CORSIKA simulation for massive quarks in hadronic showers

Bhanu P. Pant, Anil K. Pradhan and Reetanjali Moharana

Department of Physics, Indian Institute of Technology Jodhpur, India. Email: pant.3@iitj.ac.in

NBIA Summer School on Neutrinos - 2022 Copenhagen, July 13, 2022

GRAPES-3 experiment in Ooty, India

- Indian Japanese collaboration with nearly 20 institutions
- Located at Ooty, Tamil Nadu, India (~2200 m altitude)
- ~400 plastic scintillator detectors (each 1 m² area) with 8 m detectors separation
- Spread over 25000 m²
- Energy sensitivity is in TeV PeV range

For the GRAPES-3 collaboration

- 560 m² area muon telescope (each 35 m²)
- 4 stations, each with 4 modules
- Each module 4 layers, each layer 58 PRCs
- 3712 PRCs (6m x 6m x 0.1m)
- Energy threshold = 1 sec(theta) GeV

Work in progress

Extensive air shower (EAS)

Proton primary at 10¹⁵ eV 10⁶ secondaries at ground 80% photons 18% electrons/positrons 1.7% muons 0.3% hadrons

Charmed particles in an EAS

- Mostly pions and kaons are produced in an EAS
- Production is low : avg. 1-2 charmed hadrons in a p-N collision at 10¹⁸ eV (lab)
- Still important due to increased production in high-energy muons and neutrinos
- As an example:

 $\begin{array}{lll} D^{+} \ \to \ \overline{K}^{0} \ \mu^{+} \nu_{\mu} & (\ 7\% \ B.R.) \\ \\ D^{0} \ \to \ K^{-} \ \mu^{+} \nu_{\mu} & (\ 3.2\% \ B.R.) \end{array}$

Muons and neutrinos stemming from these charmed meson decays are expected at ground

CORSIKA – EAS simulation

- Stands for COsmic Ray SImulations for Kascade
- First developed in 1989 to perform simulations for the KASCADE experiment
- Detailed Monte-Carlo program for an extensive air shower (EAS) simulation
- Allows simulation of decay & interaction of particles upto 10²⁰ eV
- Provides energy, location, direction and arrival times of all secondary particles at the selected observation level
- Several hadronic interaction models (QGSJET, SIBYLL, FLUKA,...)
- Electromagnetic interactions via NKG and EGS4

CORSIKA simulation parameters

- CORSIKA v7.7410 is used for the extensive air shower simulation
- High energy hadronic interaction model : SIBYLL 2.3d
- Low energy hadronic interaction model : GHEISHA 2002d
- Simulation parameters are:

<u>Parameter</u>	<u>Value</u>
Primary particle	Proton
Primary energy	$10^{18} - 10^{19.2} eV$
Spectral index	-2.7
Zenith angle	20 degrees
Observation level	Sea level
First interaction (a.s.l)	1 km

CORSIKA charm production

- Charm particles production is ON by default in SIBYLL 2.3d
- SIBCHM keyword in input steering card:
 - TRUE to switch ON
 - FALSE to switch OFF
- With CHARM option :
 - ON decay+propagation both
 - OFF only decay and will be not propagated
- Events are generated with :
 - CHARM selected (decay + propagation) and
 - 'SIBCHM: True ' and 'SIBCHM: False', alternatively

CORSIKA events generation

- Energy range: 10^{18.0} 10^{19.2} is divided into six logarithmic bins of interval 0.2
- Equal events are generated for each bin with both charm production ON and OFF

Energy bin	<u>Events</u>
10 ¹⁸ – 10 ^{18.2} eV	100
$10^{18.2} - 10^{18.4} eV$	46
10 ^{18.4} – 10 ^{18.6} eV	20
$10^{18.6} - 10^{18.8} eV$	10
10 ^{18.8} – 10 ^{19.0} eV	4
10 ^{19.0} – 10 ^{19.2} eV	2

High performance workstation 2 Intel Xeon Gold cpu's 112 cores 128 GB RAM 64 TB storage

Energy distribution of electrons+photons

Summary

- CORSIKA simulation is done for UHE protons
- EAS content of muons, electrons and photons are studied
- Found increase in high energy muons and neutrinos content

What's Next?

- Use other primary particles (He, N, Al,...)
- Other hadronic interaction models
- Inclusion of break in the spectral index
- Possibility to include other decay channels

Thank You