

lceCube

VILLUM FONDEN

Markus Ahlers (NBI) Danish PANP Meeting 2022

Multi-Messenger Paradigm

Acceleration of **cosmic rays** especially in the aftermath of cataclysmic events, sometimes visible in **gravitational waves**.

Secondary **neutrinos** and **gamma-rays** from pion decays:

 $\pi^{+} \rightarrow \mu^{+} + \nu_{\mu} \qquad \pi^{0} \rightarrow \gamma + \gamma$ $\downarrow e^{+} + \nu_{e} + \overline{\nu}_{\mu}$

Markus Ahlers (NBI)

Neutrino Astronomy

Unique abilities of **cosmic neutrinos**:

no deflection in magnetic fields (unlike cosmic rays)

coincident with photons and gravitational waves

no absorption in cosmic backgrounds (unlike gamma-rays)

smoking-gun of unknown sources of cosmic rays

BUT, very difficult to detect!

Markus Ahlers (NBI)

Optical Cherenkov Telescopes

IceCube Observatory

- Giga-ton optical Cherenkov telescope at the South Pole
- Optical modules attached to strings instrumenting 1 km³
 of clear glacial ice
- Collaboration of more than 300 scientists at 56 institutions in 14 countries.
- Research focus @ NBI :
 - * low-energy event selections, reconstructions & systematics
 - * tau neutrino appearance
 - * multi-messenger analyses
 - * IceCube Upgrade
 - \star non-standard ν phenomena

Neutrino Selections

Markus Ahlers (NBI)

High-Energy Neutrinos

First observation of high-energy astrophysical neutrinos by IceCube in 2013.

"track event" (e.g. ν_{μ} CC interactions)

"cascade event" (e.g. NC interactions)

(colours indicate arrival time of Cherenkov photons from **early** to **late**)

Diffuse TeV-PeV Neutrinos

Status of Neutrino Astronomy

No significant steady or transient emission from known Galactic or extragalactic high-energy sources, but **several interesting candidates.**

Cosmic neutrinos visible via their oscillation-averaged flavour.

Fraction of $\nu_{\rm e}$

[IceCube, arXiv:2011.03561]

tau neutrino candidate

- Tau neutrino charged current interactions can produce delayed hadronic cascades from tau decays.
- Arrival time of Cherenkov photons is visible in individual DOMs.

Markus Ahlers (NBI)

Atmospheric Neutrino Oscillations

- Muon neutrino disappearance in the 1-100 GeV range allows for precision measurement of atmospheric mixing parameters.
- IceCube @ NBI leads the current generation of oscillation analyses with DeepCore data.

[IceCube, PRL 120 (2018) 7]

Markus Ahlers (NBI)

Tau Neutrino Appearance

- 86% of ν_{τ} global data from IceCube
- High statistics of ν_{τ} allow to make precision tests of the 3-flavour oscillation paradigm.

ν^{CC}

v

 10^{1}

L/E (km/GeV)

 Current analyses efforts led by NBI will increase the data by a factor 4-5.

v

10⁰

3500

3000

2500

1500

1000

500

Events 2000

Machine-Learning Tools

- Improved angular and energy reconstructions are a key to improve sensitivities of neutrino telescopes.
- Machine-learning tools, e.g. based on graph neural networks are paving the way for future analyses with DeepCore data and IceCube-Upgrade.

GraphNeT

Graph Neural Networks for

https://github.com/icecube/graphnet/

Neutrino Telescope Event Reconstruction

Angular reconstructions with **GraphNet** [courtesy of **Troels C. Petersen** *et al.*]

Markus Ahlers (NBI)

Outlook: IceCube Upgrade

- 7 new strings in the DeepCore region (~20m inter-string spacing)
- New sensor designs, optimized for ease of deployment, light sensitivity & effective area
- New calibration devices,

incorporating les decade of IceCuł efforts

- In parallel, **IceTo enhancements** (s radio antennas) f
- Aim: deploymen[•]

Markus Ahlers (NBI)

Outlook: IceCube Upgrade

Improved low-energy detection efficiency with IceCube Upgrade [courtesy of **Tom Stuttard**]

Outlook: IceCube Upgrade

- Precision measurement of atmospheric neutrino oscillations and tau neutrino appearance
- Improved energy and angular reconstructions of IceCube data

Vision: IceCube-Gen2

- Multi-component facility (low- and high-energy & multi-messenger)
- In-ice optical Cherenkov array with 120 strings and 240m spacing
- Surface array (scintillators & radio antennas) for PeV-EeV CRs & veto
- Askaryan radio array for >10PeV neutrino detection

Vision: IceCube-Gen2

[IceCube-Gen2 White Paper, arXiv:2008.04323]

Summary

- Neutrino astronomy has reached an important milestone by the discovery of an **isotropic flux of high-energy (TeV-PeV) neutrinos.**
- So far, **no significant** point sources, but many **interesting candidates**. (TXS 0506+056, NGC 1068,TDE AT2019dsg, ...)
- In parallel, neutrino telescopes are potent and unique **particle physics laboratories.**

(high statistics, broad energy range, broad range of baselines, all flavour, ...)

- Broad neutrino oscillation program with competitive atmospheric mixing parameter measurements and world-leading ν_{τ} data.
- Development of **neutrino telescopes for the next decade** with complementary FoV and/or increased sensitivity and energy coverage.

(IceCube-Upgrade, Baikal-GVD, KM3NeT, P-ONE, RNO-G, IceCube-Gen2, ...)

Backup Slides

Isotropic Diffuse Flux

Neutrino Mixing

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} e^{i\frac{\alpha_1}{2}} & 0 & 0 \\ 0 & e^{i\frac{\alpha_2}{2}} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

"atmospheric" CP Dirac phase "solar" CP Majorana mixing phases

flavour transition probability (in vacuum):

$$P_{\nu_{\alpha} \to \nu_{\beta}}(\mathscr{\ell}) = \sum_{i=1}^{3} \sum_{j=1}^{3} U_{\alpha i} U^*_{\beta i} U^*_{\alpha j} U_{\beta j} \exp\left(i\frac{\Delta m_{ij}^2 \mathscr{\ell}}{2E_{\nu}}\right)$$

notation: $c_{ij} \equiv \cos \theta_{ij} \& s_{ij} \equiv \sin \theta_{ij} \& \Delta m_{ij}^2 \equiv m_i^2 - m_j^2$

Search for Neutrino Sources

Northern Hot Spot

[Murase, Kimura & Meszaros, PRL 125 (2020)]

Realtime Neutrino Alerts

Low-latency (<1min) public neutrino alert system established in April 2016.

- ✦ Gold alerts: ~10 per year >50% signalness
- ◆ Bronze alerts: ~20 per year 30-50% signalness

[IceCube, PoS (ICRC2019) 1021] Neutrino alerts (HESE & EHE (red) / GFU-Gold (gold) / GFU-Bronze (brown)) TXS 0506+056 Norfl best-fit direction IC170922A Fermi-LAT Counts/Pixel 6.6° IC170922A 50% IC170922A 90% 6.2° Declination .8°5 Declination Earth absorption \odot_{\odot} 5 180^C Galactic Plane 3 TXS 0506+056 5.0° € 4.678.4°78.0°77.6°77.2°76.8°76.4° **Right** Ascension Galactic -900

Markus Ahlers (NBI)

Realtime Neutrino Alerts

IC-170922A

up-going muon track (5.7° below horizon) observed September 22, 2017 best-fit neutrino energy is about 300 TeV

Markus Ahlers (NBI)

Blazars

Active galaxy powered by accretion onto a supermassive black hole with relativistic jets pointing into our line of sight.

Markus Ahlers (NBI)

TXS 0506+056

[IceCube++, Science 361 (2018) 6398]

- IC-170922A observed in coincident with **flaring blazar TXS 0506+056**.
- Chance correlation can be rejected at the 3σ -level.
- TXS 0506+056 is among the most luminous BL Lac objects in gamma-rays

RES

NEUTR

Mu

flai

hig

Restee INTEGI

VERIT

RES

NEUTR

Nei

of t

the

IceCub

A high-e

directio

this ass excess

events,

and Ma emissio episode

neutrine

■ 1110 D6₁₅0 s 055€

ltiwa

Markus Ahlers (NBI)

Neutrino Flare in 2014/15

Markus Ahlers (NBI)

Tidal Disruption Events

Stars are pulled apart by tidal forces in the vicinity of supermassive black holes. Accretion of stellar remnants powers plasma outflows.

stellar debris

black hole

(relativistic) plasma outflow

[Credit: DESY, Science Communication Lab]

Markus Ahlers (NBI)

Tidal Disruption Events

- Association of IC-191001A with TDE AT2019dsg and IC-200530A with AT2019fdr.
- Plot shows optical/UV data from Zwicky-Transient Facility (ZTF) and SWIFT-UVOT for AT2019dsg
- Combined chance for random correlation of TDEs and IceCube alerts is 0.034%.

[Stein et al. Nature Astron. 5 (2021) 5; Reusch et al. arXiv:2111.09390]

Neutrino Selection II

- Outer layer of optical modules used as virtual veto region.
- Atmospheric muons pass through veto from above.
- Atmospheric neutrinos coincidence with atmospheric muons.
- **Cosmic neutrino** events can start inside the fiducial volume.
- High-Energy Starting Event (HESE) analysis

Markus Ahlers (NBI)

Galactic Neutrino Emission

Contribution of Galactic diffuse emission at 10TeV-PeV is subdominant.

Astrophysical Neutrino Fluxes

Probe of Fundamental Physics

[Ackermann, MA, Anchordoqui, Bustamante et al., Astro2020 arXiv:1903.04334]

Markus Ahlers (NBI)