal{I} = \mathcal{I}_D^+ - \mathcal{I}_D^-$.

c. $t_* < -16m^2$: Box branch cut spoils the split of the amplitude

Analytically continue Cuts in s and u

EXAMPLE II: BRANCH-CUT ALONG S-AXIS

Triangle diagram, external masses M > 2m

Action:

$$\mathcal{V}_{\rm tri} = \frac{u\alpha_1\alpha_2 + M^2\alpha_3(\alpha_1 + \alpha_2)}{\alpha_1 + \alpha_2 + \alpha_3} - m^2(\alpha_1 + \alpha_2 + \alpha_3)$$

Branch points: $u=4m^2, s_{\text{tri}}=\frac{M^4}{m^2}-t$

APPROACH FROM LHP

$$\mathcal{V}_{\rm tri} = \frac{u\alpha_1\alpha_2 + M^2\alpha_3(\alpha_1 + \alpha_2)}{\alpha_1 + \alpha_2 + \alpha_3} - m^2(\alpha_1 + \alpha_2 + \alpha_3)$$

$$\mathrm{Im}\mathcal{V}_{\mathrm{tri}} = -\mathrm{Im}s\frac{\alpha_1\alpha_2}{\alpha_1 + \alpha_2 + \alpha_3} > 0$$

 \rightarrow Approach physical region from LHP

ANALYTIC EXPRESSIONS IN LHP AND UHP

$$\begin{split} \mathcal{I}_{\mathrm{tri}}^{\mathrm{LHP}}(s,t) &= \frac{z}{4M^2\beta_z} \sum_{\zeta \in \{-1,1\}} \left\{ \zeta \operatorname{Li}_2\left(\frac{1+\frac{z}{2}-\zeta\beta_z}{1+\frac{z}{2}+\zeta\beta_y\beta_z}\right) + \zeta \operatorname{Li}_2\left(1-\frac{1+\frac{z}{2}+\zeta\beta_z}{1+\frac{z}{2}+\zeta\beta_y\beta_z}\right) \right. \\ &+ 2\operatorname{Li}_2\left(\frac{1+\beta_z}{1+\zeta\beta_z\beta_{yz}}\right) - 2\operatorname{Li}_2\left(\frac{1-\beta_z}{1+\zeta\beta_z\beta_{yz}}\right) - 2\pi i \log\left(\frac{1+\beta_z}{1+\beta_z\beta_{yz}}\right) \\ &+ \zeta \log\left(\frac{1+\frac{z}{2}+\zeta\beta_z}{1+\frac{z}{2}+\zeta\beta_y\beta_z}\right) \left[\pi i + \log\left(-1+\frac{1+\frac{z}{2}+\zeta\beta_z}{1+\frac{z}{2}+\zeta\beta_y\beta_z}\right)\right] \right\} \end{split}$$

$$\mathcal{I}_{\rm tri}(s,t) = \lim_{\varepsilon \to 0^+} \mathcal{I}_{\rm tri}^{\rm LHP}(s - i\varepsilon, t)$$

 $y = -\frac{4m^2}{u}, \qquad z = -\frac{4M^2}{u},$

 $\beta_y = \sqrt{1+y} \,, \qquad \beta_z = \sqrt{1+z} \,,$

 $\beta_{yz} = -i\sqrt{-1 + \frac{4y}{z}} \,.$

$$\begin{split} \mathcal{I}_{\mathrm{tri}}^{\mathrm{UHP}}(s,t) &= \frac{z}{4M^2\beta_z} \sum_{\zeta \in \{-1,1\}} \left\{ \zeta \operatorname{Li}_2\left(\frac{1+\frac{z}{2}-\zeta\beta_z}{1+\frac{z}{2}+\zeta\beta_y\beta_z}\right) + \zeta \operatorname{Li}_2\left(1-\frac{1+\frac{z}{2}+\zeta\beta_z}{1+\frac{z}{2}+\zeta\beta_y\beta_z}\right) \\ &+ 2\operatorname{Li}_2\left(\frac{1+\beta_z}{1+\zeta\beta_z\beta_{yz}}\right) - 2\operatorname{Li}_2\left(\frac{1-\beta_z}{1+\zeta\beta_z\beta_{yz}}\right) + 2\pi i \log\left(\frac{1+\beta_z}{1+\beta_z\beta_{yz}}\right) \\ &+ \zeta \log\left(\frac{1+\frac{z}{2}+\zeta\beta_z}{1+\frac{z}{2}+\zeta\beta_y\beta_z}\right) \left[-\pi i + \log\left(-1+\frac{1+\frac{z}{2}+\zeta\beta_z}{1+\frac{z}{2}+\zeta\beta_y\beta_z}\right)\right] \right\} \end{split}$$

ANALYTIC EXPRESSION

As expected, *separate* analytic expressions in LHP and UHP:

UNITARITY CUTS

s-channel cuts:

u-channel cuts:

Relating Im to Disc

Recall,

with splits by

$$\operatorname{Im} \mathcal{I} = \mathcal{I}_D^+ + \mathcal{I}_D^-, \qquad \operatorname{Disc}_s \mathcal{I} = \mathcal{I}_D^+ - \mathcal{I}_D^-.$$
$$\Theta(\pm \partial_s \mathcal{V})$$

Here:

$$\mathrm{Im}\,\mathcal{I}_{\mathrm{tri}} = -\mathrm{Disc}_{\mathit{s}}\,\mathcal{I}_{\mathrm{tri}}$$

$$\operatorname{Disc}_{s} \mathcal{I}_{\operatorname{tri}} = \frac{\pi z}{4M^{2}\beta_{z}} \begin{cases} 2\log\left(-\frac{1-\beta_{z}\beta_{yz}}{1+\beta_{z}\beta_{yz}}\right) + \log\left(-\frac{1+\frac{z}{2}+\beta_{y}\beta_{z}}{1+\frac{z}{2}-\beta_{y}\beta_{z}}\right) - \pi i & \text{if } s < s_{\operatorname{norm}}, \\ 2\log\left(-\frac{1-\beta_{z}\beta_{yz}}{1+\beta_{z}\beta_{yz}}\right) & \text{if } s_{\operatorname{norm}} < s < s_{\operatorname{tri}}, \\ 2\log\left(\frac{1-\beta_{z}\beta_{yz}}{1+\beta_{z}\beta_{yz}}\right) & \text{if } s_{\operatorname{tri}} < s \end{cases}$$

EXAMPLE III: SUMMING OVER DIAGRAMS

Branch cuts approached from different directions

EXAMPLE III: SUMMING OVER DIAGRAMS

Numerical result:

3. LOCALITY

FLUCTUATIONS AROUND BRANCH POINTS

In addition to finding saddle points of the action \rightarrow Landau branch points

Fluctuations around saddle points \rightarrow expansion around branch points (assumes isolated branch points, generic masses)

$$\mathcal{I} \approx \mathcal{I}_0 \lim_{\varepsilon \to 0^+} \begin{cases} [-\Delta \partial_\Delta \mathcal{V}^* - i\varepsilon]^\rho & \text{for } \rho < 0, \\ \log \left[-\Delta \operatorname{sgn}(\partial_\Delta \mathcal{V}^*) - i\varepsilon \right] & \text{for } \rho = 0. \end{cases}$$

Branch point at $\Delta = 0$ $\rho = \frac{\text{LD} - \text{E} - 1}{2} \begin{cases} \text{L: number of loops} \\ \text{D: dimensions} \\ \text{E: number of edges in Feynman diagram} \end{cases}$

Landau, Pham

NATURE OF SINGULARITIES

Isolated codimension-2 branch points (e.g. $s = 3m^2 = M^2$) would imply non-analyticity

Assuming analyticity, find $\mathbf{E} - \mathbf{L}\mathbf{D} \leq \mathbf{1}$

Combining with previous result, singularities are of the form

$$\frac{1}{\Delta}$$
 $\frac{1}{\sqrt{\Delta}}$ $\log(\Delta)$

CODIMENSION-2 BRANCH POINTS

Are codimension-2 branch points always intersections of codimension-1 ones?

CONCLUSIONS

Unitarity:

- Implies anomalous thresholds

Causality:

- How to approach the physical regions
- Branch-cut deformations preserve analytic structure

Locality:

- Kinematic singularities at most poles

MANY OPEN QUESTIONS

- Unstable particles? Higher-point processes?
- Quantify & measure anomalous thresholds?
 - What is the error when approaching from UHP? $(\Gamma/m)^{\#}$?
- Generalized dispersion relations?
- Double dispersion relations?

THANKS!