$H+j$ production at NLO QCD

Hjalte Frellesvig

Niels Bohr International Academy (NBIA), University of Copenhagen.

April 21, 2022

,
 11III The Niels Bohr 111011 International Academy CARISBERG FOUNDATION

Introductions

Theoretical Particle Physics and Cosmology at NBI

Gravity

Gravitational waves
Black holes
Limits of gravity
Holography/Quantum gravity

Astroparticle and Cosmology
Neutrino physics Icecube observatory Transient events High-energy astrophysics Astrophysical jets

Cosmic microwave background Primordial gravitational waves

Particle Physics and Condensed-matter Modern methods of amplitudes Particle physics phenomenology Defect conformal field theory Strongly coupled matter Holographic principle Thermalization Integrability

Introductions

High-energy theory and phenomenology at NBI

Oleg Ruchayskiy, Inar Timiryasov,Kevin Urquía
 Blegdamsvej 17, building M

-The group is working on physics beyond the Standard Model with feebly interacting particles
-Theoretical developments (what are they good for) and experimental searches (how to find them at CERN and beyond)

Introductions

Theoretical Particle Physics and Cosmology at NBI

Permanent members:
Poul Henrik Damgaard (NBIA director)
Irene Tamborra
Niels A. Obers
Charlotte F. Kristjansen
Vitor Cardoso (new!)
Pavel Naselsky
Konstantin Zarembo
Troels Harmark
Emil Bjerrum-Bohr
Markus Ahlers (tenure track)

Longterm non-permanent:
Michael Trott
Matthias Wilhelm
Jacob Bourjaily
Mauricio Bustamante
Andrés Luna Godoy
Christian Vergu
Matt von Hippel

Postdocs: 10
PHD students: 10
MSC students: 15-20
Emeritus professors: 9

Higgs plus jet production at the LHC.

Leading order QCD is one-loop

NLO/two-loop is not yet completely known with full mass dependence...

Introduction

Higgs plus jet production at the LHC.

Leading order QCD is one-loop

NLO/two-loop is not yet completely known with full mass dependence...

Three processes in one:

$$
\begin{array}{ll}
p p \rightarrow H j & \text { is important in its own right } \\
H \rightarrow 3 j & \text { Higgs decay } \\
p p \rightarrow H & \text { Real radiation at next order }
\end{array}
$$

Previous work on NLO QCD $H+j$ production

Exact LO results:	R. K. Ellis, I. Hinchliffe, M. Soldate, JJ van der Bij. (1988) U. Baur and E. W. N. Glover. (1990)
HEFT results:	R. Boughezal, F. Caola, K. Melnikov, F. Petriello, M. Schulze. (2013) arXiv:1302.6216 X. Chen, T. Gehrmann, E. W. N. Glover, M. Jaquier. (2015) arXiv:1408.5325 R. Boughezal, F. Caola, K. Melnikov, F. Petriello, M. Schulze. (2015) arXiv:1504.07922 R. Boughezal, C. Focke, W. Giele, X. Liu, F. Petriello. (2015) arXiv:1505.03893
Various other limits and expansions:	R. Harlander, T. Neumann, K. Ozeren, M. Wiesemann. (2012) arXiv:1206.0157 T. Neumann and M. Wiesemann. (2014) arXiv:1408.6836 T. Neumann and C. Williams. (2017) arXiv:1609.00367 R. Mueller and D. Öztürk. (2016) arXiv:1512.08570 K. Melnikov, L. Tancredi, C. Wever. (2016) arXiv:1610.03747 K. Melnikov, L. Tancredi, C. Wever. (2017) arXiv:1702.00426 J. Lindert, K. Melnikov, L. Tancredi, C. Wever. (2017) arXiv:1703.03886 K. Kudashkin, K. Melnikov, C. Wever. (2017) arXiv:1712.06549 J. Lindert, K. Kudashkin, K. Melnikov, C. Wever. (2018) arXiv:1801.08226
Numerical results:	S. Jones, M. Kerner, G. Luisoni. (2018) arXiv:1802.00349 M. Czakon, R. Harlander, J. Klappert, M. Niggetiedt. (2021) arXiv:2105.04436
Feynman integrals:	R. Bonciani, V. Del Duca, HF, J. Henn, F. Moriello, V. Smirnov. (2016) arXiv:1609.06685 R. Bonciani, V. Del Duca, HF, J. Henn, et. al. (2020) arXiv:1907.13156 HF, M. Hidding, L. Maestri, F. Moriello, G. Salvatori. (2020) arXiv:1911.06308

Integrals

The biggest challenge is the evaluation of the Feynman Integrals. $\mathcal{O}\left(10^{5}\right)$ integrals $\rightarrow \mathcal{O}\left(10^{2}\right)$ "master integrals" (independent basis) The integrals must be sorted into "integral families"

$$
I_{a_{1}, \ldots, a_{9}}^{f}=\iint \frac{\mathrm{d}^{d} k_{1}}{i \pi^{d / 2}} \frac{\mathrm{~d}^{d} k_{2}}{i \pi^{d / 2}} \frac{P_{f, 8}^{-a_{8}} P_{f, 9}^{-a_{9}}}{P_{f, 1}^{a_{1}} P_{f, 2}^{a_{2}} P_{f, 3}^{a_{3}} P_{f, 4}^{a_{4}} P_{f, 5}^{a_{5}} P_{f, 6}^{a_{6}} P_{f, 7}^{a_{7}}}
$$

Integrals

The biggest challenge is the evaluation of the Feynman Integrals. $\mathcal{O}\left(10^{5}\right)$ integrals $\rightarrow \mathcal{O}\left(10^{2}\right)$ "master integrals" (independent basis)
The integrals must be sorted into "integral families"

$$
I_{a_{1}, \ldots, a_{9}}^{f}=\iint \frac{\mathrm{d}^{d} k_{1}}{i \pi^{d / 2}} \frac{\mathrm{~d}^{d} k_{2}}{i \pi^{d / 2}} \frac{P_{f, 8}^{-a_{8}} P_{f, 9}^{-a_{9}}}{P_{f, 1}^{a_{1}} P_{f, 2}^{a_{2}} P_{f, 3}^{a_{3}} P_{f, 4}^{a_{4}} P_{f, 5}^{a_{5}} P_{f, 6}^{a_{6}} P_{f, 7}^{a_{7}}}
$$

There are eight such integral families:

Integrals

Integrals

Bonciani, Del Duca, HF, Henn, Moriello, Smirnov JHEP, vol. 12(2016), p. 096 [arXiv:1609.06685]

Integrals

Bonciani, Del Duca, HF, Henn, Moriello, Smirnov JHEP, vol. 12(2016), p. 096 [arXiv:1609.06685]

Integrals

Bonciani, Del Duca, HF, Henn, Moriello, Smirnov JHEP, vol. 12(2016), p. 096 [arXiv:1609.06685]

Bonciani, Del Duca, HF, Henn, Hidding, Maestri, Moriello, Salvatori, Smirnov
JHEP, vol. 11(2020), p. 132 [arXiv:1907.13156]

Integrals

Bonciani, Del Duca, HF, Henn, Moriello, Smirnov JHEP, vol. 12(2016), p. 096 [arXiv:1609.06685]

JHEP, vol. 06(2020), p. 093 [arXiv:1911.06308]

Bonciani, Del Duca, HF, Henn, Hidding, Maestri, Moriello, Salvatori, Smirnov
JHEP, vol. 11(2020), p. 132 [arXiv:1907.13156]

Integrals

Bonciani, Del Duca, HF, Henn, Moriello, Smirnov JHEP, vol. 12(2016), p. 096 [arXiv:1609.06685]

Bonciani, Del Duca, HF, Henn, Hidding, Maestri, Moriello, Salvatori, Smirnov
JHEP, vol. 11(2020), p. 132 [arXiv:1907.13156]

Integrals

The computational approach is the method of differential equations

$$
\partial_{s} f=\epsilon A f
$$

Integrals

The computational approach is the method of differential equations

$$
\partial_{s} f=\epsilon A f
$$

Three different "complexity classes":

1) Result given in terms of polylogarithms such as $\operatorname{Li}_{n}(x)=\int_{0}^{x} \frac{\mathrm{~d} y}{y} \mathrm{Li}_{n-1}(y)$.
2) Result looks polylogarithmic but no closed expression can be found.
3) Result given as iterated elliptic integrals.

Integrals

The computational approach is the method of differential equations

$$
\partial_{s} f=\epsilon A f
$$

Three different "complexity classes":

1) Result given in terms of polylogarithms such as $\operatorname{Li}_{n}(x)=\int_{0}^{x} \frac{\mathrm{~d} y}{y} \mathrm{Li}_{n-1}(y)$.
2) Result looks polylogarithmic but no closed expression can be found.
3) Result given as iterated elliptic integrals.

All cases present in family A

Results

$$
\partial_{s} f=\epsilon A f
$$

What we actually do, is solve the diff-eqs numerically.
We use the Frobenius method: sequential series expansions near critical points Moriello [2020], Hidding [2020]
This can be done to arbitrary precision, also close to branch points.

Results

$$
\partial_{s} f=\epsilon A f
$$

What we actually do, is solve the diff-eqs numerically.
We use the Frobenius method: sequential series expansions near critical points Moriello [2020], Hidding [2020]
This can be done to arbitrary precision, also close to branch points.

Plots for the final NLO cross section will be published this year!

Perspectives

What else do I work on?

Perspectives

What else do I work on?

Main project: Intersection Theory and Feynman Integrals

$$
\left.J_{i}=\int_{\mathcal{C}} u \phi_{i}=\left\langle\phi_{i}\right| \mathcal{C}\right] \quad I=\sum_{i} c_{i} J_{i} \Leftrightarrow c_{i}=\left\langle\phi_{I} \mid \phi_{i}\right\rangle
$$

$\left\langle\phi_{I} \mid \phi_{i}\right\rangle$ is the intersection number - a pairing between differential forms
We can extract the coefficients with a direct projection!
Mastrolia, Mizera [2019]; HF, Gasparotto, Laporta, Mandal, Mastrolia, Mattiazzi, Mizera [2019,19,21]

Perspectives

What else do I work on?

Main project: Intersection Theory and Feynman Integrals

$$
\left.J_{i}=\int_{\mathcal{C}} u \phi_{i}=\left\langle\phi_{i}\right| \mathcal{C}\right] \quad I=\sum_{i} c_{i} J_{i} \Leftrightarrow c_{i}=\left\langle\phi_{I} \mid \phi_{i}\right\rangle
$$

$\left\langle\phi_{I} \mid \phi_{i}\right\rangle$ is the intersection number - a pairing between differential forms
We can extract the coefficients with a direct projection!
Mastrolia, Mizera [2019]; HF, Gasparotto, Laporta, Mandal, Mastrolia, Mattiazzi, Mizera [2019,19,21]
I also work on elliptic Feynman integrals with the NBI group HF, Vergu, Volk, von Hippel [2021]; HF [2021]
as well as other projects

Perspectives

What else do I work on?

Main project: Intersection Theory and Feynman Integrals

$$
\left.J_{i}=\int_{\mathcal{C}} u \phi_{i}=\left\langle\phi_{i}\right| \mathcal{C}\right] \quad I=\sum_{i} c_{i} J_{i} \Leftrightarrow c_{i}=\left\langle\phi_{I} \mid \phi_{i}\right\rangle
$$

$\left\langle\phi_{I} \mid \phi_{i}\right\rangle$ is the intersection number - a pairing between differential forms
We can extract the coefficients with a direct projection!
Mastrolia, Mizera [2019]; HF, Gasparotto, Laporta, Mandal, Mastrolia, Mattiazzi, Mizera [2019,19,21]
I also work on elliptic Feynman integrals with the NBI group
HF, Vergu, Volk, von Hippel [2021]; HF [2021]
as well as other projects
Thank you for inviting me, and thank you for listening!

