Quo vadis Cosmology?

Paul Steinhardt (Princeton) Anna Ijjas (NYU)

Copenhagen August 19, 2022

The Road to Precision Cosmology

Michael Turner, Ann. Rev. Nucl. Part. Sci. (2022)

The past 50 years has seen cosmology go from a field known for the errors being in the exponents to precision science . . . with the ACDM paradigm as its crowning achievement.

The Road to Precision Cosmology

Michael Turner, Ann. Rev. Nucl. Part. Sci. (2022)

Kuhnian shift

We could be on the wrong track . . . the modern equivalent of Ptolemy's epicycles.

the big bang has always been a sketchy idea mathematical singularity quantum foam, emergent spacetime, tunneling from nothing, ... no accepted theory

cosmic microwave background radiation

a big bang followed by expansion may not be able to explain the salient observable features of our universe

a big bang is exactly the opposite

inhomogeneous, curvy, high entropy, and inherently quantum

does this band-aid do the job? and are there other options?

Does the band-aid do the job?

- 1. "Entropy" Problem: Inflation requires ultra-low entropy to start (but big bang produces ultra-high entropy)
- 2. Initial " $\dot{\phi}$ " Problem: Inflation requires ultra-low " $\dot{\phi}$ " (but" $\dot{\phi}$ " is ultra-high at the Planck density)
- 3. Initial " ϕ " Problem: Inflation requires " ϕ " to lie within a narrow, bounded range of the potential over a Hubble radius or more to start
- 4. Singularity Problem: Inflation does not avoid it
- 5. Classical EofM Problem: Inflation requires a transition from quantum- to classical-dominated evolution
- 6. Multiverse Problem: Quantum runaway → eternal inflation → multiverse → no predictions
- 7. Bunch-Davies Problem: Smoothing not enough –after smoothing need enough time to relax to B-D vacuum
- 8. B-mode Problem: Simplest textbook models predict B-modes >> current limits
- 9. Amplitude Problem: Inflation does not predict the density fluctuation amplitude (it's set by hand)
- 10. Dark energy Problem: Dark energy was not predicted and is not explained (plays no essential role)
- 11. TCC Problem: May not be embeddable in a consistent theory of quantum gravity
- 12. Field range Problem: Inflaton ranges over superPlanckian values resulting in loss of perturbative control

How to solve the Flatness Problem

SOLUTION OF THE FLATNESS PROBLEM is illustrated by this sequence of perspective drawings of an inflating sphere.

The problem with this explanation is:

```
It's wrong...... and it misleads you into believing that expansion is essential to flatten the universe...... when the truth is just the opposite!
```

Some Definitions:

```
a(t) (the 'scale factor')
        = the factor by which the universe has expanded or contracted
H(t) (the 'Hubble parameter')
        = the rate of expansion (\equiv \dot{a}/a)
E (the `equation of state')
        =\frac{3}{2}\left(1+\frac{pressure}{energy\ density}\right) for the dominant form of energy
               where \varepsilon = 3/2 corresponds to zero pressure
```

Pressure/energy density

~ how far you can see

$$\frac{c |H(t)|^{-1}}{c |H(t_0)|^{-1}} \sim \left(\frac{a(t)}{a(t_0)}\right)^{\varepsilon}$$
geometry

$$c |H|^{-1} \sim a^{\varepsilon}$$

How to solve the Flatness Problem

SOLUTION OF THE FLATNESS PROBLEM is illustrated by this sequence of perspective drawings of an inflating sphere.

$$c |H|^{-1} \sim a^{\varepsilon}$$

Cosmological Flatness = "Apparent Flatness"

Cosmological Flatness = "Apparent Flatness"

$$c |H|^{-1} \sim a^{\varepsilon}$$

$$S = \int d^4 x \left[\frac{1}{2} R - \frac{1}{2} \left(\partial_\mu \phi \right)^2 - V(\phi) + \cdots \right]$$
$$\ddot{\phi} + 3 H \dot{\phi} + V'(\phi) = 0$$

Inflation (accelerated expansion)

$$a(t) \sim |t|^{1/\varepsilon}$$
 as $t \to \infty$

$$a(t) \sim |t|^{1/\varepsilon} as t \rightarrow 0$$

slow contraction is much faster than inflation!

slow contraction pressure >> 0 $\varepsilon\gg 1$

cap/surface area reduced by 2¹⁰⁰

How to solve the Homogeneity & Isotropy Problems

The problem with this explanation is . . .

```
It's wrong...... and it misleads you into believing that expansion is essential to smooth the universe...... when the truth is just the opposite!
```

How to solve the Smoothness Problem

Inflation requires a nearly smooth spacetime to get started

where "bad inflation is more likely than good inflation"

"QUANTUM PHYSICS" ADDED

a simple litmus test

"QUANTUM PHYSICS" ADDED

quantum runaway!

"QUANTUM PHYSICS" VIEW

smoothness flatness are not the generic outcome

Anna Ijjas,

Numerical Relativity as a New Tool for Fundamental Cosmology, Physics 4, 301 (2022

what about smoothing by slow contraction

begins far from slow contraction conditions

universal smoother!!

Anna Ijjas,

Numerical Relativity as a New Tool for Fundamental Cosmology, Physics 4, 301 (2022

What about smoothing by slow contraction

begins far from slow contraction conditions

How to solve the Big Bang "Entropy" Problem

any theory with a big bang/quantum gravity-dominated phase is susceptible to having an "entropy" problem

A universe that begins with a bang and expands forever...

```
... has an entropy problem (and inflation cannot resolve it)
```

- . . . has a smoothness problem(and inflation cannot resolve it)
- ... has a flatness problem (and inflation cannot resolve it)

Quo vadis Cosmology?

A universe with a bounce can avoid all of these problems

