Collisional dynamics in the field: Ultra wide systems as sources of binary exotica

Erez Michaely www.erezmichaely.com

. University of California, Los Angeles

Collisional dynamics in the field: Novel channel for GW mergers

Erez Michaely www.erezmichaely.com

. University of California, Los Angeles

• Present a novel dynamical model: interaction between wide systems

and random stars in the field

- Implications : **GWs**, Type Ia, LMXBs, sGRBs...
- Discuss the prospects of this model

- The galactic field is collisional for wide systems
- Dynamical GW formation channel from the field
- (At least some fraction of the) observed mergers could originate

from wide systems (binaries or triples)

Thanks for listening

- Happy to answer some questions
- Happier to ask new questions

erezmichaely@gmail.com

www.erezmichaely.com

Dense environment characteristics

- Galactic centers and globular clusters are dense
 - Stellar density of globular / open clusters : $n_* = 10^2 10^3 \frac{stars}{nc^3}$

• Center of galaxies:
$$n_* = 10^6 - 10^8 \frac{stars}{pc^3}$$

• Collisional dynamics: exchange interaction,

direct collision, tidal capture, chaotic dynamics...

Dense environments host exotic binaries, albeit compact

- Conducive for the formation of exotic binaries
- Destructive for wide systems
- For a typical globular cluster, a wide binary with a = 1000AU

the half-life time of the binary

$$t_{\frac{1}{2}} \approx 5 \times 10^5 yr$$

The galactic field is different with low stellar density

• Low stellar density in the field

• Solar neighbroud
$$n_* = 0.1 \frac{stars}{pc^3}$$

- Considered "collisionless"
- Many (many) star systems

In the galactic field – wide systems survive

• In the solar neighborhoud a binary with a = 1000AU :

$$t_{\frac{1}{2}} \approx 7 \times 10^{10} yr$$

• If such binaries exist – they survive

They exist, we see them*

Wide systems interact randomly with passing stars in the field

b

- Wide systems interact gravitationally with random field stars
 - The interaction is "impulsive"
 - Interaction rate: $f = n_* \sigma v = n_* \pi b^2 v$
- Average time between encounters
- for $b = 10^4 AU : \sim 33Myr$

Cartoon of such impulsive interaction

Loss cone treatment; what is the critical eccentricity?

Different way to think of such interactions

Merger probability as a function of the binary semi-major axis

Model "ingredients" necessary to calculate the rate

• The wide system:

- Distribution of the semi-major axis $f_a(a)$
- Distribution of the eccentricity $f_e(e)$ assumed thermal
- Masses
- Estimation of the number of systems in the galaxy

Model "ingredients" necessary to calculate the rate

- The galactic neighborhood
 - Local stellar density: n_*
 - Typical velocity encounter: v
 - Mass distribution in the galaxy: M(r)
 - Galaxy density in the local universe in order to translate to rates

Binary: BBH (Michaely & Perets 2019)

• Interacting sphere : GW merger times

Binary: BHNS (Michaely & Naoz 2022 submitted)

• Interacting sphere : GW merger times

Binary system - merger rate (based on the model's assumptions)

$$\Gamma_{\rm BBH} \approx 40 \left(\frac{f_{primary}}{10^{-3}}\right) \left(\frac{f_{secondary}}{0.5}\right) \left(\frac{f_{wide}}{0.2}\right) Gpc^{-3}yr^{-1}$$

$$\Gamma_{\rm BHNS} \approx 10 \left(\frac{f_{primary}}{10^{-3}}\right) \left(\frac{f_{secondary}}{0.13}\right) \left(\frac{f_{wide}}{0.2}\right) Gpc^{-3}yr^{-1}$$

[EM & Perets 2019; EM & Naoz submitted.]

$$\Gamma_{\rm BHNS} \approx 10 \left(\frac{f_{primary}}{10^{-3}} \right) \left(\frac{f_{secondary}}{0.13} \right) \left(\frac{f_{wide}}{0.2} \right) Gpc^{-3}yr^{-1}$$

[Michaely & Naoz 2022 arXiv: 2205.15040]

- BHNS might be a source for sGRB:
 - For highly spinning BH 30-50%
 - Else, depends on the EOS of the NS
 - Few percent for soft EOS
 - ~30% for stiff EOS

$$\Gamma_{\rm sGRB} \approx 0.5 - 5Gpc^{-3}yr^{-1}$$

Triple system might get unstable and leads to new dynamics

• Interacting sphere : Stability sphere

Johan Samsing

Triple instability --> chaotic dynamics

- Random interactions may lead to instability
 - Multiple binary-single encounter
 - Temporary eccentricity $f_e(e)$
 - Temporary semi major axis $f_a(a)$
 - High probability of eccentric merger
- Final outcome
 - If the system survives the chaotic phase: the outcome: close binary-BH and an "escaper"
 - Low probability of eccentric merger

BBH Model signatures: tendency for equal masses

BBH Model signatures: rate increases with mass ration

BBH Model signatures: rate increases with velocity dispersion

preliminary

Model assumptions: "how to kill my model"

- BHs / NS(e-capture) born with no natal kick
- BBH: Equal Black-hole mass
- BHNS: Constant masses

- Semi-major axis distribution $f_a(a) \propto \frac{1}{a}$
- Thermal distribution of eccentricities

Wide systems.... How do they form?

- That's a good question:
 - Capture?
 - Binary evolution? [Raveh, Michaely & Perets 2022]

Wide systems.... How do they form?

[Raveh, Michaely &

Perets 2022]

Other systems:

• Interacting sphere: Tidal sphere of the system

$$N_{LMXBs} \approx 10 - 100s$$

Michaely & Perets 2016

Triple system might get unstable and leads to new dynamics

- Double degenerate (2-%37%)
- Direct collision (0.1%-3%)

Triple system might get unstable and leads to new dynamics

- MS-WD collision
- ~ 1 collision every 5000-10000 yrs

Today and tomorrow

- Relax the assumption of natal kick = 0 [Rave et al. submitted]
- Model signatures for BBH (work in progress)
- Implication for eLISA / DECIGO
- Novel formation channel of CV / ULX?

- Binary channel: tendency for equal mass merger
- More mergers in galaxies with high velocity dispersion
- Almost uniform in delay time distribution
- Almost isotropic spin distribution

- The galactic field is collisional for wide systems
- Dynamical GW formation channel from the field
- (At least some fraction of the) observed mergers could originate

from wide systems (binaries or triples)

Thanks for listening

- Happy to answer some questions
- Happier to ask new questions

erezmichaely@gmail.com

www.erezmichaely.com

(gist of a) Summary of the observations up to O3

	BBH	BHNS	BNS
Rate [$Gpc^{-1}yr^{-1}$]	17.3-45	7.4-320	13-1900

- Tendency to equal mass mergers
- (probably) No eccentric mergers
- Zero effective spin (Evidence of misaligned spins?)
- More...

- What are the channels that lead to a GW sources?
- What are the observational signatures of each channel?
- What is the merger rate per volume?
- What is the delay time distribution?
- What is the spin distribution?
- What is the eccentric rate?

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern