Search for high-energy neutrinos from U/LIRGs in the Great Observatories All-Sky LIRG Survey (GOALS)

Speaker: Yarno Merckx

VUB-GOALS collaboration: Krijn de Vries, Nick van Eijndhoven, Pablo Correa, Kumiko Kotera, and George Privon

U/LIRGs

- (Ultra-)Luminous Infrared Galaxies (= U/LIRGs)
 ⇒ extreme IR luminosity:
 - $\circ \qquad \text{LIRG: } 10^{11} \text{ L}_{_{\odot}} \leqslant \text{L}_{\text{IR}} < 10^{12} \text{ L}_{_{\odot}}$
 - $\circ \qquad \textbf{ULIRG: } L_{IR} \ge 10^{12} L_{\odot}$

• Local U/LIRGs are primarily mergers and interactions between gas-rich spiral galaxies

gas & dust flow towards nuclear regions during merger

X-ray: NASA/CXC//K. Anastasopoulou et al, NASA/NuSTAR/GSFC/A. Ptak et al; Optical: NASA/STScl

B: Obscured AGN

 X-ray observations of B reveal strongly obscured AGN activity

 Gas accretion onto supermassive black hole induces AGN activity

• **Cosmic-ray acceleration** in relativistic jets and/or accretion disk corona

VIVERSITEIT

⊆(*€*)∧∟⊆

IceCube analysis U/LIRGs

- Recent ULIRG search with IceCube
 ⇒ no significant excess over background
- LIRGs:
 - Less luminous but much more numerous
 - Similar conditions as ULIRGs
 - Start at ~ 20 Mpc vs. closest ULIRGs at ~ 80 Mpc
- My research: investigate U/LIRG contribution to IceCube neutrino flux

Great Observatories All-Sky LIRG Survey (GOALS)¹

- Multi-wavelength survey of 202 nearest and brightest U/LIRGs:
 - Cover all merger stages
 - Pure starbursts, AGN, and composite systems

¹goals.ipac.caltech.edu

LIRG NGC 6240

G⊘∆LS

Research Foundation Flanders pening new horizons

$$F_{\nu} = F_{\nu}(\mathcal{R}_{\mathrm{SN}}, \alpha_{SN}, p_{max}, n_{\mathrm{ism}}, v_{\mathrm{gwind}}, H_{\mathrm{SBR}}, D_L)$$

...

. . .

CR injection:

• CR injection rate by supernovae (Q_p)

$$Q_p$$
): $Q_p \propto p^{-lpha_{\rm SN}} \cdot e^{-rac{p}{p_{max}}}$

$$CR$$
 injection CR propagation $F_{
u} = F_{
u}(\mathcal{R}_{\mathrm{SN}}, \alpha_{SN}, p_{max}, n_{\mathrm{ism}}, v_{\mathrm{gwind}}, H_{\mathrm{SBR}}, D_L)$

CR injection:

• CR injection rate by supernovae (Q_p) :

$$Q_p \propto p^{-\alpha_{\rm SN}} \cdot e^{-\frac{p}{p_{max}}} \xrightarrow{\text{normalized to}} \left(\frac{\mathcal{R}_{\rm SN}}{\text{supernova rate}}\right) = \Lambda_{\rm IR} \cdot \left(\frac{\left[1 - \langle \alpha_{\rm AGN} \rangle\right] \cdot L_{\rm IR}}{\text{erg s}^{-1}}\right)$$

- Calibrate L_{IR} to supernova rate (\Re_{SN})
 - GOALS provides L_{IR} for individual galaxies

$$F_{\nu} = F_{\nu}(\mathcal{R}_{\mathrm{SN}}, \alpha_{SN}, p_{max}, n_{\mathrm{ism}}, v_{\mathrm{gwind}}, H_{\mathrm{SBR}}, D_L)$$

(*

Yarno Merckx | 7

CR injection:

• *CR* injection rate by supernovae (Q_p) :

- Calibrate L_{IR} to supernova rate (\Re_{SN})
 - GOALS provides L_{IR} for individual galaxies
- Correct for AGN contribution to L_{IR} via $<\alpha_{AGN}>$
 - Available for all galaxies with individual L_{IR}

CR injection CR propagation
$$F_{\nu} = F_{\nu}(\mathcal{R}_{\rm SN}, \alpha_{SN}, p_{max}) n_{\rm ism}, v_{\rm gwind}, H_{\rm SBR}, D_L$$

CR propagation & interaction:

- Total residence time of CR in starburst region (τ) determined by:
 - **pp-collisions** driven by ISM density (n_{ism}) : $\tau_{pp} \propto n^{-1}_{ism}$
 - Spatial diffusion: $\tau_{diff} \propto H^2_{SBR}/D$
 - Advection via galactic-scale outflow: $\tau_{gwind} \propto H_{SBR}/v_{gwind}$

CR injection CR propagation
$$F_{\nu} = F_{\nu} (\mathcal{R}_{SN}, \alpha_{SN}, p_{max}, n_{ism}, v_{gwind}, H_{SBR}, D_L$$

CR propagation & interaction:

- Total residence time of CR in starburst region (τ) determined by:
 - **pp-collisions** driven by ISM density (n_{ism}) : $\tau_{pp} \propto n^{-1}_{ism}$
 - Spatial diffusion: $\tau_{diff} \propto H^2_{SBR}/D$
 - Advection via galactic-scale outflow: $\tau_{gwind} \propto H_{SBR} / v_{gwind}$

v efficiently produced if *pp*-collisions dominate over particle loss

CR injection CR propagation
$$F_{\nu} = F_{\nu} (\mathcal{R}_{\rm SN}, \alpha_{SN}, p_{max}, n_{\rm ism}, v_{\rm gwind}, H_{\rm SBR}, D_L)$$

CR propagation & interaction:

• Efficiency neutrino production quantified by C

- X: n_{ism} and v_{gwind} Arp 299-A from radio and IR observations
- $C = 0.88 \Rightarrow$ Arp 299-A is a **calorimeter**

CECUBE

 $F_{\nu} = F_{\nu}(\mathcal{R}_{\mathrm{SN}}, \alpha_{SN}, p_{max}, n_{\mathrm{ism}}, v_{\mathrm{gwind}}, H_{\mathrm{SBR}}, D_L)$

Outlook:

- Apply framework to all GOALS galaxies
- Select and perform IceCube analysis based on results

Questions

Speaker: Yarno Merckx

VUB-GOALS collaboration: Krijn de Vries, Nick van Eijndhoven, Pablo Correa, Kumiko Kotera, and George Privon

