

Prospects of neutrino oscillation physics with JUNO

Beatrice Jelmini International PhD Summer School on Neutrinos: Here, There & Everywhere Copenhagen, DK, 12/07/2022 beatrice.jelmini@pd.infn.it

Jiangmen Underground Neutrino Observatory

~650 m underground Central Detector: acrylic spherical vessel filled with 20 kt of liquid scintillator

	Target mass [ton]	Energy resolution	Light yield [PE/MeV]
Daya Bay	20 (x8)	8%/√E	160
Borexino	300	5%/√E	500
KamLAND	1000	6%/√E	250
JUNO*	20 000	3%/ \sqrt{E} (requested)	>1300

*values from Prog. Part. Nucl. Phys. 123 (2022) 103927

Extensive neutrino physics & astrophysics program

- Reactor $\overline{\nu}_e$: 60 IBD/day
- Solar ν: O(100)/year
- Atmospheric v: O(100)/year
- Geo-v: ~400/year
- DSNB: 2-4 IBD/year
- SN burst: 5000 IBD + 2300 ES in 10 s (@ 10 kpc)

12/07/22

Jiangmen Underground Neutrino Observatory

~650 m underground **Central Detector:** acrylic spherical vessel filled with 20 kt of **liquid scintillator**

	Target mass [ton]	Energy resolution	Light yield [PE/MeV]
Daya Bay	20 (x8)	8%/√E	160
Borexino	300	5%/√E	500
KamLAND	1000	6%/√E	250
JUNO*	20 000	3%/ $√$ E (requested)	>1300

*values from Prog. Part. Nucl. Phys. 123 (2022) 103927

Extensive neutrino physics & astrophysics program

- Reactor $\overline{\nu}_e$: 60 IBD/day
- Solar ν: O(100)/year
- Atmospheric v: O(100)/year
- Geo-v: ~400/year
- DSNB: 2-4 IBD/year
- SN burst: 5000 IBD + 2300 ES in 10 s (@ 10 kpc)

12/07/22

The JUNO site

JUNO is currently under construction in southern China Data taking is expected to begin in 2023

Kaiping, Jiangmen, Guangdong, southern China

The JUNO site

JUNO is currently under construction in southern China Data taking is expected to begin in 2023

Kaiping, Jiangmen, Guangdong, southern China

Reactor spectrum: isotopic spectra

Electron antineutrinos are produced from **beta decays of fission products**

Fission fraction of isotope i, f_i : # of fissions from *i*-th isotope / total # of fissions

 f_{235} : f_{238} : f_{239} : $f_{241} = 0.58$: 0.07: 0.30: 0.05 (for JUNO)

Reactor spectrum: isotopic spectra

 f_{235} : f_{238} : f_{239} : $f_{241} = 0.58$: 0.07: 0.30: 0.05 (for JUNO)

 S_i^{iso} can be parametrized with the exponential of a polynomial of 5th order

*) <u>arXiv:1106.0687</u>; **) <u>arXiv:1101.2663v3</u>

12/07/22

Beatrice Jelmini - Neutrino Oscillation Physics with JUNO

Reactor spectrum: isotopic spectra – TAO

Fission fraction of isotope i, f_i : # of fissions from *i*-th isotope / total # of fissions

 f_{235} : f_{238} : f_{239} : $f_{241} = 0.58$: 0.07: 0.30: 0.05 (for JUNO)

2.8 ton gadolinium-doped liquid scintillator
4500 PEs/MeV & energy resolution < 2% @ 1 MeV
~ 30 meter from a reactor core
Goals: provide JUNO with a reference spectrum +
sterile neutrinos physics
Data taking starts in 2023

Inverse Beta Decay (IBD)

Electron antineutrinos detected via Inverse Beta Decay (IBD)

 $\overline{\nu}_e + p \rightarrow n + e^+$

IBD threshold: $E_{\nu} > 1.806 \text{ MeV}$

12/07/22

Beatrice Jelmini - Neutrino Oscillation Physics with JUNO

Inverse Beta Decay (IBD)

Electron antineutrinos detected via Inverse Beta Decay (IBD)

$$\overline{\nu}_e + p \rightarrow n + e^+$$

IBD threshold: $E_{\nu} > 1.806 \text{ MeV}$

IBD cross section x isotopic spectrum = reactor spectrum

12/07/22

Beatrice Jelmini - Neutrino Oscillation Physics with JUNO

Neutrino oscillations @ JUNO

Electron antineutrino survival probability:

 $P(\overline{\nu}_e \to \overline{\nu}_e) = 1 - \sin^2 2\theta_{13} (\sin^2 \theta_{12} \sin^2 \Delta_{32} + \cos^2 \theta_{12} \sin^2 \Delta_{31}) - \sin^2 2\theta_{12} \cos^4 \theta_{13} \sin^2 \Delta_{21}$ $\Delta_{ij} = \frac{\Delta m_{ij}^2 L}{4E} \qquad \text{"fast" or atmospheric oscillations} \qquad \text{"slow" or solar oscillations}$

JUNO will be the first to see both oscillation modes simultaneously

Neutrino oscillations @ JUNO

Electron antineutrino survival probability:

 $P(\overline{\nu}_e \to \overline{\nu}_e) = 1 - \sin^2 2\theta_{13} (\sin^2 \theta_{12} \sin^2 \Delta_{32} + \cos^2 \theta_{12} \sin^2 \Delta_{31}) - \sin^2 2\theta_{12} \cos^4 \theta_{13} \sin^2 \Delta_{21}$ $\Delta_{ij} = \frac{\Delta m_{ij}^2 L}{4E} \qquad \text{"fast" or atmospheric oscillations} \qquad \text{"slow" or solar oscillations}$

Mass ordering sensitivity

$$P(\overline{\nu}_e \to \overline{\nu}_e) = 1 - \sin^2 2\theta_{13} (\sin^2 \theta_{12} \sin^2 \Delta_{32} + \cos^2 \theta_{12} \sin^2 \Delta_{31}) - \sin^2 2\theta_{12} \cos^4 \theta_{13} \sin^2 \Delta_{21}$$
$$\Delta_{ij} = \frac{\Delta m_{ij}^2 L}{4E}$$

$$\Delta m_{21}^2 > 0$$

 $\Delta m_{31}^2 > 0 \text{ or } < 0?$

Two mass orderings are out of phase

Shape analysis to distinguish between the two orderings

Mass ordering sensitivity

$$P(\overline{\nu}_e \to \overline{\nu}_e) = 1 - \sin^2 2\theta_{13} (\sin^2 \theta_{12} \sin^2 \Delta_{32} + \cos^2 \theta_{12} \sin^2 \Delta_{31}) - \sin^2 2\theta_{12} \cos^4 \theta_{13} \sin^2 \Delta_{21}$$
$$\Delta_{ij} = \frac{\Delta m_{ij}^2 L}{4E}$$

Two mass orderings are out of phase

Shape analysis to distinguish between the two orderings

Mass ordering determination expected at 3σ in approximately 6 years

Precision measurement of oscillation parameters

 $P(\overline{\nu}_e \rightarrow \overline{\nu}_e) = 1 - \sin^2 2\theta_{13} (\sin^2 \theta_{12} \sin^2 \Delta_{32} + \cos^2 \theta_{12} \sin^2 \Delta_{31}) - \sin^2 2\theta_{12} \cos^4 \theta_{13} \sin^2 \Delta_{21}$

arXiv:2204.13249

No oscillations

Parameters:

- Mass splittings: Δm_{31}^2 , Δm_{21}^2
- Mixing angles: θ_{13} , θ_{12}
- Independent of θ_{23} , δ_{CP}

TAO uncertainties propagated to JUNO

 Δm_{21}^2

 $\Delta_{ij} = \frac{\Delta m_{ij}^2 L}{\Lambda \Gamma}$

100 F

80

60

40

20

°ò

Events per 1 MeV

×10³

6 years of data taking

Precision measurement of oscillation parameters

 $P(\overline{\nu}_e \rightarrow \overline{\nu}_e) = 1 - \sin^2 2\theta_{13} (\sin^2 \theta_{12} \sin^2 \Delta_{32} + \cos^2 \theta_{12} \sin^2 \Delta_{31}) - \sin^2 2\theta_{12} \cos^4 \theta_{13} \sin^2 \Delta_{21}$

arXiv:2204.13249

Parameters:

- Mass splittings: Δm_{31}^2 , Δm_{21}^2
- Mixing angles: θ_{13}, θ_{12}

 $\Delta_{ij} = \frac{\Delta m_{ij}^2 L}{\Lambda \Gamma}$

Events per 1 MeV

×10³

Conclusions

- JUNO will be the first experiment to simultaneously see both fast and slow oscillation modes
- 3 oscillation parameters measured with sub-percent precision in ${\sim}1\,\text{year}$
- Mass ordering determination at 3σ in approximately 6 years
- Data taking starts in 2023, stay tuned!

Thank you!

The 15th JUNO Collaboration Meeting January 13-17, 2020, Guangxi University, Nanning

Backup

Reactor spectrum: isotopic spectra

Electron antineutrinos are produced from **beta decays of fission products**

Fission fraction of isotope i, f_i : # of fissions from *i*-th isotope / total # of fissions

 f_{235} : f_{238} : f_{239} : $f_{241} = 0.58$: 0.07: 0.30: 0.05 (for JUNO)

Standard approach: use spectra from Huber^{*)} and Mueller^{**)}

Conversion method: Measured beta spectra from the 1980s @ ILL, fitted, then converted to antineutrino spectra ²³⁵U, ²³⁹Pu, ²⁴¹Pu only No ²³⁸U

> Ab initio (summation) method: Theoretical calculation of antineutrino spectra, relies on nuclear databases ²³⁸U only

^{*)} arXiv:1106.0687; ^{**)} arXiv:1101.2663v3

12/07/22

Inverse Beta Decay (IBD)

Backgrounds

Background	Rate (day^{-1})	Rate Uncertainty (%)	Shape Uncertainty (%)
Geoneutrinos	1.2	30	5
World reactors	1.0	2	5
Accidentals	0.8	1	negligible
$^9\mathrm{Li}/^8\mathrm{He}$	0.8	20	10
Atmospheric neutrinos	0.16	50	50
Fast neutrons	0.1	100	20
$^{13}C(\alpha,n)^{16}O$	0.05	50	50

Beatrice Jelmini - Neutrino Oscillation Physics with JUNO

Mass Ordering sensitivity

Normal Inverted m_3^2 m_2^2 solar: $7.5 \times 10^{-5} \text{ eV}^2$ m_1^2 atmospheric: $2.4 \times 10^{-3} \text{ eV}^2$ atmospheric: m_2^2 $2.4 \times 10^{-3} \text{ eV}^2$ solar: $7.5 \times 10^{-5} \text{ eV}^2$ m_1^2 m_2^2 ν... v, ν_{τ}

Two possible Mass Orderings:

 $|\Delta \chi^2_{\rm min}|$ is the test statistic used to discriminate between the two orderings: $\sqrt{|\Delta \chi^2_{\rm min}|} = \#\sigma$

JUNO + TAO combined analysis

Energy resolution

Effective energy resolution

$$\tilde{a} = \sqrt{(a)^2 + (1.6 \cdot b)^2 + \left(\frac{c}{1.6}\right)^2}$$

Introduced to easily display the relation between the sensitivity to the mass ordering and energy resolution

 $|\Delta \chi^2_{\rm min}|$ is the test static used to discriminate between the two orderings

$$\left|\Delta\chi^2_{\rm min}\right| = \left|\chi^2_{\rm min}(\rm NO) - \chi^2_{\rm min}(\rm IO)\right|$$

Light yield

- High phocathode coverage: 78%
- High PMT Photon Detection Efficiency (PDE): $\sim 30\%$
 - PDE = quantum efficiency x collection efficiency
- High liquid scintillator transparency: absorption length > 20 m
- 1345 PE/MeV
- Increased by about 22% from recent simulations

20-inch Large-PMT (LPMT) system

Primary calorimetric system: 17612 20-inch PMTs

Photocathode coverage: 75.2%

High photon detection efficiency

- Hamamatsu dynode PMTs: 28.1%
- NNTV MCP* PMTs: 28.9%

Low dark count rate (DCR) Dynamic range: 0 - 100 PE

Waveform acquisition and charge reconstruction

Beatrice Jelmini - Neutrino Oscillation Physics with JUNO

JUNO calibration strategy

Calibration of liquid scintillator nonlinearity

Multiple-source campaign: up to ~6 MeV + cosmogenic background ¹²B: up to 12 MeV

Source	Type	Radiation
^{137}Cs	γ	$0.662 { m ~MeV}$
$^{54}\mathrm{Mn}$	γ	$0.835~{ m MeV}$
$^{60}\mathrm{Co}$	γ	$1.173 + 1.333 { m ~MeV}$
$^{40}\mathrm{K}$	γ	$1.461 \mathrm{MeV}$
$^{68}\mathrm{Ge}$	e^+	annihilation $0.511 + 0.511$ MeV
241 Am-Be	n, γ	neutron + $4.43 \text{ MeV} (^{12}\text{C}^*)$
241 Am- 13 C	n, γ	neutron + 6.13 MeV $(^{16}O^*)$
$(\mathrm{n},\gamma)\mathrm{p}$	γ	$2.22 \mathrm{MeV}$
$(\mathrm{n},\gamma)^{12}\mathrm{C}$	γ	$4.94 { m ~MeV} { m or} 3.68 + 1.26 { m ~MeV}$

Non-Uniformity: Multiple-positional calibration

azimuthal symmetry is assumed

JHEP 03, 004 (2021)