Neutrino emission from Starburst Galaxies

Enrico Peretti

PhD Summer School on Neutrinos

Here, There & Everywhere

July 11-15, 2022 Niels Bohr Institute, Copenhagen

Co-financed by the Connecting Europe Facility of the European Union

Neutrinos in starburst galaxies

• What is a starburst galaxy?

• What is the origin of neutrinos in starburst galaxies?

Neutrinos in starburst galaxies

• What is a starburst galaxy?

• What is the origin of neutrinos in starburst galaxies?

STARBURST NUCLEUS

Starburst galaxy M82 – APOD - Image credit: Daniel Nobre

STARBURST-DRIVEN WIND

Starburst galaxy M82 – APOD - Image credit: Daniel Nobre

Neutrinos in starburst galaxies

• What is a starburst galaxy?

• What is the origin of neutrinos in starburst galaxies?

Supernova remnants are shocks resulting from CCSNe and SN1a

Supernova remnants are shocks resulting from CCSNe and SN1a

 Particles are accelerated at such shocks through diffusive shock acceleration (DSA)

Supernova remnants are shocks resulting from CCSNe and SN1a

 Particles are accelerated at such shocks through diffusive shock acceleration (DSA)

Supernova remnants are shocks resulting from CCSNe and SN1a

 Particles are accelerated at such shocks through diffusive shock acceleration (DSA)

Supernova remnants are shocks resulting from CCSNe and SN1a

 Particles are accelerated at such shocks through diffusive shock acceleration (DSA)

Supernova remnants are shocks resulting from CCSNe and SN1a

 Particles are accelerated at such shocks through diffusive shock acceleration (DSA)

High energy protons can escape the accelerator

Website: http://www.astro.wisc.edu/~gvance/index.html

High energy protons can escape the accelerator

• Escaping protons can interact with gas in the external medium

р

Website: http://www.astro.wisc.edu/~gvance/index.html

Website: http://www.astro.wisc.edu/~gvance/index.html

High energy protons can escape the accelerator

• Escaping protons can interact with gas in the external medium

• Inelastic collisions of protons with gas results in pions

Website: http://www.astro.wisc.edu/~gvance/index.html

High energy protons can escape the accelerator

- Escaping protons can interact with gas in the external medium
- Inelastic collisions of protons with gas results in pions

Supernova W44 & IC 443 Neutral Pion Decay Spectral Fit

High energy protons can escape the accelerator

- Escaping protons can interact with gas in the external medium
- Inelastic collisions of protons with gas results in pions

High star formation rate

High target density & strong fields

Starbursts observed at GeV

- Starbursts observed at GeV
- Most nearby observed at TeV (<4 Mpc)

- Starbursts observed at GeV
- Most nearby observed at TeV (<4 Mpc)
 - Most distant: Arp 220 (77 Mpc)

Indications of neutrino production at TeV the nearby NGC1068 while gamma is limited below 10^2 GeV

- Starburst emission?
- AGN jet? AGN wind?
 - Other sources?

Another reason to study Starbursts

7

Another reason to study Starbursts

Ζ

7

Diffuse radiation from starburst

Starbursts are expected to shine on gamma rays and neutrinos

Diffuse radiation from starburst

Starbursts are expected to shine on gamma rays and neutrinos

• At which level can they contribute to the observed diffuse fluxes?
Diffuse radiation from starburst

Starbursts are expected to shine on gamma rays and neutrinos

• At which level can they contribute to the observed diffuse fluxes?

• Can they contribute to the CR flux at some level?

Motivations for studying Starburst Galaxies

• Several acceleration sites (SBN + wind)

- High rate of interactions \rightarrow Calorimetry?
- Numerous at high redshift \rightarrow Diffuse flux?

Outline

• Cosmic ray transport

• Particle Transport in Starburst Nuclei

• Diffuse emission from Starburst Galaxies

Outline

• Cosmic ray transport

• Particle Transport in Starburst Nuclei

• Diffuse emission from Starburst Galaxies

 Charged particles follow helical paths around magnetic field line in ideal conditions

- The ISM is a turbulent plasma
- The magnetic field is also turbulent (δB)

• The ISM is a turbulent plasma

• The magnetic field is also turbulent (δB)

• The ISM is a turbulent plasma

• The magnetic field is also turbulent (δB)

- The ISM is a turbulent plasma
- The magnetic field is also turbulent (δB)

- The ISM is a turbulent plasma
- The magnetic field is also turbulent (δB)

• Diffusion tensor/coefficient: $D(\vec{x}, \vec{p})$

• Low turbulence environment allows to observe standard helical motions

- Low turbulence environment allows to observe standard helical motions
- When the turbulence is strong the motion of particles from quasi-ballistic becomes diffusive

- Low turbulence environment allows to observe standard helical motions
- When the turbulence is strong the motion of particles from quasi-ballistic becomes diffusive

- Low turbulence environment allows to observe standard helical motions
- When the turbulence is strong the motion of particles from quasi-ballistic becomes diffusive

$$au_{diff}(E) \approx \frac{H^2}{D(E)}$$

Physics of cosmic rays: Advection and Adb

• The interstellar medium (ISM) can be characterized by large scale bulk motions

Physics of cosmic rays: Advection and Adb

• The interstellar medium (ISM) can be characterized by large scale bulk motions

• CRs in a box of size H can be advected in flow of velovity v and escape

Physics of cosmic rays: Advection and Adb

• The interstellar medium (ISM) can be characterized by large scale bulk motions

• CRs in a box of size H can be advected in flow of velovity v and escape

• CRs can lose or gain energy adiabatically

- Ions (p): Ionization, Coulomb interaction, spallation (pp), Aγ (pγ)
- Electrons: Ionzation, synchrotron, bremsstrahlung, inverse Compton

- Ions (p): Ionization, Coulomb interaction, spallation (pp), Aγ (pγ)
- Electrons: Ionzation, synchrotron, bremsstrahlung, inverse Compton

- Ions (p): Ionization, Coulomb interaction, spallation (pp), Aγ (pγ)
- Electrons: Ionzation, synchrotron, bremsstrahlung, inverse Compton

Website: http://www.astro.wisc.edu/~gvance/index.html

- Ions (p): Ionization, Coulomb interaction, spallation (pp), Aγ (pγ)
- Electrons: Ionzation, synchrotron, bremsstrahlung, inverse Compton

- Ions (p): Ionization, Coulomb interaction, Spallation (pp), Aγ (pγ)
- Electrons: Ionzation, synchrotron, bremsstrahlung, inverse Compton

- Ions (p): Ionization, Coulomb interaction, Spallation (pp), Aγ (pγ)
- Electrons: Ionzation, synchrotron, bremsstrahlung, inverse Compton

- Ions (p): Ionization, Coulomb interaction, Spallation (pp), Aγ (pγ)
- Electrons: Ionzation, synchrotron, bremsstrahlung unverse Compton

- Ions (p): Ionization, Coulomb interaction, Spallation (pp), Aγ (pγ)
- Electrons: Ionzation, synchrotron, bremsstrahlung unverse Compton

- Ions (p): Ionization, Coulomb interaction, Spallation (pp), Aγ (pγ)
- Electrons: Ionzation, synchrotron, bremsstrahlung unverse Compton

- Ions (p): Ionization, Coulomb interaction, spallation (pp), Aγ (pγ)
- Electrons: Ionzation, synchrotron, bremsstrahlung, inverse Compton
- E loss mechanism can be often associated to a typical rate/timescale which allows to model properly CR transport and possibly answer on the origin of an observed non-thermal spectrum

$$\tau_{loss}^{-1} \approx -\frac{1}{E} \left[\frac{\partial E}{\partial t} \right]$$

• Cosmic rays \rightarrow phase space density $\rightarrow f(t, \vec{x}, \vec{p}) = \frac{dN}{dV \cdot d^3 n}$

• Cosmic rays \rightarrow phase space density $\rightarrow f(t, \vec{x}, \vec{p}) = \frac{dN}{dV \cdot d^3 p}$

Time evolution = Injection + diff. + adv. + adb. + loss.

• Cosmic rays \rightarrow phase space density $\rightarrow f(t, \vec{x}, \vec{p}) = \frac{dN}{dV \cdot d^3 p}$

$$\frac{\partial f}{\partial t} = Q + \nabla \cdot [D\nabla f] - \vec{u} \cdot \nabla f + \frac{\nabla \cdot \vec{u}}{3} p \frac{\partial f}{\partial p} - L$$

• Cosmic rays \rightarrow phase space density $\rightarrow f(t, \vec{x}, \vec{p}) = \frac{dN}{dV \cdot d^3 p}$

$$\frac{\partial f}{\partial t} = Q + \nabla \cdot [D\nabla f] - \vec{u} \cdot \nabla f + \frac{\nabla \cdot \vec{u}}{3} p \frac{\partial f}{\partial p} - L$$

• When the transport is stationary, homogeneous and isotropic:

• Cosmic rays \rightarrow phase space density $\rightarrow f(t, \vec{x}, \vec{p}) = \frac{dN}{dV \cdot d^3 p}$

$$\frac{\partial f}{\partial t} = Q + \nabla \cdot [D\nabla f] - \vec{u} \cdot \nabla f + \frac{\nabla \cdot \vec{u}}{3} p \frac{\partial f}{\partial p} - L$$

• When the transport is <u>stationary</u>, homogeneous and <u>isotropic</u>:
Physics of cosmic rays: Transport equation

• Cosmic rays \rightarrow phase space density $\rightarrow f(t, \vec{x}, \vec{p}) = \frac{dN}{dV \cdot d^3 p}$

Outline

• Cosmic ray transport

• Particle Transport in Starburst Nuclei

• Diffuse emission from Starburst Galaxies

$$n \approx 10^{2} cm^{-3}$$
$$B \approx 10^{2} \mu G$$
$$U_{RAD} \approx 10^{3} eV cm^{-3}$$
$$v \approx 10^{2} km s^{-1}$$
$$D(p) \approx \frac{c}{3} r_{L}^{2-\delta} l_{c}^{\delta-1}$$

• Electrons are confined in SBNi

- Electrons are confined in SBNi
- Advection and losses regulate the transport of protons

- Electrons are confined in SBNi
- Advection and losses regulate the transport of protons
- Particles experience all phases of the ISM

$$Q = \frac{f}{\tau_{loss}} + \frac{f}{\tau_{diff}} + \frac{f}{\tau_{adv}}$$

Modeling nearby SBGs

Gamma rays and neutrinos

• Cosmic-ray calorimeters are ideal neutrino factories

Outline

• Cosmic ray transport

• Particle Transport in Starburst Nuclei

• Diffuse emission from Starburst Galaxies

Counting Starburst Galaxies

Counting Starburst Galaxies

Starbursts as diffuse sources

Diffuse emission from Starburst Galaxies

• SBNi only

Diffuse emission from Starburst Galaxies

• SBNi only

• Sizeable contribution to the diffuse flux observed by Fermi-LAT

Diffuse emission from Starburst Galaxies

• SBNi only

- Sizeable contribution to the diffuse flux observed by Fermi-LAT
 - Neutrino flux at the level of IceCube measurment

Take home messages

- Starburst galaxies can approach calorimeteric conditions
- We expect gamma rays and neutrino from Starburst Nuclei
- Starburst Nuclei can provide a sizeable contribution to the multimessenger diffuse flux (gamma rays, neutrinos)

THANKS FOR YOUR ATTENTION!

Back up

Acceleration and transport in starburst winds

Transport model

 $r^{2}u(r)\partial_{r}f = \partial_{r}[r^{2}D(r,p)\partial_{r}f] + \frac{1}{3}\partial_{r}[r^{2}u(r)]p\partial_{p}f + r^{2}Q(r,p) - r^{2}\Lambda(r,p)$

Transport model

 $r^{2}u(r)\partial_{r}f = \partial_{r}[r^{2}D(r,p)\partial_{r}f] + \frac{1}{3}\partial_{r}[r^{2}u(r)]p\partial_{p}f + r^{2}Q(r,p) - r^{2}\Lambda(r,p)$

Transport model

 $r^{2}u(r)\partial_{r}f = \partial_{r}[r^{2}D(r,p)\partial_{r}f] + \frac{1}{3}\partial_{r}[r^{2}u(r)]p\partial_{p}f + r^{2}Q(r,p) - r^{2}\Lambda(r,p)$

 $f_{sh}(p) \propto p^{-s} e^{-\Gamma_1(p)} e^{-\Gamma_2(p)}$

• Maximum Energy $\rightarrow 10^2 \text{ PeV}$

Standard DSA valid at low Energy

 $f_{sh}(p) \propto p^{-s} e^{-\Gamma_1(p)} e^{-\Gamma_2(p)}$

$$f_{sh}(p) \propto p^{-s} e^{-\Gamma_1(p)} e^{-\Gamma_2(p)} \qquad f_u(r,p) = f_{sh}(p) e^{-\int_r^{R_{sh}}(\frac{u_{eff}}{D}) dr'}$$

The wind suppresses the diffusion of particles back to the galaxy

Particle distribution homogenized in the downstream region

High-Energy SED and Neutrinos

High-Energy SED and Neutrinos

High-Energy SED and Neutrinos

• SBNi only

- Sizeable contribution to the diffuse flux observed by Fermi-LAT
 - Neutrino flux at the level of IceCube measurment

Multimessenger emission from Starburst Galaxies

Multimessenger emission from Starburst Galaxies

Leaky box model and L—SFR correlations

Starbursts as diffuse sources

The issue of the maximum energy

Starburst contribution to IceCube neutrinos strongly depends on the maximum energy achievable in SBNi

SNR in case of Bohm diffusion:

$$E_{max} = 30 PeV \times R_3 u_4 B_{mG}$$

• Magnetic field amplification can allow reaching 10-100 PeV

Maximum Energy & Luminosity

Starburst halo

Starburst halo

Tracing the emission in the wind bubble – 1 GeV

Upcoming gamma-ray observations

Credit: Gabriel Pérez Diaz (IAC)/Marc-André Besel (CTAO)/ESO/ N. Risinger (skysurvey.org)

• Transport and diffusion: neutral medium?

• Transport and diffusion: neutral medium?

- Transport and diffusion: neutral medium?
 - What happens in the wind bubble?

- Transport and diffusion: neutral medium?
 - What happens in the wind bubble?

- Transport and diffusion: neutral medium?
 - What happens in the wind bubble?
 - Diffuse gamma and neutrino flux?

10

10

10-9

- Transport and diffusion: neutral medium?
 - What happens in the wind bubble?
 - Diffuse gamma and neutrino flux?

- Transport and diffusion: neutral medium?
 - What happens in the wind bubble?
 - Diffuse gamma and neutrino flux?
 - What can accelerate UHECRs in SBGs?
Outlook and open questions

