

GRAN SASSO SCIENCE INSTITUTE

Constraining very high energy diffuse gamma (and neutrino) emission with Tibet AS γ data

Presented by: Vittoria Vecchiotti

Based on a work done in collaboration with: G. Pagliaroli, F. L. Villante, F. Zuccarini

Outline:

Goal: Constrain the Galactic gamma-ray-neutrino diffuse emission using gamma-ray observations;

- 1. Galactic gamma-ray-neutrino signal;
- 2. Gamma-ray-neutrino Galactic diffuse emission model; Cataldo et al. JCAP (2019)
- 3. Unresolved sources (population study of the Galactic TeV gamma-ray sources with HESS); Cataldo et al. Astrophys.J. 904 (2020)
- 4. Results: comparison with Tibet data and constraints on the model; *Vecchiotti et al. Astrophys.J. (2021)*

Neutrino and Gamma-ray Sky:

IceCube: Isotropic high-energy neutrino signal around 100 TeV.

The majority of the signal is expected to be of extragalactic origin.

A Galactic component cannot be excluded.

Neutrino and Gamma-ray Sky:

IceCube: Isotropic high-energy neutrino signal around 100 TeV.

The majority of the signal is expected to be of extragalactic origin.

A Galactic component cannot be excluded.

Neutrinos are produced in the same hadronic interactions like gamma-rays \rightarrow gamma observations can be used to constrain the neutrino signal

Total Galactic emission at TeV-PeV:

$$\phi_{\gamma,\nu,tot} = \phi_{\gamma,\nu,S} + \phi_{\gamma,\nu,diff}$$

Source component: due to the interaction of accelerated hadrons (*gamma* and *neutrino*) or leptons (*gamma*) with the ambient medium (ISM or CMB) within or close to an acceleration site (such as PWNe, SNRs).

Diffuse component: due to the interaction of accelerated hadrons with the interstellar medium;

Total Galactic emission at TeV-PeV:

$$\phi_{\gamma,\nu,tot} = \phi_{\gamma,\nu,S} + \phi_{\gamma,\nu,diff}$$

Source comp accelerater' leptons (r CMB) wi PWNe,

Diffuse d

accelerate

We want to constrain the diffuse emission

tion of *ino*) or im (ISM or e (such as

n of medium;

Tibet $AS\gamma$:

Amenomori, M., et al. 2021, Phys. Rev. Lett., 126, 141101,326

First measurement of the Galactic diffuse γ -ray emission in the sub-PeV energy range.

They exclude the contribution from the known TeV sources (within 0.5 degrees) listed in the TeV source catalog.

Tibet $AS\gamma$:

Amenomori, M., et al. 2021, Phys. Rev. Lett., 126, 141101,326

First measurement of the Galactic diffuse γ -ray emission in the sub-PeV energy range.

They exclude the contribution from the known TeV sources (within 0.5 degrees) listed in the TeV source catalog.

The Tibet measurements are contaminated by the presence of Unresolved Sources

$$\oint_{\gamma,\text{diff}}^{Tibet} = \oint_{\gamma,S}^{UnRes} + \oint_{\gamma,\text{diff}}^{\phi_{\gamma,\text{diff}}}$$
Population study
(H.E.S.S.) \rightarrow we obtain general
information on the sources
$$\begin{cases} \text{Models:} \\ \text{Assumptions on the CR spatial} \\ \text{and energy distributions.} \end{cases}$$

Diffuse Galactic gamma-ray emission:

2 models for the diffuse fluxes for 2 assumptions of the CR distribution in the Galaxy.

Cosmic ray distribution:

$$\rho_{CR}(E,\vec{r}) = \varphi_{CR,Sun}(E) \frac{g(\vec{r},R)}{g(\vec{r},R)} h(E,\vec{r})$$

Data driven local CR spectrum [Dembinski, Engel, Fedynitch et al. (2018)]

- $rac{1}{c}$ g(r) is determined by the distribution of the CR sources $f_s(\vec{r})$ (proportional to the SNR number density by Green et al. (2015), and by the propagation of CR in the Galactic magnetic field.
- C 2 cases: with and without spatially dependent CR spectral index (from the analysis of the FermiLAT data at ~ 20 GeV [Acero et al. (2016), Yang et al. (2016), Gaggero et al. (2018)])

$$h(E,\vec{r}) = \left(\frac{E}{20 \; GeV}\right)^{\Delta(\vec{r})}$$

Diffuse Galactic gamma-ray emission:

Definition: Hardening \equiv spatially dependent CR spectral index

Study of the Pulsar wind nebulae population in the TeV range:

Study of the Pulsar wind nebulae population in the TeV range:

We have $\Phi_{1-100 TeV}$ \rightarrow we need $\phi(E)$:

• Spectral assumption: power-law with an exponential cut-off.

$$\varphi(E) = \left(\frac{E}{1 \, TeV}\right)^{-\beta_{TeV}} Exp\left(-\frac{E}{E_{cut}}\right)$$

 $\beta_{TeV} = 2.3$ from the HGPS catalogue;

We have $\Phi_{1-100 TeV}$ \rightarrow we need $\phi(E)$:

• Spectral assumption: power-law with an exponential cut-off.

$$\varphi(E) = \left(\frac{E}{1 \, TeV}\right)^{-\beta_{TeV}} Exp\left(-\frac{E}{E_{cut}}\right)$$

 $\beta_{TeV} = 2.3$ from the HGPS catalogue;

 $E_{cut} = 500 TeV$ still not well constrained but motivated by recent observations of Tibet, HAWC and LHAASO; Amenomori, M., Bao, Y. W., Bi, X. J., et al. 2019, Phys.323Rev. Lett., 123, 051101 Abeysekara, A., Albert, A., Alfaro, R., et al. 2020, Physical316Review Letters, 124 Cao, Z., Aharonian, F. A., An, Q., et al. 2021, Nature, 594,33033

We have $\Phi_{1-100 TeV}$ \rightarrow we need $\phi(E)$:

• Spectral assumption: power-law with an exponential cut-off.

$$\varphi(E) = \left(\frac{E}{1 \, TeV}\right)^{-\beta_{TeV}} Exp\left(-\frac{E}{E_{cut}}\right)$$

 $\beta_{TeV} = 2.3$ from the HGPS catalogue;

 $E_{cut} = 500 TeV$ still not well constrained but motivated by recent observations of Tibet, HAWC and LHAASO; Amenomori, M., Bao, Y. W., Bi, X. J., et al. 2019, Phys.323Rev. Lett., 123, 051101 Abeysekara, A., Albert, A., Alfaro, R., et al. 2020, Physical316Review Letters, 124 Cao, Z., Aharonian, F. A., An, Q., et al. 2021, Nature, 594,33033

We introduce a flux detection threshold based on the performance of H.E.S.S. $\phi_{th} = 0.01\phi_{crab} - 0.1\phi_{crab}$

We calculate the unresolved source contribution.

Definition: Hardening \equiv spatially dependent CR spectral index

Definition: Hardening \equiv spatially dependent CR spectral index

19

What about the diffuse neutrinos?

The total isotropic neutrino flux observed by IceCube:

IceCube collaboration 2020, Phys.Rev. D., 104.022002

$$\Phi_{tot,\nu} \simeq 6.37 \times 10^{-15} \left(\frac{E}{100 \ TeV}\right)^{-2.87} TeV^{-1} cm^{-2} s^{-1} sr^{-1}$$

We calculate the expected Galactic neutrino diffuse emission at 100 TeV, we integrated it over $|l| < 180^{\circ}$, $|b| < 5^{\circ}$ and we compare it with the above quantity at 100 TeV integrated over the same window.

The Galactic neutrino diffuse emission can contribute at most up to 1 % of the total neutrino flux observed by IceCube.

Summary:

- We modelled the gamma/neutrino diffuse emission;
- We calculate the unresolved component from the H.E.S.S. observations;
- In the **PeV** energy range the inclusion of the **unresolved PWNe** contribution produces a better description of the Tibet data than CR spectral hardening (*spatially dependent CR spectral index*);
- The Galactic neutrino diffuse emission can contribute at most up to 1 % of the total neutrino flux observed by IceCube.

Backup slides

Cosmic ray distribution: 2 standard cases:

The function g(r) is determined by the distribution of the CR sources $f_s(\vec{r})$, that is assumed to follow the SNR number density parametrization given by Green et al. (2015), and by the propagation of CR in the Galactic magnetic field.

Cosmic ray distribution: 2 cases with hardening:

We consider the possibility of spatially dependent CR spectral index recenty emerged from the analysis of the FermiLAT data at $\sim 20 \text{ GeV}$ [Acero et al. (2016), Yang et al. (2016), Gaggero et al. (2018)]

Abdalla et al, A&A, 612, A1 (2018)

Planck CO(1-0) map SN 1006 H.E.S.S. Survey -IGPS flux > 1 TeV (% Crab)320 1 3 10 30 100 300 HGPS observation time (hours) 20 340 320 300 Galactic Longitude (deg) $Y(L) = \frac{R \tau (\alpha - 1)}{L} \left(\frac{L}{L}\right)$ $\begin{aligned} \alpha &= 1/\gamma + 1 & \text{For pulsar-powered sources:} \\ R &= 0.019 \, \text{yr}^{-1} & L(t) = L_{\text{max}} \left(1 + \frac{t}{\tau}\right)^{-\gamma} \end{aligned}$

We assume a **power-law** energy spectrum with index $\beta_{TeV} = 2.3$ that is the average index for all the sources in the HGPS catalogue.

Unresolved Source component:

Study of the Pulsar wind nebulae population in the TeV range:

Cataldo et al. Astrophys.J. 904 (2020)

- The HGPS catalogue ($\phi > 0.1 \phi_{Crab}$);
- Model for TeV source population: we assume the spatial distribution and the luminosity distribution of the sources;

HESS 10632+05

15

280

260

260

Energy cut effect:

 $25^{\circ} < l < 100^{\circ}, |b| < 5^{\circ}$

Luminosity index 1.8 and Ecut = 100 TeV:

Absorption in the Sub PeV energy range:

Vernetto and Lipari, Phys. Rev. D 94, 063009 – Published 19 September 2016

The pair production cross section:

$$\sigma_{\gamma\gamma} = \sigma_T \left(\frac{3}{16}\right) (1 - \beta^2) \left[2c(\beta^2 - 2) + (3 - \beta^4) \ln\left(\frac{1 + \beta}{1 - \beta}\right) \right]$$

Where:
$$\beta = \sqrt{1 - \frac{1}{x}}$$
 and $x = \frac{2E_{\gamma}\epsilon(1 - \cos\theta)}{4m_e^2}$, $x > 1$

For a fixed values of ϵ the energy threshold is:

$$E_{\gamma}^{th} = \frac{2 m_e}{\epsilon (1 - \cos\theta)} \simeq \frac{0.52}{\epsilon_{eV} (1 - \cos\theta)} TeV$$

The absorption probability per unit path length (for CMB) is:

$$\mathsf{K}(E_{\gamma}) = \int \epsilon \int d\Omega (1 - \cos(\theta)) n_{\gamma, CMB}(\epsilon) \sigma_{\gamma\gamma}(x(E_{\gamma}, \epsilon, \theta))$$

The optical depth is:

$$\tau(E_{\gamma},r) = \int_0^r d\mathbf{r}' \ \mathsf{K}(E_{\gamma})$$

Absorption in the Sub PeV energy range:

Vernetto and Lipari, Phys. Rev. D 94, 063009 – Published 19 September 2016

Comparison Diffuse models:

Why not LHAASO?

Diffuse Galactic gamma-ray emission:

Unresolved sources:

Are they negligible?

H.E.S.S. Collaboration: The H.E.S.S. Galactic plane survey

8

Diffuse Galactic neutrino emission:

GAMMA-NEUTRINOS RELATION (KAPPES ET AL.)

Convert Gamma Assumptions: total hadronic production, no gamma-ray absorption

In Neutrinos

Model: The power-law for the luminosity distribution can be automatically obtained assuming a fading source population (like PWNe, TeV Halos) create at a constant rate \bar{r} .

The spin-down power is described by:
$$\dot{E}(t) = \dot{E}_0 \left(1 + \frac{t}{\tau}\right)^{-2}$$

Abdalla (2018)

Then:

Considering that a fraction $\lambda(t)$ of the spin-down power is converted into gamma-rays then the intrinsic luminosity decreases according to:

$$L(t) = \lambda(t) \dot{E}(t) = \lambda \dot{E}_0 \left(1 + \frac{t}{\tau}\right)^{-\gamma} \text{ where } \gamma = 2(\delta + 1);$$

$$\lambda(t) = \lambda \left(\frac{\dot{E}(t)}{\dot{E}_0}\right)^{\delta}$$

et al, A&A, 612, A2

$$Y(L) = \frac{\overline{r \tau} (\alpha - 1)}{L_{\max}} \left(\frac{L}{L_{\max}}\right)^{-\alpha}$$

Where $\bar{r} = 0.019 \ yr^{-1}$ is the SN's rate and $\alpha = \left(\frac{1}{\gamma} + 1\right)$ therefore for $\gamma = 2$ we have $\alpha = 1.5$. And instead of the parameter *N* we have the spin-down timescale of the Pulsar τ .

39

Model: The power-law for the luminosity distribution can be automatically obtained assuming a fading source population (like PWNe, TeV Halos) create at a constant rate \bar{r} .

The spin-down power is described by:
$$\dot{E}(t) = \dot{E}_0 \left(1 + \frac{t}{\tau}\right)^{-\frac{n+1}{n-1}}$$

Abdall (2018)

Then:

Considering that a fraction $\lambda(t)$ of the spin-down power is converted into gamma-rays then the intrinsic luminosity decreases according to:

$$L(t) = \lambda(t) \dot{E}(t) = \lambda \dot{E}_0 \left(1 + \frac{t}{\tau}\right)^{-\gamma} \text{ where } \gamma = -\frac{n+1}{n-1} (\delta + 1);$$

$$\lambda(t) = \lambda \left(\frac{\dot{E}(t)}{\dot{E}_0}\right)^{\delta}$$

a et al, A&A, 612, A2

$$Y(L) = \frac{\overline{r \tau} (\alpha - 1)}{L_{\max}} \left(\frac{L}{L_{\max}}\right)^{-\alpha}$$

Where $\bar{r} = 0.019 \ yr^{-1}$ is the SN's rate and $\alpha = \left(\frac{1}{\gamma} + 1\right)$ therefore for $\gamma = 2$ we have $\alpha = 1.5$. And instead of the parameter *N* we have the spin-down timescale of the Pulsar τ .

Results:

• The total TeV luminosity (1-100 TeV) of the Galaxy:

$$L_{MW} = \frac{N L_{max}}{(2-\alpha)} \left[1 - \left(\frac{L_{min}}{L_{max}}\right)^{\alpha-2} \right] = 1.7^{+0.5}_{-0.4} \times 10^{37} \ erg \ s^{-1}$$

 The flux at Earth produced by all sources (1-100 TeV) (resolved and unresolved) in the H.E.S.S. OW:

$$\phi_{tot} = \frac{L_{MW}}{4\pi \langle E \rangle} \int_{OV} d^3 r \, \rho(r) r^{-2} = 3.8^{+1.0}_{-1.0} \times 10^{-10} cm^{-2} s^{-1}$$
3.25 TeV

• By subtraction we can obtain the contribution of unresolved sources in the H.E.S.S. observational window knowing that: $\phi_{S,res} = 2.3 \times 10^{-10} cm^{-2} s^{-1}$ (cumulative flux due to all 78 sources):

$$\phi_{S,unres} = \phi_{tot} - \phi_{S,res} = 1.4^{+1.0}_{-0.8} \times 10^{-10} \ cm^{-2}s^{-1} \sim 60\% \ \phi_{s,res} \sim 30\% \ \phi_{tot}$$

Likelihood: $\log L = -\mu_{tot} + \sum_{i} \log(\mu_i)$

- μ_{tot} represents the number of expected sources;
- μ_i is the probability to observe an object with coordinates (b_i, l_i) and measured flux ϕ_i .

The source distribution per unit of flux is:

$$u(b,l,\phi) = \int dr \, 4\pi r^4 \rho(r,l,b) Y(4\pi r^2 \langle E \rangle \phi)$$

While is given by:

$$\mu_i = \int d\phi \mu(b_i, l_i, \phi_i) P(\phi_i, \phi, \delta\phi_i)$$

Where $P(\phi_i, \phi, \delta \phi_i)$ respresents the probability that the measured flux ϕ_i is obtained for the real flux ϕ .

We assume a Gaussian.

The $\chi^2 = -2logL$ was used for obtaining the best fit values and the allowed regions for the parameters.

Cumulative distribution:

The flux distribution can be calculated as:

$$\frac{dN}{d\Phi} = \int dr \; 4\pi r^4 \langle E \rangle \; Y(4\pi r^2 \langle E \rangle \Phi) \; \overline{\rho}(r)$$

- $\bar{\rho}(r)$ is the sources spatial distribution integrated over the longitude and latitude intervals probed by H.E.S.S.;
- The above integral is performed in the range $d/\theta_{max} \le r \le D(L, \phi) =$ where $\theta_{max} = 0.7^{\circ}$ is the maximal angular dimension that can be probed by H.E.S.S. and the d is the physical dimension of the source. While $D(L, \phi) = (L/4 \pi \langle E \rangle \phi)^{\frac{1}{2}}$;
- We calculate analytically the flux distribution for the 2 limits cases $L_{max} \rightarrow \infty$ and $L_{max} \rightarrow 0$:

$$\frac{dN}{d\Phi} = R \tau (\alpha - 1) L_{\max}^{\alpha - 1} \Phi^{-\alpha} \int_0^\infty dr (4\pi \langle E \rangle)^{1 - \alpha} r^{4 - 2\alpha} \overline{\rho}(r)$$

$$\frac{dN}{d\Phi} \simeq (4\pi \langle E \rangle)^{1-\alpha} \,\overline{\rho}(0) \,R \,\tau \,(\alpha-1) \,L_{\max}^{\alpha-1} \,\Phi^{-\alpha} \int_0^{D(L_{\max},\Phi)} dr \,r^{4-2\alpha} = \overline{\rho}(0) \,R \,\tau \left(\frac{\alpha-1}{5-2\alpha}\right) \left(\frac{L_{\max}}{4\pi \langle E \rangle}\right)^{\frac{3}{2}} \Phi^{-\frac{5}{2}}$$

Resolved and Unresolved sources:

The resolved flux can be calculated from:

 $\phi_{res} = \int dr \, r^2 \bar{\rho}(r) \int d\phi Y (4\pi r^2 \langle E \rangle \phi)$

 $\phi_{res} = \int dr \, r^2 \bar{\rho}(r) \int dL \, 4\pi r^2 \langle E \rangle Y(L)$

 $\phi_{res} = \phi_{th} \int dr \bar{\rho}(r) \int dL \overline{D}(L)^2 Y(L)$

- $\bar{\rho}(r)$ is the sources spatial distribution integrated over the longitude and latitude intervals probed by H.E.S.S.;
- The above integral is performed in the range $d/\theta_{max} \le r \le D(L, \phi)$ where $\theta_{max} = 0.7^{\circ}$ is the maximal angular dimension that can be probed by H.E.S.S. and the d is the physical dimension of the source. While $D(L, \phi) = (L/4\pi \langle E \rangle \phi)^{\frac{1}{2}}$;
- The luminosity integral is performed in the range $L_{min}(r) \le L \le L_{max}$ where $L_{min} = 4\pi r^2 \langle E \rangle \phi_{th}$

=