Neutrino astrophysics as a probe of dark matter Damiano F. G. Fiorillo

Niels Bohr Institute, Copenhagen

KØBENHAVNS UNIVERSITET UNIVERSITY OF COPENHAGEN

VILLUM FUNDEN

Multimessenger astrophysics

Damiano Fiorillo

Cosmic rays detected with huge energies, above 100 EeV

Multimessenger astrophysics

- Cosmic rays detected with huge energies, above 100 EeV
- Detectors built for astrophysical gamma-rays (~ 1960)
- Final step so far: highenergy neutrino detection (IceCube, ~ 2013)

High-energy neutrino detection

- High-energy neutrinos are few and weakly interacting
- Detection requires huge volumes, so neutrinos have a chance to interact
- In IceCube, neutrino-nucleon collisions produce charged particles
- Cherenkov light is detectable

IceCube High-Energy Starting Events (HESE)

IceCube Collaboration, arXiv:2011.03545

- Starting events interact inside the detector
- Astrophysical component detected above 60 TeV

IceCube High-Energy Starting Events (HESE)

IceCube Collaboration, arXiv:2011.03545

Ultra-high-energy (UHE) neutrinos

Damiano Fiorillo

Kotera, arXiv:2108.00032

Above 10 PeV no detection yet

 Expected cosmogenic neutrinos, from *pγ* collisions

 \bullet Possible UHE ν from astrophysical sources

 Highest energy and longest baseline neutrinos

> What do these neutrinos tell us about particle physics?

Neutrinos probe (BSM) particle physics

Damiano Fiorillo

Non-standard interactions ($\nu\nu$ with relic neutrinos, $\nu\chi$ with dark matter, ...)

Neutrinos probe (BSM) particle physics

Damiano Fiorillo

Non-standard interactions (*vv* with relic neutrinos, $\nu \chi$ with dark matter, ...)

Non-standard oscillations (sterile neutrinos, violation of equivalence principle, Lorentz invariance violation, ...)

Neutrinos probe (BSM) particle physics

Damiano Fiorillo

Non-standard interactions ($\nu\nu$ with relic neutrinos, $\nu\chi$ with dark matter, ...)

Non-standard oscillations (sterile neutrinos, violation of equivalence principle, Lorentz invariance violation, ...)

Non-standard production (dark matter annihilation, **dark matter decay**, ...)

Dark matter

Gravitational motion

Damiano Fiorillo

Gravitational lensing

Dark matter

$m_{\rm DM} \sim 100 \text{ TeV} - 10 \text{ PeV}$ lceCube range!

$m_{\rm DM} \sim 1 \text{ EeV} - 100 \text{ ZeV}$ (UHE range!

Damiano Fiorillo

Decaying dark matter

See also talk by Diyaselis Delgado

Produce gamma-rays and cosmic rays as well!

1. How many neutrinos in a decay?

2. Where are they produced? How do they propagate?

Damiano Fiorillo

Decaying dark matter

3. Can we detect them?

11

1. How many neutrinos in a decay?

produced? How do they propagate?

Damiano Fiorillo

Decaying dark matter

2. Where are they

3. Can we detect them?

11

 $m_{\rm DM}$

 au_{DM}

 $\chi \to ff$

1. How many neutrinos in a decay?

Damiano Fiorillo

Decaying dark matter

sets the energy scale

sets the normalization

sets the energy spectrum

1. How many neutrinos in a decay?

Damiano Fiorillo

Decaying dark matter

No neutrino produced?

 $m_{\rm DM} \gtrsim 100 {\rm ~TeV}$

1. How many neutrinos in a decay?

Damiano Fiorillo

 $P \sim \alpha_W$?

14

 $m_{\rm DM} \gtrsim 100 {
m TeV}$

1. How many neutrinos in a decay?

Damiano Fiorillo

 $P \sim \alpha_W \log^2 \left(\frac{m_{\rm DM}}{m_W} \right)$

14

1. How many neutrinos in a decay?

Energy cascade, treated by DGLAP equations

Damiano Fiorillo

HDMSpectra (arXiv:2007.15001)

1. How many neutrinos in a decay?

do they propagate?

Damiano Fiorillo

Decaying dark matter

- 2. Where are they produced? How

3. Can we detect them?

Damiano Fiorillo

Galactic production

Depends on DM distribution

 $\frac{d\phi_{G,\beta}}{dEd\Omega} = \frac{1}{4\pi} \frac{1}{\tau_{\rm DM}} \sum_{\alpha} \frac{dN_{\alpha}}{dE} P_{\alpha \to \beta} \int ds \frac{\rho(s,l,b)}{m_{\rm DM}}$

Damiano Fiorillo

Galactic production

Depends on DM distribution

Damiano Fiorillo

Galactic production

Depends on DM distribution

Damiano Fiorillo

Galactic production

Depends on DM distribution

Damiano Fiorillo

Galactic production

 $ds \frac{\rho(s,l,b)}{ds}$ $m_{\rm DM}$

Depends on DM distribution

Damiano Fiorillo

Galactic production

Depends on DM distribution

Slightly anisotropic

How many DM particles?

Galactic production

Depends on DM distribution

Slightly anisotropic

Extragalactic production

(Mostly) isotropic

 $\frac{d\phi_{EG,\beta}}{dEd\Omega} = \frac{1}{4\pi} \frac{1}{\tau_{\rm DM}} \sum_{\alpha} P_{\alpha \to \beta} \int \frac{dz}{H(z)} \frac{dN_{\alpha}}{dE} [E(1+z)] \frac{\Omega_{\chi} \rho_c}{m_{\rm DM}}$

Damiano Fiorillo

Galactic production

Depends on DM distribution

Slightly anisotropic

Extragalactic production

(Mostly) isotropic

Damiano Fiorillo

Galactic production

Depends on DM distribution

Slightly anisotropic

Extragalactic production

(Mostly) isotropic

Damiano Fiorillo

Galactic production

Depends on DM distribution

Slightly anisotropic

Extragalactic production

(Mostly) isotropic

 $m_{\rm DM}$

spectrum

Damiano Fiorillo

Galactic production

Depends on DM distribution

Slightly anisotropic

Extragalactic production

(Mostly) isotropic

spectrum

Damiano Fiorillo

Galactic production

Depends on DM distribution

Slightly anisotropic

Extragalactic production

Dark matter density

 $m_{\rm DM}$

(Mostly) isotropic

1. How many neutrinos in a decay?

produced? How do they propagate?

Damiano Fiorillo

Decaying dark matter

2. Where are they

3. Can we detect them?

Constraints from UHE neutrinos

Damiano Fiorillo

If no event is detected, DM should produce less than 2.71 expected events (95% CL)

Constraints from UHE neutrinos

Damiano Fiorillo

If no event is detected, DM should produce less than 2.71 expected events (95% CL)

If astro events are detected, constraints are weaker

Chianese, DF, Hajjar, Miele, Morisi, Saviano 2103.03254

Conclusions

Astrophysical neutrinos are ideal probe for particle physics

- IceCube is already most competitive probe of neutrinophilic DM $(m_{\rm DM} \sim 100 {\rm TeV} - 1 {\rm PeV})$
- ◆ Radio telescopes will probe heavier DM ($m_{DM} \sim 1 \text{ EeV} 100 \text{ ZeV}$)

Damiano Fiorillo

Neutrinos are just one side, multimessenger approach coming to the front for

Damiano Fiorillo

Backup slides

UHE neutrinos: constraints

UHE neutrinos: constraints

For $m_{\rm DM} \lesssim 100 {\rm ~TeV}$ perturbative approach

MonteCarlo simulating shower (with some limitations)

Full solution of DGLAP equations

Damiano Fiorillo

PPPC 4 DM ID (arXiv:1012.4515)

Pythia (arXiv:1401.5238)

HDMSpectra (arXiv:2007.15001)

High-energy range: IceCube

High-energy range: IceCube

Event rates

Energy binned above 60 TeV

Effective areas
 from IceCube
 Collaboration

High-energy range: lceCube

Event rates

Likelihood

 Energy binned above 60 TeV

 Effective areas from IceCube Collaboration

Poisson likelihood

Free parameters: $\Phi_0, \gamma, m_{\rm DM}, \tau_{\rm DM}$

DM can improve fit to data in two ways

High-energy range: lceCube

DM can improve fit to data in two ways

High-energy range: lceCube

Damiano Fiorillo

High-energy range: IceCube

Best fit solution

Neutrinos exclude too rapid decays

Exclusion from gamma-rays (Cohen et al., arXiv:1612.05638)

Damiano Fiorillo

High-energy range: IceCube

