Neutrino oscillations with IceCube/DeepCore Tom Stuttard Niels Bohr Institute. NBI Neutrino Summer School 2022

CARL§BERG FOUNDATION

Neutrino oscillations

- There are **3 neutrino flavor states** \rightarrow one per lepton flavour (e, μ , τ)
- However, there is mixing between these flavor states and the neutrino mass states
 - Characterised by the PMNS matrix
- A neutrino produced as a given flavor is thus a superposition of all three mass states
- The wavefunction of each mass state evolves with a different frequency (defined by its mass) as they propagate
- The superposition of the flavor states therefore changes over time → time-dependent flavour composition
- A neutrino produced as one flavor can therefore be detected later as another → this is neutrino oscillations

- Visualise the superposition effects and resulting oscillations using simplified model...
 - 2 neutrino states (flavour = ν_{α} , ν_{β} , mass = ν_1 , ν_2) \rightarrow flavor states are 50:50 mix of mass states ($\theta = 45^{\circ}$)
 - $m_2 = \sqrt{2} m_1$

- Visualise the superposition effects and resulting oscillations using simplified model...
 - 2 neutrino states (flavour = ν_{α} , ν_{β} , mass = ν_1 , ν_2) \rightarrow flavor states are 50:50 mix of mass states ($\theta = 45^{\circ}$)
 - $m_2 = \sqrt{2} m_1$ • v_{α} real Uflavor) v_{α} imaginary 0 v_{β} real v_{β} imaginary _ 1) Neutrino produced in pure (single) flavor state In this case v_{α} $|v_{mass}\rangle$ ----- v₂ real 1.0 $(\lambda \leftarrow X) d$ $P(\nu_{\alpha} \rightarrow \nu_{\alpha})$ $P(v_{\alpha} \rightarrow v_{\beta})$

- Visualise the superposition effects and resulting oscillations using simplified model...
 - 2 neutrino states (flavour = ν_{α} , ν_{β} , mass = ν_1 , ν_2) \rightarrow flavor states are 50:50 mix of mass states ($\theta = 45^{\circ}$)
- $m_2 = \sqrt{2} m_1$ 2) This means the neutrino is initially an equal mix of the two mass states Because of 50:50 mixing in this example

- Visualise the superposition effects and resulting oscillations using simplified model...
 - 2 neutrino states (flavour = ν_{α} , ν_{β} , mass = ν_1 , ν_2) \rightarrow flavor states are 50:50 mix of mass states ($\theta = 45^{\circ}$)

- Visualise the superposition effects and resulting oscillations using simplified model...
 - 2 neutrino states (flavour = ν_{α} , ν_{β} , mass = ν_1 , ν_2) \rightarrow flavor states are 50:50 mix of mass states ($\theta = 45^{\circ}$)

time/distance

- Visualise the superposition effects and resulting oscillations using simplified model...
 - 2 neutrino states (flavour = ν_{α} , ν_{β} , mass = ν_1 , ν_2) \rightarrow flavor states are 50:50 mix of mass states ($\theta = 45^{\circ}$)

time/distance

Basic neutrino oscillation phenomenology (1 of 2)

• Neutrino mixing characterised by the (complex) PMNS matrix:

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e2} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 2} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 2} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

- If unitary, can be parameterised as 3 mixing angles and a CP-violating phase: $heta_{12}, \, heta_{13}, \, heta_{23}, \, \delta_{CP}$
- Oscillation frequency depends on the mass-difference between mass states: $\Delta m^2_{21}, \ \Delta m^2_{31}$

 \rightarrow 6 oscillation parameters to measure in experiments

Basic neutrino oscillation phenomenology (2 of 2)

- Probability of oscillating between flavors (for simplified 2-flavour case):
 - Full 3-flavor expression far more complex

$$P_{\alpha\beta} = \sin^2(2\theta) \sin^2\left(\frac{\Delta m^2 L}{4E}\right)$$
 Frequency also depends on L/E ratio for a given neutrino itude

Mixing defines oscillation amplitude

Mass-difference defines frequency

Basic neutrino oscillation phenomenology (2 of 2)

- Probability of oscillating between flavors (for simplified 2-flavour case):
 - Full 3-flavor expression far more complex

$$P_{\alpha\beta} = \sin^2(2\theta) \sin^2\left(\frac{\Delta m^2 L}{4E}\right)$$
 Frequency also depends on L/E ratio for a given neutrino Mixing defines oscillation amplitude

- Insensitive to the sign of $\Delta m^2 \rightarrow$ neutrino mass ordering problem
 - Unknown if v_3 is heaviest or lightest mass state

Basic neutrino oscillation phenomenology (2 of 2)

- Probability of oscillating between flavors (for simplified 2-flavour case):
 - Full 3-flavor expression far more complex

$$P_{\alpha\beta} = \sin^2(2\theta) \sin^2\left(\frac{\Delta m^2 L}{4E}\right)$$
 Frequency also depends on L/E ratio for a given neutrino Mixing defines oscillation amplitude

- Insensitive to the sign of $\Delta m^2 \rightarrow$ neutrino mass ordering problem
 - Unknown if v_3 is heaviest or lightest mass state

- Modified oscillation effects for neutrinos passing through matter
 - MSW, parametric resonance, absorption, τ/NC re-generation, ...

Why study neutrino oscillations?

- Neutrino oscillations imply **neutrinos have mass**, contrary to SM
 - Only proven example of BSM physics
- Neutrino masses are tiny compared to other particle however
 - How is this mass generated? Sterile neutrinos? See-saw mechanism? New field?
- Why are the mixing angles what we measure? Some underlying symmetry?
 - Why so different to CKM matrix describing quark mixing?
- Is CP symmetry violated in neutrino oscillations (e.g. is $\delta_{CP} \neq 0$)?
 - How is this related to the **matter-antimatter asymmetry** of the Universe?
- Rare opportunity to study a quantum system over macroscopic scales
- Oscillations are modified by many BSM theories
 - Sterile neutrinos, non-standard interactions (NSI), Lorentz Invariance violation, decoherence, ...

Neutrino oscillation experiments

- Need to measure a range of neutrino flavors, energies and baselines to measure all
 oscillation parameters
 - Requires a broad range of oscillation experiments with differing neutrino sources

Neutrino oscillation experiments

- Need to measure a range of neutrino flavors, energies and baselines to measure all
 oscillation parameters
 - Requires a broad range of oscillation experiments with differing neutrino sources

(1) Cosmic rays interact in the atmosphere and produce air showers
 → Large flux of high energy neutrinos

(2) Neutrinos propagate across the Earth

When E is \gtrsim 100 GeV, oscillation baseline is larger than the Earth's diameter

(2) Neutrinos propagate across the Earth

(3) Detection via Cherenkov emission from products of v - N interactions

Predominantly Deep Inelastic Scattering (DIS)

"Tracks" from secondary μ "Cascades" from secondary $e,\,\tau$ and hadrons

Atmospheric neutrino oscillations in IceCube-DeepCore

- The DeepCore sub-array of IceCube can measure atmospheric neutrino oscillations in the 5 – 100 GeV energy range
 - Earth-crossing ν_{μ} near maximally oscillate to $\nu_{\tau} \rightarrow$ measures θ_{23} and Δm_{32}^2

$$P_{\alpha\beta} = \sin^2\left(\frac{2\theta}{2}\right)\sin^2\left(\frac{\Delta m^2 L}{4E}\right)$$

Atmospheric neutrino oscillations in IceCube-DeepCore

- The DeepCore sub-array of IceCube can measure atmospheric neutrino oscillations in the 5 – 100 GeV energy range
 - Earth-crossing ν_{μ} near maximally oscillate to $\nu_{\tau} \rightarrow$ measures θ_{23} and Δm_{32}^2

Tom Stuttard 24

Detecting neutrinos in DeepCore

- Primarily detect v-ice **Deep Inelastic Scattering** (DIS) interactions
- Charged- and Neutral-Current (CC/NC)

Detecting neutrinos in DeepCore

Primarily detect v-ice **Deep Inelastic** • Scattering (DIS) interactions

Detected light

- **Charged-** and **Neutral-Current** (CC/NC) ullet
- Two event topologies @ oscillation energies: ullet

Approx spherical v_e CC v_{τ} CC v NC

Tom Stuttard

25

arXiv:2203.02303

DeepCore reconstruction and PID

PID is prediction of whether event is charged current v_{μ} event (vs any other flavor/interaction)

Mainly based on whether muon track is observed

Measuring oscillations

- Measure 3D distortions in reconstructed [energy, zenith, PID]
 - Robust against systematic uncertainties

Measuring oscillations

- Measure 3D distortions in reconstructed [energy, zenith, PID]
 - Robust against systematic uncertainties

Measuring oscillations

- Measure 3D distortions in reconstructed [energy, zenith, PID]
 - Robust against systematic uncertainties

DeepCore's oscillation program

Strengths:

- Very high statistics (large flux, huge detector)
- High energy, large baselines and dense matter yield **sensitivity to BSM physics**
- Mostly observe **DIS** interactions \rightarrow theoretically simple
- **Complimentary to accelerators:** Same oscillation parameters but at 10x the energy, with differing uncertainties (detector, flux, cross section)

Weaknesses:

- **Natural detection medium** → hard to calibrate ice properties
- **Sparse** \rightarrow PMTs are 7.5 m apart \rightarrow only observe tiny fraction of light in event
 - Results in **poor resolution** compared to e.g. accelerators
- Uncertainties in atmospheric neutrino flux
- Large backgrounds of atmospheric muons and detector noise

Current generation of oscillation analyses

- Over 9 years of detector livetime \rightarrow 210,000 neutrinos
- Backgrounds suppressed by many orders of magnitude to 0.7% of sample
 - High purity and high statistics!
- Sophisticated models of systematic uncertainties
 - Ice properties, flux, cross sections, backgrounds

Current generation of oscillation analyses

v_{τ} appearance

- Dominant oscillation channel in both atmospheric neutrino and long baseline accelerator experiments is $\nu_{\mu} \rightarrow \nu_{\tau}$
- However, v_{τ} charged current interactions are only possible \gtrsim 3.5 GeV
 - And suppressed $\leq 1 \text{ TeV}$
 - Results from the large mass of the τ lepton that must be produced

v_{τ} appearance at DeepCore

- Most neutrino oscillation measurements are below 3.5 GeV \rightarrow they only see the ν_{μ} disappearing
- DeepCore is measuring in the 5-100 GeV range \rightarrow can also see the corresponding **appearance of** ν_{τ}
- Tests **PMNS unitarity** \rightarrow observing too few v_{τ} could indicate some v_{μ} are oscillating to **sterile neutrinos** (that are not observed)

$$U_{\rm PMNS}^{\rm Extended} = \begin{pmatrix} U_{e1}^{3 \times 3} & & & \\ U_{e1} & U_{e2} & U_{e3} & & & U_{en} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & & & U_{\mu n} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & & & U_{\tau n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ U_{s_n 1} & U_{s_n 2} & U_{s_n 3} & & & U_{s_n n} \end{pmatrix}$$

DeepCore v_{τ} **appearance performance**

 Signal at IceCube is appearance on cascade events in the [E, coszen] region where track events are disappearing

• DeepCore has world-leading sensitivity to this effect:

11% precision

Results from high stats (>9,000 $u_{ au}$)

c.f. ~200 ν_{τ} in total from all other experiments

Measure v_{τ} rate <u>relative</u> to PMNS matrix expectation

Neutrino Mass Ordering (NMO)

- In vacuum: Atmospheric oscillations depend on only $|\Delta m_{32}^2|$
 - e.g. not sensitive whether v_3 is the heaviest or lightest mass state
- In matter: **Small distortion effects** when crossing the **Earth's dense core**
 - Manifests in v for the normal ordering, \overline{v} for the inverted ordering
 - DeepCore cannot distinguish $\nu/\overline{\nu}$, but larger ν flux and cross sections leads to net signal

• Will be able to probe this with the upcoming IceCube Upgrade detector!

Summary

- Neutrino oscillations provide a direct window to new physics and are a leading topic in modern particle physics research
- We still do not know the origin of neutrino mass, or how neutrinos contribute to the matter-antimatter asymmetry of the Universe
- IceCube-DeepCore provide high statistics, high energy measurements of atmospheric neutrino oscillations
 - Mixing parameter measurements competitive with accelerators
 - World-leading v_{τ} and BSM oscillation sensitivity
- Next-generation experiments including the IceCube Upgrade usher in the precision era in neutrino oscillation measurements
 - Will our current models hold, or will deviations start to appear?

Thank you

arXiv:2005.12942, 2005.12943

Sterile neutrinos

Flux uncertainties

Ice uncertainties

Comparing ν_{μ} and ν_{τ} DIS cross sections (LO)

CTEQ66 PDFs

$$\begin{aligned} \frac{\mathrm{d}^2 \sigma^{\nu/\bar{\nu}}}{\mathrm{d}x\mathrm{d}y} &= \frac{G_F^2 M_N E_{\nu}}{\pi (1+Q^2/M_W^2)^2} \left\{ (y^2 x + \frac{m_l^2 y}{2E_{\nu} M_N}) F_1(x,Q^2) + \left[(1-\frac{m_l^2}{4E_{\nu}^2}) - (1+\frac{M_N x}{2E_{\nu}}) y \right] F_2(x,Q^2) \right. \\ & \left. \pm \left[xy(1-\frac{y}{2}) - \frac{m_l^2 y}{4E_{\nu} M_N} \right] F_3(x,Q^2) + \frac{m_l^2 (m_l^2+Q^2)}{4E_{\nu}^2 M_N^2 x} F_4(x,Q^2) - \frac{m_l^2}{E_{\nu} M_N} F_5(x,Q^2) \right] \end{aligned}$$

arXiv:1908.09441

The IceCube Upgrade

- Low-energy extension to IceCube
 - Deployment in **2025/6**
 - Drop threshold to 1 GeV
- 700 multi-PMT sensors
- Improved detector/ice calibration

IceCube Upgrade: Increased photocathode density

- Dense instrumentation in 2 Mton core
 - Large increase in photocathode density → sensitive down to ~**1 GeV neutrinos**

IceCube Upgrade: Increased photocathode density

- Dense instrumentation in 2 Mton core
 - Large increase in photocathode density → sensitive down to ~**1 GeV neutrinos**

