

Neutrino Astronomy & Astrophysics

Summer school on neutrinos Here, there & Everywhere NBI, Copenhagen

Foteini Oikonomou

July 11th-15th

Norwegian University of Science and Technology

About me

foteini.oikonomou@ntnu.no

- NTNU Trondheim
- Main research interests:
 - Ultra-high energy cosmic rays (sources, phenomenology)
 - Astrophysical sources of high-and ultra-high energy neutrinos
 - Active-galactic nuclei as cosmic accelerators

Lecture plan

- theoretical concepts
- high-energy neutrinos (generic source properties)
- Overview of candidate high-energy astrophysical sources (Active

• Overview of astrophysical neutrino sources, experimental facts and basic

• Requirements for astrophysical accelerators of high-energy cosmic rays/

Galactic Nuclei/Starburst Galaxies/Gamma ray bursts/Pulsars/Tidal Disruption Events). Constraints and prospects for source identification.

Resources

- T.K. Gaisser, R. Engel & E. Resconi: Cosmic Rays and Particle Physics, Cambridge University Press (2016)
- C. Dermer & G. Menon: High-energy radiation from black holes: Gamma-rays, Cosmic Rays, and Neutrinos, Princeton University Press (2009)
- G. Ghisellini: Radiative processes in High Energy Astrophysics, Springer (2012) https://arxiv.org/abs/1202.5949
- Many excellent reviews

High-energy messengers of the non-thermal Universe

Sources of astrophysical neutrinos

Solar Neutrino Oscillations

1995 Reines for the detection of the neutrino

NEUTRINO OSCILLATIONS The discovery of these oscillations shows that neutrinos have mass.

CHERENKOV RADIATION

Supernovae

Massive star

Supernova in 1994D in NGC 4526

He burning

Core collapses Star explodes proto-neutron star cools via neutrino emission

Supernova 1987A The second astrophysical neutrino source

51.4 kpc away in the Small Magellanic Cloud

Nobel prize 2002

11

What happens at higher energies?

What happens at higher energies?

12

What happens at higher energies?

plot originally by M. Swordy

Highest-energy cosmic rays

Extragalactic origin

- Size of the Milky Way ~ kpc [10⁸ AU]
- Galactic B-field ~ 3 μ G
- Larmor radius of cosmic rays

$$R_{\text{Larmor}} = \frac{E}{e \cdot ZB} \sim \frac{1}{\text{kpc}} \left(\frac{1}{Z}\right) \left(\frac{E}{10^{18.5} \text{ eV}}\right)$$

[+ Observational evidence: No anisotropy from the Galaxy]

Secondary messengers

 $E_{\pi} \sim 0.2 E_{p}$

 $p + \gamma \rightarrow n + \pi^{+} \rightarrow n + \mu^{+} + \nu_{\mu} \rightarrow n + e^{+} + \nu_{\mu} + \bar{\nu}_{\mu} + \bar{\nu}_{\mu}$ $p + \gamma \rightarrow p + \pi^{0} \rightarrow p + \gamma + \gamma$ $E_{\gamma} = \frac{1}{2}E_{\pi} = \frac{1}{10}E_{p}$ $E_{\nu} = \frac{1}{4}E_{\pi} = \frac{1}{10}E_{p}$

 $\gamma_{\rm source}$

High-energy neutrino detection ANTARES (2.5 km under the Mediterranean Sea) Huge volumes needed: water/in-ice Cherenkov detection

High-energy neutrino detection Water/in-ice Cherenkov detection

High-energy neutrino detection +several in preparation!

GVD - Lake Baikal

KM3NeT - France/Italy

High-energy neutrino detection Backgrounds

Accelerator

Shock fronts

Target nucleus or γ

Energy [electronVolt]

Discovery of astrophysical neutrinos

IceCube Coll. PoS(ICRC2017)981

IceCube, Phys. Rev. Lett. (2015)

21

Flavour identification

e

W

For astronomy we need high angular resolution

Example, IC-17 (cascade):

Por	tal Simbad	VizieR Ala	adin X-M	atch Other	- Help	
			SI	MBAD: (Query	by coor
other query modes :	Identifier query	Coordinate query	Criteria query	Reference query	Basic query	Script submission
Enter coo	ordinates	•				
Coordinate	S:		16 29 3	36 +14 30 00)	The 20 10 15 15 27 12 35
	de	efine the input	: system	: FK5	¢ ep	och : 2000
		or choose	: a pr	redefined fram	e 🛊	
	(define a radius	: 11.6	deg 🛟		
submit query	clear	Preview				~ 109 obj

						Sfinead			
d	dinates								
۱	TAP	Output options	Help						
ne 0 5h 5h 75 2.	followin 54 05. 12:45. 17m-11 17+89d d11m15 34567h .12345	ng writings are 689 +37 01 1 3-45:17:50 d10m 115 .6954s+17d59 -17.87654d 6d-17.33333d	n59.870 <=> 3	<i>d:</i> 6s 50.123456	-17.333	33			
		equinox : 200	0	J					
)95 oje	542 cts								

For astronomy we need high angular resolution

Even with tracks neutrino astronomy is hard...

دھ	Porta	I Simbad	VizieR Al	adin X-N	/latch Other	- Help				
coord 16 29 36 +14 30 00 (FK5, 200										
other que modes :	ery I	dentifier query	Coordinate query	Criteria query	Reference query	Basic query	Script submission	TAP	Output options	
Query : coord 16 29 36 +14 30 00 (FK5, 2000, 2000), radius 1 deg										
16 29 35.99875003149 +14 29 59. X 1 deg v submit query										
Number of rows 1103										

00, 2000), radius: 1 deg

Want to see more from a catalogue? You can use VizieR to search in the same area for instance: Gaia DR2, 2MASS, AllWISE, SDSS, others

Sky distribution of the neutrinos

- ~100000 neutrinos per year
- ~100 astrophysical
- ~ 10 neutrinos with energy E> 60 TeV (high probability of being astrophysical)

IC86-I

Neutrino Point Sources? IceCube 10 year "Point-Source" search

Isotropy not unexpected. Universe homogeneous and isotropic at large scales

NGC 1068 (AGN/starburst galaxy), 2.9σ (i.e. chance probability 0.187%, or 1 in ~500) 27

Summary

- Two known astrophysical neutrino sources: Sun & SN 1987A

• IceCube has revealed an extra-Galactic (cosmic) neutrino flux but not the sources yet

Lecture plan

- theoretical concepts
- high-energy neutrinos (generic source properties)
- Overview of candidate high-energy astrophysical sources (Active

• Overview of astrophysical neutrino sources, experimental facts and basic

Requirements for astrophysical accelerators of high-energy cosmic rays/

Galactic Nuclei/Starburst Galaxies/Gamma ray bursts/Pulsars/Tidal Disruption Events). Constraints and prospects for source identification.

Generic source properties

- Hillas criterion for acceleration and plausible sources
- Waxman & Bahcall neutrino bound (possible connection to UHECRs)
- Neutrino source emissivity
- Neutrino source number density

Cosmic-ray accelerators Minimum requirement: Confinement (Hillas 1984)

$$R_{\rm source} > r_{\rm Larmor} = \frac{E}{ZBec}$$

Maximum energy,

$$E_{\text{max}} = ZecBR_{\text{source}}$$
$$E_{\text{max}} \sim 1 \text{ EeV } Z\left(\frac{B}{1\,\mu\text{G}}\right) \left(\frac{R_{\text{source}}}{1 \text{ kpc}}\right)$$

 $EeV = 10^{18} eV, ZeV = 10^{21} eV$

 $PeV = 10^{15} eV$

Cosmic-ray accelerators that satisfy the confinement requirement

1 au 1 pc 1 kpc 1 Mpc

Cosmic-ray accelerators that satisfy the confinement requirement (1017 eV)

$$10^{14} - 10^{11} - 10^{8} - 10^{5} -$$

Cosmic-ray accelerators that satisfy the confinement requirement (1017 eV)

Cosmic-ray accelerators that satisfy the confinement requirement (1017 eV)

Cosmic-ray accelerators that satisfy the confinement requirement (1017 eV)

Generic source properties

- Hillas criterion for acceleration and plausible sources
- Waxman & Bahcall neutrino bound (possible connection to UHECRs)
- Neutrino source number density

Neutrino energy flux and multimessenger connections

45

Highest energy cosmic rays and multimessenger connections

Neutrino energy flux and multimessenger connections

I. UHECR energy loss length

Mean free path = I/ (number density of targets x cross-section)

 $\lambda = 1/n\sigma$

Relative energy loss per unit time:

$$\left| -\frac{1}{E} \frac{\mathrm{d}E}{\mathrm{d}t} \right| = \left\langle \kappa \sigma n_{\gamma} c \right\rangle, \kappa = \frac{\Delta E}{E} = \text{inelastic}$$

Energy loss length:

$$\chi_{\rm loss} = c \cdot \left| \frac{1}{E} \frac{{\rm d}E}{{\rm d}t} \right|^{-1}$$

I. UHECR energy loss length

Mean free path = I/(number density of targets x)cross-section)

 $\lambda = 1/n\sigma$

Relative energy loss per unit time:

$$-\frac{1}{E} \frac{\mathrm{d}E}{\mathrm{d}t} \bigg| = \left\langle \kappa \sigma n_{\gamma} c \right\rangle, \kappa = \frac{\Delta E}{E} = \text{inelastic}$$

Energy loss length:

$$\chi_{\rm loss} = c \cdot \left| \frac{1}{E} \frac{{\rm d}E}{{\rm d}t} \right|^{-1}$$

Photo-pair production (Bethe-Heitler process):

$$p + \gamma_{\text{bg}} \rightarrow p + e^+ + e^- \qquad [\kappa_{p\gamma}^{ee} = E_p \gtrsim 10^{19} \,\text{eV} \left(\frac{\varepsilon_{\gamma}}{6 \times 10^{-4} \,\text{eV}}\right)^{-1}$$

 $2m_e/m_p \approx 10^{-3}, \sigma_{p\gamma,\text{thresh}}^{ee} \approx 1.2 \cdot 10^{-27} \text{ cm}^2, n_{\text{CMB}} \approx 411 \text{ cm}^{-3}$] $\lambda_{p\gamma}^{ee} \sim 1/(n_{\text{CMB}} \cdot \sigma_{p\gamma}^{ee}) \sim 1 \text{ Mpc}$

49

I.UHECR energy loss length Photo-pion production

Photo-pion production:

 $p + \gamma_{\rm CMB} \rightarrow \Delta^+ \rightarrow n/p + \pi^+/\pi^0$

$$E_{\rm p} \gtrsim 10^{20} \,\mathrm{eV} \left(\frac{\varepsilon_{\gamma,\rm cmb}}{6 \cdot 10^{-4} \,\mathrm{eV}}\right)^{-1}, n_{\rm cmb} \sim 411 \,\mathrm{cm}^{-3}$$

$$\begin{bmatrix} \kappa \approx m_{\pi}/m_{p} \approx 0.2, \sigma_{p\gamma} \approx 5 \cdot 10^{-28} \,\mathrm{cm}^{2} \end{bmatrix}$$
$$\lambda_{p\gamma,\mathrm{CMB}} = 1/n\sigma \sim 6 \,\mathrm{Mpc}, \,\chi_{\mathrm{loss}} = \lambda/\kappa \sim 50 \,\mathrm{Mpc}$$

I.UHECR energy loss length Photo-pion production

Photo-pion production:

 $p + \gamma_{\rm CMB} \rightarrow \Delta^+ \rightarrow n/p + \pi^+/\pi^0$ $E_{\rm p} \gtrsim 10^{20} \,\text{eV} \left(\frac{\varepsilon_{\gamma,\rm cmb}}{6 \cdot 10^{-4} \,\text{eV}}\right)_{-1}^{-1}, n_{\rm cmb} \sim 411 \,\text{cm}^{-3}$ $E_{\rm p} \gtrsim 7 \cdot 10^{17} \,\text{eV} \left(\frac{\varepsilon_{\gamma,\rm IR}}{0.1 \,\text{eV}}\right)_{-1}^{-1}, n_{\rm EBL} \sim 10^{-2} \,\text{cm}^{-3}$ $\left[\kappa \approx m_{\pi}/m_p \approx 0.2, \sigma_{p\gamma} \approx 5 \cdot 10^{-28} \,\text{cm}^2\right]$ $\lambda_{p\gamma,\rm CMB} = 1/n\sigma \sim 6 \,\text{Mpc}, \,\chi_{\rm loss} = \lambda/\kappa \sim 50 \,\text{Mpc}$

Expansion of the Universe:

 $\chi_{\text{expansion,loss}} \sim c/H_0 \sim 4\text{Gpc}$

2. UHECR energy density

2. UHECR energy density

2. UHECR energy density

J(E) is the measured number of particles per unit energy, per unit area, per unit time, per unit solid angle $J(E) = \frac{\mathrm{d}N}{\mathrm{d}E\mathrm{d}A\mathrm{d}t\mathrm{d}\Omega}$ The number density of particles is $n(E) = \frac{\mathrm{d}N}{\mathrm{d}E\mathrm{d}^3x} = \frac{\mathrm{d}N}{\mathrm{d}E\,\mathrm{d}l\,\mathrm{d}A} = \frac{\mathrm{d}N}{\mathrm{d}E\,\,\mathrm{c}\mathrm{d}t\,\mathrm{d}A} = \frac{4\pi}{c}J(E)$ and the energy density is $U_E = \int E n(E) dE = \frac{4\pi}{-1} \int E J(E) dE$ 20.0 C J

3. UHECR emissivity

At 5 EeV we measure,

$$E_0^3 \cdot J_0 = 10^{37.3} \text{ eV}^2 \text{ km}^{-2} \text{ sr}^{-1} \text{ yr}^{-1}$$

which corresponds to (for an E⁻² spectrum),

$$U_{\text{UHECR}} \approx \frac{4\pi}{c} E_0^2 J_0 \ln(E_{\text{max}}/E_{\text{min}}) \sim \frac{4\pi}{c} E_0^2 J_0 \ln(10)$$
$$\approx 10^{-8} \text{ eV cm}^{-3} \approx 6 \times 10^{53} \text{ erg Mpc}^{-3}$$

3. UHECR emissivity

At 5 EeV we measure,

$$E_0^3 \cdot J_0 = 10^{37.3} \text{ eV}^2 \text{ km}^{-2} \text{ sr}^{-1} \text{ yr}^{-1}$$

which corresponds to (for an E⁻² spectrum),

$$U_{\text{UHECR}} \approx \frac{4\pi}{c} E_0^2 J_0 \ln(E_{\text{max}}/E_{\text{min}}) \sim \frac{4\pi}{c} E_0^2 J_0 \ln(10)$$
$$\approx 10^{-8} \text{ eV cm}^{-3} \approx 6 \times 10^{53} \text{ erg Mpc}^{-3}$$
$$|\text{ erg} \sim |10^{-3}$$

 $= \frac{U_{\text{UHECR}}}{1 \,\text{Gpc/}c} \approx 2 \times 10^{44} \text{ erg Mpc}^{-3} \text{ year}^{-1}$

 $\dot{\varepsilon}_{\text{Auger combined fit}} \approx 5 \times 10^{44} \text{ erg Mpc}^{-3} \text{ year}^{-1}$

Waxman-Bahcall bound

- Neutrinos from photo-meson interactions of UHECR protons in sources (AGN/GRBs)
- Optically-thin sources (protons can escape) otherwise neutrino only sources not UHECR sources
- Fermi-type acceleration

 $E_{CR}^2 dN_{CR}/dE_{CR} \sim E_{CR}^{-2}$ (at the source)

 $\dot{\varepsilon}_{\text{UHECR}} \approx 10^{44} \text{ erg Mpc}^{-3} \text{ year}^{-1}$

• Proton loses fraction, ϵ , of its energy to muon neutrinos

$$E_{\nu}^{2}\Phi_{\nu}(\text{single flavour})|_{E_{\nu}=0.05E_{cr}} = -$$

we called it J before...

$$= 1.5 \times 10^{-8} \epsilon \xi_z \text{ GeV cm}^{-2} \text{ s}^{-2}$$

$$p + \gamma_{\text{CMB}} \rightarrow p + \pi^0 - \text{BR 50\%}$$

$$p + \gamma_{\text{CMB}} \rightarrow n + \pi^+ - \text{BR 50\%}$$

$$\pi^+ \rightarrow \mu^+ + \nu_\mu \rightarrow e^+ + \nu_\mu$$

Waxman-Bahcall bound

Generic source properties

- Hillas criterion for acceleration and plausible sources
- Waxman & Bahcall neutrino bound (possible connection to UHECRs)
- Neutrino source number density

The product of luminosity per source, *L*, and source density, *n*, corresponds to the total emission per volume and is constrained by the observed diffuse flux of neutrinos

luminosity density $\sim L \cdot n$

The number density gives the volume within which one source must lie is

$$V = \frac{4\pi r^3}{3} \sim \frac{1}{n}$$

Source class	Number density [Mpc ⁻³]
powerful blazars (FSRQ)	0-9
weaker blazars (BL Lac)	10-7
Starburst galaxies	0-5
Galaxy clusters	0-5
Jetted AGN	10-4
Normal galaxies	0-2

The nearest neutrino source must therefore be at distance •

$$r \sim \left(\frac{4\pi n}{3}\right)^{-1/3} - (1)$$
 e.g. $n = 10^{-4}$ N
 $r = 10$ Mpc

- . The flux expected from an individual source with neutr
- Sources below the IceCube point-source flux sensitivity F_{lim} must therefore satisfy •

$$r > \left(\frac{L}{4\pi F_{lim}}\right)^{1/2}$$

$$Mpc^{-3}$$

rino luminosity **L** is
$$f \sim \frac{L}{4\pi r^2}$$

Source class	Number density [Mpc ⁻³]
powerful	
blazars	10-9
(FSRQ)	
weaker	
blazars	10-7
(BL Lac)	
Starburst	10-5
galaxies	10-5
Galaxy	
clusters	10-5
Jetted AGN	10-4
Normal	
galaxies	10-7

• The nearest neutrino source must therefore be at distance

$$r \sim \left(\frac{4\pi n}{3}\right)^{-1/3} - (1)$$
 e.g. $n = 10^{-4}$ N
 $r = 10$ Mpc

- . The flux expected from an individual source with neutrino luminosity L is
- Sources below the IceCube point-source flux sensitivity F_{lim} must therefore satisfy

$$r > \left(\frac{L}{4\pi F_{lim}}\right)^{1/2}$$

The nearest neutrino source must therefore be at distance •

$$r \sim \left(\frac{4\pi n}{3}\right)^{-1/3} - (1)$$
 e.g. $n = 10^{-4}$ N
 $r = 10$ Mpc

- . The flux expected from an individual source with neutr
- Sources below the IceCube point-source flux sensitivity F_{lim} must therefore satisfy •

$$r > \left(\frac{L}{4\pi F_{lim}}\right)^{1/2}$$

$$Mpc^{-3}$$

rino luminosity **L** is
$$f \sim \frac{L}{4\pi r^2}$$

Source class	Number density [Mpc ⁻³]
powerful	
blazars	10-9
(FSRQ)	
weaker	
blazars	10-7
(BL Lac)	
Starburst	10-5
galaxies	10-5
Galaxy	
clusters	10-5
Jetted AGN	10-4
Normal	
galaxies	10-7

Sources below the IceCube point source sensitivity must therefore satisfy. •

$$r > \left(\frac{L}{4\pi F_{lim}}\right)^{1/2}$$

which translates to a luminosity dependent upper limit on the number density •

$$n \leq \frac{3}{4\pi} \left(\frac{L}{4\pi F_{lim}} \right)^{-3/2}$$

where we used Eq. (1)
$$r \sim \left(\frac{4\pi n}{3}\right)^{-1/3}$$

Source class	Number density [Mpc ⁻³]
powerful blazars (FSRQ)	10-9
weaker blazars (BL Lac)	10-7
Starburst galaxies	10-5
Galaxy clusters	10-5
Jetted AGN	10-4
Normal galaxies	0-2

see also Lipari PRD78(2008)083011 Ahlers & Halzen PRD90(2014)043005 Kowalski 2014, Neronov & Semikoz 2018, Ackermann, Ahlers et al. 2019, Yuan et al 2019, Capel, Mortlock, Finley 2020

see also Lipari PRD78(2008)083011 Ahlers & Halzen PRD90(2014)043005 Kowalski 2014, Neronov & Semikoz 2018, Ackermann, Ahlers et al. 2019, Yuan et al 2019, Capel, Mortlock, Finley 2020
Neutrino source number density

see also Lipari PRD78(2008)083011 Ahlers & Halzen PRD90(2014)043005 Kowalski 2014, Neronov & Semikoz 2018, Ackermann, Ahlers et al. 2019, Yuan et al 2019, Capel, Mortlock, Finley 2020

Neutrino source number density

distance low enough to produce a multiplet

see also Lipari PRD78(2008)083011 Ahlers & Halzen PRD90(2014)043005 Kowalski 2014, Neronov & Semikoz 2018, Ackermann, Ahlers et al. 2019, Yuan et al 2019, Capel, Mortlock, Finley 2020

Neutrino source number density

see also Lipari PRD78(2008)083011 Ahlers & Halzen PRD90(2014)043005 Kowalski 2014, Neronov & Semikoz 2018, Ackermann, Ahlers et al. 2019, Yuan et al 2019, Capel, Mortlock, Finley 2020

Take home messages

- Neutrino sources must have sufficient energy budget (generally ok)
- IceCube flux at the level predicted by Waxman & Bahcall (common origin of UHECRs and neutrinos or coincidence)
- Neutrino number density constraints disfavour rare and luminous source classes

Lecture plan

- theoretical concepts
- high-energy neutrinos (generic source properties)
- Overview of candidate high-energy astrophysical sources (Active

• Overview of astrophysical neutrino sources, experimental facts and basic

• Requirements for astrophysical accelerators of high-energy cosmic rays/

Galactic Nuclei/Starburst Galaxies/Gamma ray bursts/Pulsars/Tidal Disruption Events). Constraints and prospects for source identification.

Active Galactic Nuclei

Most powerful ``steady'' sources in the Universe (L≥1047 erg/s) > 1000 bright Galaxies!

They host a super-massive black hole (SMBH) $(10^{6}-10^{10} M_{sun})$. ``Active'' as emission >> stars in the galaxy - accretion on to SMBH

Visible to large redshifts (z > 7.5) - peak $z \sim 2$ (depends) on type)

1% of galaxies active

Broad emission lines reveal rapid bulk rotation

69 [Spectra from: https://www.open.edu/openlearn/science-maths-technology/introduction-active-galaxies/content-section-2.2.2]

Artist's impression of non-jetted AGN shrouded in dust [NASA/JPL]

The engine

For an AGN with disk luminosity

$$L_{\rm disk} = 10^{46} {\rm ~erg/s}$$

and time variability

 $\Delta t = 10^4$ s, causality dictates $R \sim c\Delta t = 0.01$ pc = 20 AU

We need a supermassive black hole due to the Eddington limit!

$$L_{\rm Edd} = \frac{4\pi G M m_p c}{\sigma_{\rm T}} = 10^{38} {\rm erg/s} \left(\frac{M}{M_{\rm Sun}}\right)$$

I.e. we need,

$$M \ge 10^8 M_{\rm Sun} \left(\frac{L_{\rm disk}}{10^{46} \, \rm erg/s} \right)$$

AGN Unification

The majority of AGN classes can be explained by three parameters:

- Orientation •
- Presence of jet or not (10% have it) •
- Radiative efficiency •

	Face on	Side-view
Jetted (radio-loud)	Blazars (BL Lac/ FSRQ)	Radio-Galaxies (FRI/II)
Non-jetted (radio-quiet)	Seyfert I	Seyfert II

10% of AGN host jets

FRI

FRII

Radio galaxy Cygnus A Image credits: NRAO/AUI,A. Bridle

Blazars: Star-like appearance

Radio

No spectacular jets...but wealth of information from timing/variability and spectra!

Optical

Relativistic beaming

Usual relativity (rulers and clocks)

$$\Delta x = \frac{\Delta x'}{\Gamma} \qquad \Delta t = \Delta t' \Gamma \qquad \Gamma = \frac{1}{\sqrt{1 - \beta^2}}$$

Relativistic beaming

If the emitting region is moving relativistically, observed features appear boosted:

Doppler factor, $\delta = \frac{1}{\Gamma(1 - \beta \cos \theta)}$

 $\Delta t = \Delta t' / \delta$ (shortening of timescales) $\Delta x = \Delta x' \ \delta$ $\nu = \delta \nu', E = \delta E'$ (blueshift) $L_{\rm obs} = \delta^4 L'$ (dashes denote rest-frame quantities)

Special cases:

$$\delta_{\max} = \delta(0^{\circ}) = \frac{1}{\Gamma(1-\beta)} = \Gamma(1+\beta) \sim 2\Gamma$$

$$\delta_{\min} = \delta(90^{\circ}) = 1/\Gamma - \text{recover special relativity}$$

$$\theta = 1/\Gamma, \cos \theta \approx 1 - \frac{\theta^2}{2} \approx \beta, \ \delta = \Gamma - \text{opposite}$$

>90% of extragalactic Fermi sources (see also TeVCaT)

Blazar spectral energy distribution

Blazar classes: BL Lac objects and FSRQs

BL Lac Object

Optical light

Flat spectrum radio quasar

erg νL_{ν}

Blazar classes: BL Lac objects and FSRQs

BL Lac Object

Flat spectrum radio quasar

Relativistic electrons in a compact, relativistic region moving at $\beta \sim 1$

Magnetic field strength B, doppler factor δ , electron Lorentz factor γ

Log v 82

Log v

Summary

- AGN host a compact and extremely bright emission region
- The AGN ``zoo'' can be compactly described by the Unification model
- Blazars are the most luminous persistent astrophysical sources in the Universe
- Non-thermal spectra, can be easy to determine physical conditions in the sources

Back-up

Eddington luminosity reminder

Image from H. Bradt "Astrophysical processes" 2008

Outward radiative force = Inward self-gravity

$$F_{\rm rad} = \frac{L\sigma_T}{4\pi r^2 c}^* \qquad F_{\rm Grav} = \frac{GMm_p}{r^2}$$

 $\frac{L}{4\pi r^2 c}$ is the radiation pressure since we have here, momentum per second which is a force and force per unit area.

$$L_{\rm Edd} = \frac{4\pi GMm_p c}{\sigma_{\rm T}} = 30,000 \left(\frac{M}{M_{\rm Sun}}\right) L_{\rm Sun}$$

Photo-pion production

$$p + \gamma_{\text{CMB}} \rightarrow \Delta^{+} \rightarrow n/p + \pi^{+}/\pi^{0}$$
At threshold we want s_{min}

$$s = (\mathbf{p}_{\text{p}} + \mathbf{p}_{\gamma})^{2} = (\mathbf{p}_{\text{p}} + \mathbf{p}_{\pi})^{2}$$

$$= (m_{p} + m_{\pi})^{2}c^{2}$$

$$(\mathbf{p}_{\text{p}} + \mathbf{p}_{\gamma})^{2} = \mathbf{p}_{\text{p}}^{2} + \mathbf{p}_{\gamma}^{2*} + 2 \mathbf{p}_{\text{p}} \cdot \mathbf{p}_{\gamma}$$

$$= m_{p}^{2}c^{2} + \mathbf{p}_{\gamma}^{2} + 2 \mathbf{p}_{\text{p}} \cdot \mathbf{p}_{\gamma}$$

$$= m_{p}^{2}c^{2} + 2(E_{p}\varepsilon_{\gamma}/c^{2} - |\overrightarrow{p}_{\text{p}}| \cdot |\overrightarrow{p}_{\gamma}$$

$$= m_{p}^{2}c^{2} + 4E_{p}\varepsilon_{\gamma}/c^{2}$$

$$E_{\text{p}} \geq \frac{m_{\pi}(2m_{p} + m_{\pi})}{4\varepsilon_{\gamma}}c^{4}$$

$$\begin{bmatrix} *\mathbf{p}^2 = (E/c)^2 - |\overrightarrow{p}| \cdot |\overrightarrow{p}| = -m^2c^2 \end{bmatrix} \quad \begin{bmatrix} * *\overrightarrow{p} \approx E \\ E^2 = p^2c^2 + m^2c^4 \end{bmatrix}$$

 $|\cdot\cos\theta)^{**}$

Photo-pion production

$$p + \gamma_{\text{CMB}} \rightarrow \Delta^{+} \rightarrow n/p + \pi^{+}/\pi^{0}$$
At threshold we want s_{min}

$$s = (\mathbf{p}_{\text{p}} + \mathbf{p}_{\gamma})^{2} = (\mathbf{p}_{\text{p}} + \mathbf{p}_{\pi})^{2}$$

$$= (m_{p} + m_{\pi})^{2}c^{2}$$

$$(\mathbf{p}_{\text{p}} + \mathbf{p}_{\gamma})^{2} = \mathbf{p}_{\text{p}}^{2} + \mathbf{p}_{\gamma}^{2*} + 2 \mathbf{p}_{\text{p}} \cdot \mathbf{p}_{\gamma}$$

$$= m_{p}^{2}c^{2} + \mathbf{p}_{\gamma}^{2} + 2 \mathbf{p}_{\text{p}} \cdot \mathbf{p}_{\gamma}$$

$$= m_{p}^{2}c^{2} + 2(E_{p}\varepsilon_{\gamma}/c^{2} - |\overrightarrow{p}_{\text{p}}| \cdot |\overrightarrow{p}_{\gamma}$$

$$= m_{p}^{2}c^{2} + 4E_{p}\varepsilon_{\gamma}/c^{2}$$

$$E_{\text{p}} \geq \frac{m_{\pi}(2m_{p} + m_{\pi})}{4\varepsilon_{\gamma}}c^{4}$$

$$\begin{bmatrix} *\mathbf{p}^2 = (E/c)^2 - |\overrightarrow{p}| \cdot |\overrightarrow{p}| = -m^2c^2 \end{bmatrix} \quad \begin{bmatrix} * * \overrightarrow{p} \approx E \\ E^2 = p^2c^2 + m^2c^4 \end{bmatrix}$$

E/c]