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Supernova remnants are shocks 
resulting from CCSNe and SN1a

• Particles are accelerated at such
shocks through diffusive shock 

acceleration (DSA)

• DSA predicts non-thermal spectra
for the accelerated particles
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Why Starburst Galaxies?

4

Particle
acceleration 2X

High target density
& strong fields

Interactions

Website: http://www.astro.wisc.edu/~gvance/index.html

From starburst galaxies we expect:

• High-energy neutrinos E>0.1 GeV

• Power-law distribution

• Maximum energy model dep.
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Observation of Starburst Galaxies - Gamma

• Starbursts observed at GeV

• Most nearby observed at TeV (<4 Mpc)

• Most distant: Arp 220 (77 Mpc)
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Observations - Neutrinos

Indications of neutrino production at TeV
in the nearby NGC1068 while gamma is

limited below 102 GeV 

• Starburst emission? 

• AGN jet? AGN wind?

• Other sources?
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Aartsen+2020 - IceCube

Acciari+2019 – MAGIC

Eichmann+2022
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Enhanced star formation

Peretti+2020
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Motivations for studying Starburst Galaxies

• Several acceleration sites (SBN + wind)

• High rate of interactions Calorimetry?

• Numerous at high redshift Diffuse flux?

9



Outline

• Cosmic ray transport

• Particle Transport in Starburst Nuclei

• Diffuse emission from Starburst Galaxies
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Physics of cosmic rays: Diffusion - 1

• Charged particles follow helical paths
around magnetic field line in ideal

conditions
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Physics of cosmic rays: Diffusion - 1

• The ISM is a turbulent plasma

• The magnetic field is also turbulent (𝛿𝐵)

• Particles pitch angle evolves in time when
in presence of magnetic field disturbances

Helical motion Spatial diffusion

• Diffusion tensor/coefficient: 𝐷(  𝑥,  𝑝)
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e

B
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Physics of cosmic rays: Diffusion - 2

• Low turbulence environment allows to 
observe standard helical motions

12
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𝜏𝑑𝑖𝑓𝑓 𝐸 ≈
𝐻2
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Physics of cosmic rays: Advection and Adb

• The interstellar medium (ISM) can be 
characterized by large scale bulk motions

• CRs in a box of size H can be advected in 
flow of velovity v and escape

• CRs can lose or gain energy adiabatically

13
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Physics of cosmic rays: E losses & radiative processes

• Ions (p): Ionization, Coulomb interaction, spallation (pp), Aγ (pγ)

• Electrons: Ionzation, synchrotron, bremsstrahlung, inverse Compton

• E loss mechanism can be often associated to a typical rate/timescale
which allows to model properly CR transport and possibly answer on the 

origin of an observed non-thermal spectrum

𝜏𝑙𝑜𝑠𝑠
−1 ≈ −

1

𝐸

𝜕𝐸

𝜕𝑡

14
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Outline

• Cosmic ray transport

• Particle Transport in Starburst Nuclei

• Diffuse emission from Starburst Galaxies
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Image credit: X-ray: NASA/CXC/Tsinghua Univ./H. Feng et al.; Full-field: X-ray: NASA/CXC/JHU/D.Strickland; 
Optical: NASA/ESA/STScI/AURA/The Hubble Heritage Team; IR: NASA/JPL-Caltech/Univ. of AZ/C. Engelbracht
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Modeling the transport in SBNi

𝑛 ≈ 102 𝑐𝑚−3

𝐵 ≈ 102 𝜇𝐺

𝑈𝑅𝐴𝐷 ≈ 103 𝑒𝑉 𝑐𝑚−3

𝑣 ≈ 102 𝑘𝑚 𝑠−1

𝐷 𝑝 ≈
𝑐

3
𝑟𝐿
2−𝛿 𝑙𝑐

𝛿−1

19

Electrons

Protons

Peretti+2019
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Particle and photon spectra in SBNi
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Particle and photon spectra in SBNi
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Modeling nearby SBGs

21

M82

NGC253

Arp220

Peretti+2019



Gamma rays and neutrinos

• Cosmic-ray calorimeters are ideal neutrino factories

22

M82

Peretti+2020



Outline

• Cosmic ray transport

• Particle Transport in Starburst Nuclei

• Diffuse emission from Starburst Galaxies
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Counting Starburst Galaxies
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Counting Starburst Galaxies

24

Star formation
rate function

SFGs
SBGs

Peretti+2020 Peretti+2020

SBGs can efficiently
confine HE particles

𝜏𝑙𝑜𝑠𝑠 ≲ 𝜏𝑒𝑠𝑐



Starbursts as diffuse sources

25

z



Diffuse emission from Starburst Galaxies
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• SBNi only

• Gamma rays do not exceed
observational constraints

• Neutrino flux at the level of 
IceCube measurmentPeretti+2020
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Take home messages

• Starburst galaxies can approach calorimeteric conditions

• We expect gamma rays and neutrino from Starburst Nuclei

• Starburst Nuclei can provide a sizeable contribution to the 
multimessenger diffuse flux (gamma rays, neutrinos)

27



Thanks for your attention!



Back up

X



Acceleration and transport in starburst winds

20

Peretti+2022



Acceleration and transport in starburst winds

20

Fast cool wind

Peretti+2022



Acceleration and transport in starburst winds

20

Wind shock 
High Mach number (≥10)
Efficient acceleration

Fast cool wind

Hot shocked wind

Peretti+2022



Acceleration and transport in starburst winds

20

Wind shock 
High Mach number (≥10)
Efficient acceleration

Fast cool wind

Hot shocked wind

Shocked halo
medium

Contact discontinuity

Peretti+2022



Acceleration and transport in starburst winds
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Forward shock 
Low Mach number (<5)
Inefficient acceleration

Wind shock 
High Mach number (≥10)
Efficient acceleration

Fast cool wind

Hot shocked wind

Shocked halo
medium

Contact discontinuity

Peretti+2022



Acceleration and transport in starburst winds
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𝑅𝑠ℎ ∝ 𝑡2/5

𝑅𝐹𝑆 ∝ 𝑡3/5



Transport model 

• Diffusive shock acceleration and Galactic accelerators

21

𝑟2𝑢 𝑟 𝜕𝑟𝑓 = 𝜕𝑟 𝑟
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3
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Injection
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Escape
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Transport model 

• Diffusive shock acceleration and Galactic accelerators
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𝑟2𝑢 𝑟 𝜕𝑟𝑓 = 𝜕𝑟 𝑟
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• Advection
• Diffusion
• Adiabatic losses and gains
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Transport model 

• Diffusive shock acceleration and Galactic accelerators
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𝑟2𝑢 𝑟 𝜕𝑟𝑓 = 𝜕𝑟 𝑟
2𝐷 𝑟, 𝑝 𝜕𝑟𝑓 + 1

3
𝜕𝑟 𝑟

2𝑢 𝑟 𝑝𝜕𝑝𝑓 + 𝑟2𝑄 𝑟, 𝑝 − 𝑟2Λ(𝑟, 𝑝)

Energy losses
Λ = 𝑛 𝑟 𝜎𝑝𝑝(𝑝)𝑣 𝑝 𝑓

pp
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Particles in the system

17

𝑓𝑠ℎ(𝑝) ∝ 𝑝−𝑠𝑒−Γ1(𝑝)𝑒−Γ2(𝑝)

Parameters

 𝑀 = 10 𝑀⨀ 𝑦𝑟−1

𝑉∞ = 3000 𝑘𝑚 𝑠−1

𝑅𝑠ℎ = 12 𝑘𝑝𝑐

𝑅𝐹𝑆 = 55 𝑘𝑝𝑐

Peretti+ 2022



Particles in the system
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• Maximum Energy  102 PeV

𝑓𝑠ℎ(𝑝) ∝ 𝑝−𝑠𝑒−Γ1(𝑝)𝑒−Γ2(𝑝)
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Particles in the system

17

• Maximum Energy  102 PeV

• Standard DSA valid at low Energy

𝑓𝑠ℎ(𝑝) ∝ 𝑝−𝑠𝑒−Γ1(𝑝)𝑒−Γ2(𝑝)
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Particles in the system

17

𝑓𝑠ℎ(𝑝) ∝ 𝑝−𝑠𝑒−Γ1(𝑝)𝑒−Γ2(𝑝)
𝑓𝑢 𝑟, 𝑝 = 𝑓𝑠ℎ(𝑝) 𝑒

−  𝑟
𝑅𝑠ℎ(

𝑢𝑒𝑓𝑓
𝐷

) 𝑑𝑟′

Peretti+ 2022

Peretti+ 2022



Particles in the system
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The wind suppresses the diffusion of 
particles back to the galaxy

Peretti+ 2022



Particles in the system

17

Particle distribution homogenized in 
the downstream region

Peretti+ 2022



High-Energy SED and Neutrinos
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High-Energy SED and Neutrinos
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Unabsorbed gamma 
rays at 10 TeV
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High-Energy SED and Neutrinos
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Neutrino emission from 
100 TeV up to 10 PeV

Peretti+ 2022



Diffuse emission from Starburst Galaxies

20

• SBNi only

• Sizeable contribution to the diffuse 
flux observed by Fermi-LAT  

• Neutrino flux at the level of 
IceCube measurmentPeretti+2020



Diffuse emission from Starburst Galaxies
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Diffuse emission from Starburst Galaxies

20

Peretti+2020

Peretti+2022

𝐸𝑚𝑎𝑥
(𝑠𝑏𝑛)

102 𝑃𝑒𝑉 → 𝑃𝑒𝑉



Diffuse emission from Starburst Galaxies
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Peretti+2020
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Multimessenger emission from Starburst
Galaxies
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Multimessenger emission from Starburst
Galaxies

21

Peretti+2022



Leaky box model and L—SFR correlations

B-ii

Kornecki, Peretti+2021Kornecki, Peretti+2021



Starbursts as diffuse sources

B-iii

Burst of star formation

Star formation
rate function

SFGs
SBGs

Peretti+2020 Peretti+2020



The issue of the maximum energy

B-iv

Starburst contribution to IceCube
neutrinos strongly depends on the 
maximum energy achievable in SBNi

SNR in case of Bohm diffusion:

𝐸𝑚𝑎𝑥 = 30 𝑃𝑒𝑉 × 𝑅3𝑢4𝐵𝑚𝐺

• Magnetic field amplification can 
allow reaching 10-100 PeV

Peretti+2020



Maximum Energy & Luminosity

B-v

Peretti+ 2022Peretti+ 2022



Starburst halo

B-vi

Ballistic Diffusive



Starburst halo

B-vii



Tracing the emission in the wind bubble – 1 GeV

B-viii

Ballistic Diffusive

0.6 deg 0.6 deg

𝐿𝑜𝑔(
𝐿

𝐿𝑏
) 𝐿𝑜𝑔(

𝐿

𝐿𝑏
)



Upcoming gamma-ray observations

23

Vercellone+2022 – ASTRI Mini-Array

Fermi-LAT

VERITAS

ASTRI Mini-Array (100 h)

Image credit: A. Lamastra

Credit: Astri/Inaf

Credit: Gabriel Pérez Diaz (IAC)/Marc-André Besel (CTAO)/ESO/ N. Risinger (skysurvey.org)

http://skysurvey.org/


Outlook and open questions

• Transport and diffusion: neutral medium?

• The wind bubble

• Diffuse fluxes and AGN-SBGs

• What can accelerate UHECRs in SBGs?
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Krumholtz+2020

Credit: Andrej Dundovic
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Mϋller+2020

Romero+2018

Werhahn+2021
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Tamborra+2014

Bechtol+2017

Palladino+2019Roth+2021Ajello+2021

Sudoh+2018

Linden+2017

Owen+2021

Ambrosone+2021
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Condorelli+2022 in prep.
Condorelli+2022 in prep.


