

POLYTECHNIQU DE PARIS

- Introduction
- Improved detectors: T2K Near Detector Upgrade
- Improved neutrino interaction models
- Projected constraints with T2K ND Upgrade
- Summary

Jaafar Chakrani (LLR)

NBIA Summer School - Jul 14th, 2022

What do Long-Baseline Experiments measure?

• Mass and flavor states mixing: $\ket{
u_i} = \sum_{lpha=e,\mu, au} U_{lpha i} \ket{
u_lpha}$

$$U = egin{pmatrix} 1 & 0 & 0 \ 0 & c_{23} & s_{23} \ 0 & -s_{23} & c_{23} \end{pmatrix} egin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \ 0 & 1 & 0 \ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{pmatrix} egin{pmatrix} c_{12} & s_{12} & 0 \ -s_{12} & c_{12} & 0 \ 0 & 0 & 1 \end{pmatrix} & s_{ij} = \sin(heta_{ij}) \ s_{ij} = \sin(heta_{ij}) \end{pmatrix}$$

- Long-baseline experiments are sensitive to:
 - Atmospheric parameters $(\theta_{23}, \Delta m^2_{32})$ through $\nu_{\mu}/\bar{\nu}_{\mu}$ disappearance

$$P(\vec{\nu}_{\mu} \to \vec{\nu}_{\mu}) \approx 1 - \sin^2 2\theta_{23} \sin^2 \left(\frac{\Delta m_{32}^2 L}{4E}\right)$$

 $\circ \quad (\delta_{CP}, heta_{23})$ through $u_e/ar{
u}_e$ appearance

$$P(\overleftarrow{\nu}_{\mu} \to \overleftarrow{\nu}_{e}) \approx \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \left(\frac{\Delta m_{32}^{2}L}{4E}\right) (\mp) O(\delta_{CP})$$

3

What do Long-Baseline Experiments measure?

• Mass and flavor states mixing: $\ket{
u_i} = \sum_{lpha=e,\mu, au} U_{lpha i} \ket{
u_lpha}$

$$U = egin{pmatrix} 1 & 0 & 0 \ 0 & c_{23} & s_{23} \ 0 & -s_{23} & c_{23} \end{pmatrix} egin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \ 0 & 1 & 0 \ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{pmatrix} egin{pmatrix} c_{12} & s_{12} & 0 \ -s_{12} & 0 \ 0 \ \end{bmatrix} egin{pmatrix} c_{ij} = c_{ij} = c_{ij} \\ -s_{12} & c_{ij} = c_{ij} \\ 0 \ \end{bmatrix} egin{pmatrix} c_{ij} = c_{ij} = c_{ij} \\ -s_{12} & c_{ij} = c_{ij} \\ 0 \ \end{bmatrix} egin{pmatrix} c_{ij} = c_{ij} \\ -s_{12} & c_{ij} = c_{ij} \\ 0 \ \end{bmatrix} egin{pmatrix} c_{ij} = c_{ij} \\ -s_{ij} = c_{ij} \\ 0 \ \end{bmatrix} egin{pmatrix} c_{ij} = c_{ij} \\ -s_{ij} = c_{ij} \\ 0 \ \end{bmatrix} egin{pmatrix} c_{ij} = c_{ij} \\ -s_{ij} = c_{ij} \\ 0 \ \end{bmatrix} egin{pmatrix} c_{ij} = c_{ij} \\ c_{ij} = c_{ij} \\ 0 \ \end{bmatrix} egin{pmatrix} c_{ij} = c_{ij} \\ c_{ij} \\ c_{ij} = c_{ij} \\ c_{ij} \\ c_{ij} = c_{ij} \\ c$$

- Long-baseline experiments are sensitive to:
 - Atmospheric parameters $(\theta_{23}, \Delta m_{32}^2)$ through $\nu_{\mu}/\bar{\nu}_{\mu}$ disappearance

$$P(\vec{\nu}_{\mu} \to \vec{\nu}_{\mu}) \approx 1 - \sin^2 2\theta_{23} \sin^2 \left(\frac{\Delta m_{32}^2 L}{4E}\right)$$

$$\circ \quad (\delta_{CP}, heta_{23})$$
 through $u_e/ar{
u}_e$ appearance

$$P(\overline{\nu}_{\mu} \to \overline{\nu}_{e}) \approx \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \left(\frac{\Delta m_{32}^{2} L}{4E}\right) (\mp) O(\delta_{CP})$$

2 $s_{ij} = \sin(\theta_{ij})$ 1 If $P(\nu_{\mu} \rightarrow \nu_{e}) \neq P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$ then matter and anti-matter could behave differently in the lepton sector \rightarrow CP violation!

 $\cos(\theta_{ii})$

This could shed light on the matter/anti-matter asymmetry in the Universe

What do Long-Baseline Experiments measure?

- Proton beam on graphite target
- Produced hadrons decay into muon (anti-)neutrinos

J-PARC

- Proton beam on graphite target
- Produced hadrons decay into muon (anti-)neutrinos

J-PARC

Near detector complex

J-PARC

- Measure unoscillated neutrino flux:
 - Electron neutrino and wrong-sign contaminations
 - Neutrino-nucleus interactions
- \rightarrow Reduce systematic uncertainties

- Far/Near ratio does not fully cancel systematic uncertainties:
 - Flux model different at ND vs. FD due to geometry and oscillation
 - Different detectors, i.e. different acceptance, efficiencies, targets...
 - Mainly muon neutrinos at ND interacting with CH → use model to infer interactions with electron neutrino interactions and with H2O

• To measure the oscillation parameters, the **neutrino energy** needs to be determined precisely

$$P(\overline{\nu}_{\mu} \to \overline{\nu}_{e}) \approx \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \left(\frac{\Delta m_{32}^{2}L}{E}\right) (\mp) O(\delta_{CP})$$

 An accurate reconstruction of the neutrino energy from the outgoing particles requires a precise neutrino-nucleus interaction model

• To measure the oscillation parameters, the **neutrino energy** needs to be determined precisely

$$P(\vec{\nu}_{\mu} \to \vec{\nu}_{e}) \approx \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \left(\frac{\Delta m_{32}^{2}L}{E}\right) (\mp) O(\delta_{CP})$$

 An accurate reconstruction of the neutrino energy from the outgoing particles requires a precise neutrino-nucleus interaction model

Improved detectors: T2K Near Detector Upgrade

Jaafar Chakrani (LLR)

NBIA Summer School - Jul 14th, 2022

Limitations of current ND280

- Non-isotropic efficiency (unlike Super-Kamiokande)
- High momentum proton threshold (~450 MeV/c)
- For the oscillation analysis, neutrino interactions are characterized in **muon kinematics only**

ND280 Upgrade

- New high-angle TPCs
- New Time Of Flight detector
- Super-FGD: 2.10⁶ 1 cm³ scintillator cubes

What to expect:

- Fully active target
- 4π acceptance for charged particles
- Lower proton momentum threshold (~300 MeV/c)
- Neutron detection

Neutrino interactions

- In order to estimate neutrino energy, a good understanding of neutrino-nucleus interactions is necessary
- CCQE is the dominant interaction in T2K/Hyper-Kamiokande, and is a significant mode in NOvA, MINERvA and DUNE

Neutrino interactions

- In order to estimate neutrino energy, a good understanding of neutrino-nucleus interactions is necessary
- CCQE is the dominant interaction in T2K/Hyper-Kamiokande, and is a significant mode in NOvA, MINERvA and DUNE

Initial state nucleons

- Neutrinos can interact with nucleons bound within nuclei (Carbon or Oxygen)
- Initial state nucleons are non-static: Fermi motion
- How to model this?

- Neutrinos can interact with nucleons bound within nuclei (Carbon or Oxygen)
- Initial state nucleons are non-static: Fermi motion
- How to model this?

Spectral Function (SF)

The probability of removing of a nucleon with momentum p_m and leaving residual nucleus with excitation energy E_m

$$P(p_m, E_m) = P_{MF}(p_m, E_m) + P_{corr}(p_m, E_m)$$

Independent nucleons, moving in a mean-field potential within the shell-model picture → built from (e,e'p) data (~80%) → One outgoing nucleon is produced

- Neutrinos can interact with nucleons bound within nuclei (Carbon or Oxygen)
- Initial state nucleons are non-static: Fermi motion
- How to model this?

Spectral Function (SF)

The probability of removing of a nucleon with momentum p_m and leaving residual nucleus with excitation energy E_m

$$P(p_m, E_m) = P_{MF}(p_m, E_m) + P_{corr}(p_m, E_m)$$

Independent nucleons, moving in a mean-field potential within the shell-model picture → built from (e,e'p) data (~80%) → One outgoing nucleon is produced pairs of strongly-correlated nucleons (~20%)

$\rightarrow \mbox{Two outgoing nucleons are} \\ \mbox{produced}$

NBIA Summer School - Jul 14th, 2022

NBIA Summer School - Jul 14th, 2022

Expected improvement: Carbon SF parameters

FGD1+2 : Current ND280 (with muon kinematics only)

SFGD+FGD1+2 μ only : ND280 Upgrade using muon kinematics only

--- SFGD+FGD1+2 μ +N : ND280 Upgrade using also nucleon information (when reconstructed)

Expected improvement: Carbon SF parameters

- Significant improvement with respect to the current ND configuration
- The use of nucleon information allows better constraints

------ FGD1+2 : Current ND280 (with muon kinematics only)

SFGD+FGD1+2 μ only : ND280 Upgrade using muon kinematics only

--- SFGD+FGD1+2 μ+N: ND280 Upgrade using also nucleon information (when reconstructed)

NBIA Summer School - Jul 14th, 2022

- T2K is currently upgrading its near detector to reduce systematic uncertainties and increase the sensitivity to the CP-violating phase
- The T2K ND Upgrade will allow for an improved reconstruction of low-momentum protons and even neutron detection
- The impact of the ND Upgrade on constraining the neutrino interaction model is estimated → Next is to check the impact on the sensitivity to the oscillation parameters

NBIA Summer School - Jul 14th, 2022

Initial state nucleons: Fermi gas models

- Neutrinos can interact with nucleons bound within nuclei (Carbon, Oxygen, Argon...)
- Initial state nucleons are non-static: Fermi motion
- How to model this?

Fermi gas

Relativistic Fermi Gas (RFG)

Nucleons move freely in a constant binding energy within the nuclear volume

$$p_F = \left(3\pi^2
ho rac{Z}{A}
ight)^{1/3}$$

Local Fermi Gas (LFG)

The nucleus is described with the local density approximation

$$p_F(r) = \left(3\pi^2
ho(r)rac{Z}{A}
ight)^{1/3}$$

protons

neutrons

neutrons potential

potentia

 E_F^p

T. Golan

 E_F^n

 E_B

Neutron detection in the Super-FGD

- In the Super-FGD, we can look for neutrons via their re-interaction within the detector
- If the path is long enough (> 20 cm), the neutron energy can be measured using time-of-flight with a resolution between 15% and 30%
- A neutron beam test was performed at LANL, results to be published soon!

Systematic uncertainties in CCQE interactions POS(NUFact2021)235 38

Change the contribution of SRC

This parameterisation was implemented in NUISANCE and applied on NEUT 5.4.0 neutrino event generator (arxiv:2106.15809)

Future Oscillation Analysis?

- Currently, T2K uses only lepton kinematics for the Oscillation Analysis (OA)
- With the ND280 Upgrade, we expect to obtain more precise measurements of the nucleons coming out from neutrino interactions → what will the impact be on the OA?
- With the nucleon information, we can introduce samples with new observables:
 - Transverse momentum imbalance
 - Visible energy:
 - $E_{
 m vis} = E_{\mu} + T_p$ for neutrino interactions
 - $E_{\rm vis} = E_{\mu} + T_n$ for antineutrino interactions
- We use T2K projections of POT assuming a scenario where nu and anti-nu beam modes are alternated on a yearly basis

Nucleon bound within nuclear target

- Need the reconstruction of both muons and nucleons
- Probe nuclear effects (Fermi motion, FSI, ...)

• The bulk of the distribution is sensitive to the initial state nucleon momentum

- The bulk of the distribution is sensitive to the initial state nucleon momentum
- The tail of the distribution is sensitive to FSI, SRC, 2p2h

- The bulk of the distribution is sensitive to the initial state nucleon momentum
- The tail of the distribution is sensitive to FSI, SRC, 2p2h
- None of the models describe well the data...

