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90 waves and counting
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Discovering are piling up!  
About 90 black-hole binary mergers detected so far.   
Will become millions in ~20 years! LIGO 2021
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Inhomogeneous Poisson process: Loredo 2004, Mandel+ 2019,  
Thrane, Talbot 2019,  Vitale, DG+ 2022, 

How we put things together
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• Modeling selection effects instead requires propagat-
ing the tested population forward from past time
infinity to detection.

We first travel back in time (20 ! 0 Hz) when treating the
event likelihoods and then “back to the future” (0 ! 20 Hz)
when handling selection effects. Our DeLorean consists
of precession-averaged post-Newtonian (PN) evolutions.

II. STATISTICAL INFERENCE

The statistical problem we tackle is that of an inho-
mogeneous Poisson process including measurement errors
and selection effects [7, 8, 13]. We denote the parame-
ters of individual events with ✓ (e.g. BH masses, spins,
etc.) and those of the overarching population with �
(e.g. power-law index of the mass spectrum, etc.). The
targeted posterior is

p(�|d) / ⇡(�)��N (�)
NY

i=1

Z
ppop(✓|�)L(di|✓) d✓ (1)

where i = 1, ..., N labels the events in the catalog, d
indicates the entire data stream, di indicates a short
stretch of data around event i, L(di|✓) is the likelihood
of the single-event analysis, ppop(✓|�) is the population
model, and ⇡(�) is a prior on the population parameters.
Selection effects enter the population likelihood via

�(�) =

Z
ppop(✓|�)pdet(✓)d✓ (2)

where pdet(✓) 2 [0, 1] is the detection probability given a
binary with parameters ✓. The posterior of Eq. (1) has
been marginalized over the expected number of events
with a scale-free prior. The hyperparameters � thus only
capture the shape of the population distribution and
not the corresponding merger rate; this is equivalent to
imposing

R
ppop(✓|�) = 1.

For ppop(✓|�), we use the phenomenological model re-
ferred to as Power Law + Peak and Default Spin in
Ref. [5], which returns the highest Bayes factor among the
options they tested. The model covers dim(✓) = 6 event
parameters and dim(�) = 12 population parameters. The
distribution of the primary mass m1 is a superposition
of a power-law component with index ↵ truncated be-
tween mmax and mmin and a Gaussian component with
mean µm, width �m, and mixing fraction �m. The sec-
ondary mass m2 conditioned on m1 follows a power-law
distribution with index �q. The distributions of m1,2 are
smoothed over a range �m near mmin. The spin magni-
tudes �1,2 follow a beta distribution with mean µ� and
variance �2

�. The cosines of the angles between the spins
and the orbital angular momentum ✓1,2 are distributed
assuming a superposition of a uniform distribution and
a truncated Gaussian with a peak at cos ✓1,2 = 1, width
�t, and mixing fraction ⇣. Crucially, while we adopt the
same functional form of Ref. [5], the spin tilts ✓1,2 are

here inserted at past time infinity and not at detection.
The distributions of all other parameters (distance, sky
location, etc.) is assumed to be independent of � and
equal to the prior used in the underlying single-event
analyses.

The integrals at the numerator of Eq. (1) are approx-
imated with Monte Carlo summations using samples of
the posterior p(✓|di) / L(di|✓)⇡(✓) from the data release
accompanying Refs. [14] (O1+O2) and [2] (O3a), which in
total include 44 GW events with false-alarm rate < 1 yr�1.
The single-event priors ⇡(✓) are handled analytically with
suitable reweighting factors [15].

For the Power Law + Peak and Default Spin
model, BH masses and spins are not correlated and, con-
sequently, the population model ppop(✓|�) can be written
as the product of two terms, one only including masses
and one only including spins. In Ref. [5], the spin part
was included only in the integral of Eq. (1), and not in
that of Eq. (2). When computing �(�), they instead used
a fixed spin distribution, thus neglecting some � depen-
dencies and introducing a bias. This was motivated by
the large computational cost of the search injections used
to estimate pdet(✓).

We find that a simpler pdet(✓) prescription (as used pre-
viously, e.g. [16]) fully reproduces the results of Ref. [5]
while allowing for a consistent inclusion of spin effects.
In particular, we use the semianalytic approximation
of Ref. [17], assuming two data-taking periods of ap-
proximately 166 days (O1+O2 [1, 18]) and 150 days
(O3a [2]), and a single-detector signal-to-noise ratio (SNR)
threshold of 8 [19]. SNRs are computed with representa-
tive noise curves1 and the IMRPhenomPv2 waveform
model [20]. The integral at the denominator of Eq. (1)
is approximated with a Monte Carlo sum using samples
drawn from an injected population with p(m1) / m�2.35

1 ,
p(m2|m1) / m2

2 [2], uniform spin magnitudes, spin di-
rections with equally weighted isotropic and preferen-
tially aligned components (⇣ = 0.5 and �t = 0.02), and
redshifts distributed uniformly in comoving volume and
source-frame time.

The prior ⇡(�) is uniform over all 12 population param-
eters with limits and additional cuts as in Ref. [5]. We
sample p(�|d) using GWPopulation [21], Dynesty [22],
and Bilby [23].

III. SPIN PROPAGATION

We propagate BH spin orientations across emission
frequencies using the precession-averaged PN formalism
first developed in Refs. [11, 24]. We use an updated
version of the precession code2 which, leveraging new
analytical advancements [25, 26] and numerical recipes,

1
From dcc.ligo.org/LIGO-P1200087-v47 (“early high”, for O1+O2)

and dcc.ligo.org/LIGO-T2000012 (“Livingston”, for O3a).
2

See github.com/dgerosa/precession.

Single-event parameters: masses, spins, redshifts✓
�
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See github.com/dgerosa/precession.

Selection effects:
Detection probability



What model for the Universe?
LIGO/Virgo and many others

Can we instead interpret GW data using  
cool astro predictions directly?

Simple, parametrized functional forms 

Evaluating                  is straightforward and can be done 
at each likelihood evaluation 

2

• Modeling selection effects instead requires propagat-
ing the tested population forward from past time
infinity to detection.

We first travel back in time (20 ! 0 Hz) when treating the
event likelihoods and then “back to the future” (0 ! 20 Hz)
when handling selection effects. Our DeLorean consists
of precession-averaged post-Newtonian (PN) evolutions.

II. STATISTICAL INFERENCE

The statistical problem we tackle is that of an inho-
mogeneous Poisson process including measurement errors
and selection effects [7, 8, 13]. We denote the parame-
ters of individual events with ✓ (e.g. BH masses, spins,
etc.) and those of the overarching population with �
(e.g. power-law index of the mass spectrum, etc.). The
targeted posterior is

p(�|d) / ⇡(�)��N (�)
NY

i=1

Z
ppop(✓|�)L(di|✓) d✓ (1)

where i = 1, ..., N labels the events in the catalog, d
indicates the entire data stream, di indicates a short
stretch of data around event i, L(di|✓) is the likelihood
of the single-event analysis, ppop(✓|�) is the population
model, and ⇡(�) is a prior on the population parameters.
Selection effects enter the population likelihood via

�(�) =

Z
ppop(✓|�)pdet(✓)d✓ (2)

where pdet(✓) 2 [0, 1] is the detection probability given a
binary with parameters ✓. The posterior of Eq. (1) has
been marginalized over the expected number of events
with a scale-free prior. The hyperparameters � thus only
capture the shape of the population distribution and
not the corresponding merger rate; this is equivalent to
imposing

R
ppop(✓|�) = 1.

For ppop(✓|�), we use the phenomenological model re-
ferred to as Power Law + Peak and Default Spin in
Ref. [5], which returns the highest Bayes factor among the
options they tested. The model covers dim(✓) = 6 event
parameters and dim(�) = 12 population parameters. The
distribution of the primary mass m1 is a superposition
of a power-law component with index ↵ truncated be-
tween mmax and mmin and a Gaussian component with
mean µm, width �m, and mixing fraction �m. The sec-
ondary mass m2 conditioned on m1 follows a power-law
distribution with index �q. The distributions of m1,2 are
smoothed over a range �m near mmin. The spin magni-
tudes �1,2 follow a beta distribution with mean µ� and
variance �2

�. The cosines of the angles between the spins
and the orbital angular momentum ✓1,2 are distributed
assuming a superposition of a uniform distribution and
a truncated Gaussian with a peak at cos ✓1,2 = 1, width
�t, and mixing fraction ⇣. Crucially, while we adopt the
same functional form of Ref. [5], the spin tilts ✓1,2 are

here inserted at past time infinity and not at detection.
The distributions of all other parameters (distance, sky
location, etc.) is assumed to be independent of � and
equal to the prior used in the underlying single-event
analyses.

The integrals at the numerator of Eq. (1) are approx-
imated with Monte Carlo summations using samples of
the posterior p(✓|di) / L(di|✓)⇡(✓) from the data release
accompanying Refs. [14] (O1+O2) and [2] (O3a), which in
total include 44 GW events with false-alarm rate < 1 yr�1.
The single-event priors ⇡(✓) are handled analytically with
suitable reweighting factors [15].

For the Power Law + Peak and Default Spin
model, BH masses and spins are not correlated and, con-
sequently, the population model ppop(✓|�) can be written
as the product of two terms, one only including masses
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and dcc.ligo.org/LIGO-T2000012 (“Livingston”, for O3a).
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See github.com/dgerosa/precession.

But: Astrophysicists like you guys put a lot of effort in 
simulating stellar evolution, clusters, AGN, and all of that!  

Evaluating                  now is a costly simulation…
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Ingredients in the blender
A population synthesis code
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II. STATISTICAL FRAMEWORK

In this Section we describe a statistical framework for
choosing points in hyper-parameter space at which to
generate simulated astrophysical populations (Sec. II A),
defining a data-driven basis for the distributions of pop-
ulation parameters (Sec. II B), and training an interpo-
lation scheme to emulate these parameter distributions
(Sec. II C). Our framework closely follows the steps out-
lined for cosmological matter power spectrum studies in
Refs. [42, 43].

A. Simulation design

We need a careful strategy for determining the loca-
tions in hyper-parameter space at which to perform the
simulations that will eventually be used to train our
emulator. While the temptation is to choose an N -
dimensional grid-design, this turns out to be highly sub-
optimal. The hyper-parameter space dictating stellar-
mass binary evolution is O(10) dimensions, and grid-
based designs quickly explode in the number of required
simulations. For example, if we choose a simple grid
with 3 nodes along each dimension, then in 2-dimensions
this is a reasonable choice, requiring 9 simulations in
total. However, expanding this to 10 dimensions re-
quires 310 ⇠ 6 ⇥ 104 simulations, which is a computa-
tionally prohibitive step for current population-synthesis
codes. The entire purpose of constructing an emulator
is to avoid the need for high numbers of costly simula-
tion runs. Furthermore, grid-based designs are poor at
covering low-dimensional projections of the full hyper-
parameter space. If the distribution of BH masses and
spins is dominated by only three hyper-parameters (say
progenitor metallicity, natal kicks, and common-envelope
e�ciency) out of the full 10 dimensional space, then our
above-mentioned grid-based design only assigns 33 = 27
unique simulated combinations of these important hyper-
parameters out of the total ⇠ 6 ⇥ 104 simulations. The
opposite case is a purely random design, which however
su↵ers from large regions of sparsely populated hyper-
parameter space because random sampling maintains no
record of where previous points have been placed.

One thus needs a simulation design that gives
good coverage over all lower-dimensional projections of
the hyper-parameter space, while simultaneously being
sparse enough in the full space to make the program of
simulations computationally tractable. A popular solu-
tion is given by stratified sampling. If M points are to
be drawn, the hyper-parameter volume is first divided
into M equally-probable sub-strata, within which ran-
dom sampling for each point is employed. Specifically,
we use space-filling Latin hypercube designs [47], where
each sample is the only one permitted to occupy the axis-
aligned hyperplane containing it. One must define how
many samples are to be drawn at the outset of sampling,
and the sampler keeps a record of the position of each
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FIG. 2. Example of {x, y, z} hyper-parameter locations as-
signed on an evenly-spaced grid (green triangles), randomly
(orange squares), and with Latin hypercube sampling (blue
circles), for M = 8 training coordinates. A projection of these
coordinates into the {x, y} plane is shown on the right.

past draw. A variant on this technique for integers in
the range [0, 9] produces the popular puzzle Sudoku.

We use the pyDOE [48] python module for all simulation
designs in this paper. Various sampling options are avail-
able, but we choose to maximize the minimum separa-
tion between points in hyper-parameter space, while also
centering them within the sampling intervals. We com-
pute all simulation coordinates on the unit hypercube,
then transform them to the physical hyper-parameter
ranges of interest. Figure 2 shows a comparison of how
M = 8 training coordinates would be assigned in hyper-
parameter space according to di↵erent simulation design
schemes.

B. Data compression

Running population synthesis simulations will provide
a catalog of systems, each one with associated measured
parameters. In the case of compact binaries, these pa-
rameters include component masses, spins, luminosity
distance, perhaps eccentricity, etc. A natural way to
summarize all this information is to produce histograms
of the properties over the entire population; an inter-
polant could then be used to learn how the input sim-
ulation hyper-parameters a↵ect the height of each his-
togram bin. Although there is nothing formally wrong
with this strategy, it misses the opportunity to generate
a data-driven basis on which to summarize the param-
eter distributions, rather than use naive binning. If we
simply binned then we would need as many interpolants
as bins, which might cause an unnecessary explosion of
the computational cost. But if our training distributions
lack pathological features, we can form a set of basis dis-
tributions that are smaller in number.

To generate a data-driven basis for the simulated dis-
tributions of a binary property, we form a data matrix D
of shape Nbins ⇥ Nsims. Each column in this matrix cor-
responds to a single simulation, and contains the normal-
ized bin heights in the histogram for the parameter (flat-
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other bodies [26]. There is thus much poorly known stel-
lar astrophysics that catalogs of GW detections can be
mined for.

Several techniques have been developed to perform
GW population inference, ranging from phenomenolog-
ical parametrized modeling to discrete model selection,
with mixture modeling as a blending of the former two.
In phenomenological models, the distribution of com-
ponent masses, spins, and redshifts are reconstructed
through relatively simple parametrizations (e.g. [27–33]).
Any inference with these models will only be a broad
sketch of the complicated process of compact binary for-
mation. Detailed stellar population modeling allows bi-
nary stars to be tracked from known astrophysical as-
sumptions all the way through to compact binary forma-
tion (or not, depending on conditions). But these are
computationally expensive (making real-time simulation
runs during Bayesian analysis unfeasible), and are typi-
cally performed in small batches for comparisons to ob-
servations. This approach has been very successful, show-
ing e.g. that GW150914’s stellar progenitor had a metal-
licity of ⇠ 5% Z� [34–36]. More systematic approaches
have also been taken, where Bayesian model selection is
performed on grids of discrete population synthesis sim-
ulations, or where simulations are mixed together with
weightings inferred from the data [29, 37–40]. Finally,
non-parametric methods have been developed to allow re-
covery of binary parameter distributions that is more ag-
nostic than the parametrized-model approach [41]. These
methods recover the bin heights of parameter distribution
histograms, typically with Gaussian Process (GP) priors
linking the bins to enforce smoothness.

In this paper we present a qualitatively new approach
that fuses non-parametric modeling with population-
synthesis simulations. In brief, we model histograms of
GW parameter distributions with bin heights constrained
by informative parametrized-priors built out of popula-
tion synthesis simulations. This allows us to fully exploit
catalogs of GW detections to directly infer the proper-
ties of progenitors and the evolutionary path undertaken.
Our methods give predictions of rates and parameter
distributions of compact-binary systems by interpolat-
ing between a set of population-synthesis simulations in-
formed by the data. Crucially, the framework developed
here remains agnostic of the specific population synthesis
code to used.

We follow a multi-stage process (illustrated in Fig. 1),
beginning with a design for the program of simulations
across hyper-parameter space, compressing distributions
of binary parameters to distill the most important fea-
tures, and training a GP model to interpolate between
the simulation hyper-parameter coordinates. These mod-
els are then fed to a hierarchical Bayesian pipeline to re-
cover the joint posterior probability distribution of pop-
ulation hyper-parameters, while incorporating measure-
ment uncertainties in each binary’s parameters. GP emu-
lation of computationally-expensive simulations has been
used in cosmological matter power spectrum analysis
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FIG. 1. A schematic representation of interpolating over pa-
rameter distributions( ✓, e.g. masses, spins, redshift) as a
function of population hyper-parameters (�, e.g. progeni-
tor metallicity, common-envelope hardening e�ciency, natal
kicks, etc.). We carry out a restricted number of population
synthesis simulations with di↵erent hyper-parameters, where
each simulation produces compact binaries distributed over
parameter space. These parameter distributions form the
training data for our interpolant model. For each bin, pixel,
or feature in the parameter distribution, we train a GP inter-
polant over the hyper-parameter space, allowing us to predict
the distribution at any other hyper-parameter coordinate.

[42, 43], pulsar-timing array GW constraints on super-
massive binary BH dynamical environments [44, 45], and
has been suggested in principle for stellar-mass binary
BH population inference [46]. Here we fully develop this
emulation approach, embedding it in a complete end-to-
end statistical framework, starting from the simulation
program design and following through to GW catalog
analysis.

This paper is laid out as follows. In Sec. II we de-
scribe how to choose locations in the hyper-parameter
space where we should perform simulations, how to com-
press distributions of simulated binary parameters, and
how we interpolate over these compressed distributions
using GPs. We introduce our inference tools in Sec. III,
including Bayesian GW parameter estimation, a scheme
to convolve the intrinsic simulated binary distributions
with detector selection e↵ects, and a pipeline to perform
hierarchical Bayesian inference on catalogs of GW detec-
tions. We show our results in Sec. IV, where our entire
framework is tested on three case studies that succes-
sively increase in complexity and astrophysical realism.
These include (i) a toy analytic model, (ii) an example
with publicly-available population synthesis simulations,
and (iii) finally an example with our custom program of
simulations. We provide our conclusions and a discussion
of future prospects in Sec. V.

• Gaussian process regression 

• FFT-based KDE and a multilayer perceptron 

• Autoregressive flows

A powerful conditional density estimation scheme4.

3. Some form of data compression

Wong, Contardo, Ho 2020 

Ingredients in the blender
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Taylor, DG 2018, Wong, DG 2019 

Mould DG Taylor 2022

• Used principal component analysis successfully 
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• Modeling selection effects instead requires propagat-
ing the tested population forward from past time
infinity to detection.

We first travel back in time (20 ! 0 Hz) when treating the
event likelihoods and then “back to the future” (0 ! 20 Hz)
when handling selection effects. Our DeLorean consists
of precession-averaged post-Newtonian (PN) evolutions.

II. STATISTICAL INFERENCE

The statistical problem we tackle is that of an inho-
mogeneous Poisson process including measurement errors
and selection effects [7, 8, 13]. We denote the parame-
ters of individual events with ✓ (e.g. BH masses, spins,
etc.) and those of the overarching population with �
(e.g. power-law index of the mass spectrum, etc.). The
targeted posterior is

p(�|d) / ⇡(�)��N (�)
NY

i=1

Z
ppop(✓|�)L(di|✓) d✓ (1)

where i = 1, ..., N labels the events in the catalog, d
indicates the entire data stream, di indicates a short
stretch of data around event i, L(di|✓) is the likelihood
of the single-event analysis, ppop(✓|�) is the population
model, and ⇡(�) is a prior on the population parameters.
Selection effects enter the population likelihood via

�(�) =

Z
ppop(✓|�)pdet(✓)d✓ (2)

where pdet(✓) 2 [0, 1] is the detection probability given a
binary with parameters ✓. The posterior of Eq. (1) has
been marginalized over the expected number of events
with a scale-free prior. The hyperparameters � thus only
capture the shape of the population distribution and
not the corresponding merger rate; this is equivalent to
imposing

R
ppop(✓|�) = 1.

For ppop(✓|�), we use the phenomenological model re-
ferred to as Power Law + Peak and Default Spin in
Ref. [5], which returns the highest Bayes factor among the
options they tested. The model covers dim(✓) = 6 event
parameters and dim(�) = 12 population parameters. The
distribution of the primary mass m1 is a superposition
of a power-law component with index ↵ truncated be-
tween mmax and mmin and a Gaussian component with
mean µm, width �m, and mixing fraction �m. The sec-
ondary mass m2 conditioned on m1 follows a power-law
distribution with index �q. The distributions of m1,2 are
smoothed over a range �m near mmin. The spin magni-
tudes �1,2 follow a beta distribution with mean µ� and
variance �2

�. The cosines of the angles between the spins
and the orbital angular momentum ✓1,2 are distributed
assuming a superposition of a uniform distribution and
a truncated Gaussian with a peak at cos ✓1,2 = 1, width
�t, and mixing fraction ⇣. Crucially, while we adopt the
same functional form of Ref. [5], the spin tilts ✓1,2 are

here inserted at past time infinity and not at detection.
The distributions of all other parameters (distance, sky
location, etc.) is assumed to be independent of � and
equal to the prior used in the underlying single-event
analyses.

The integrals at the numerator of Eq. (1) are approx-
imated with Monte Carlo summations using samples of
the posterior p(✓|di) / L(di|✓)⇡(✓) from the data release
accompanying Refs. [14] (O1+O2) and [2] (O3a), which in
total include 44 GW events with false-alarm rate < 1 yr�1.
The single-event priors ⇡(✓) are handled analytically with
suitable reweighting factors [15].

For the Power Law + Peak and Default Spin
model, BH masses and spins are not correlated and, con-
sequently, the population model ppop(✓|�) can be written
as the product of two terms, one only including masses
and one only including spins. In Ref. [5], the spin part
was included only in the integral of Eq. (1), and not in
that of Eq. (2). When computing �(�), they instead used
a fixed spin distribution, thus neglecting some � depen-
dencies and introducing a bias. This was motivated by
the large computational cost of the search injections used
to estimate pdet(✓).

We find that a simpler pdet(✓) prescription (as used pre-
viously, e.g. [16]) fully reproduces the results of Ref. [5]
while allowing for a consistent inclusion of spin effects.
In particular, we use the semianalytic approximation
of Ref. [17], assuming two data-taking periods of ap-
proximately 166 days (O1+O2 [1, 18]) and 150 days
(O3a [2]), and a single-detector signal-to-noise ratio (SNR)
threshold of 8 [19]. SNRs are computed with representa-
tive noise curves1 and the IMRPhenomPv2 waveform
model [20]. The integral at the denominator of Eq. (1)
is approximated with a Monte Carlo sum using samples
drawn from an injected population with p(m1) / m�2.35

1 ,
p(m2|m1) / m2

2 [2], uniform spin magnitudes, spin di-
rections with equally weighted isotropic and preferen-
tially aligned components (⇣ = 0.5 and �t = 0.02), and
redshifts distributed uniformly in comoving volume and
source-frame time.

The prior ⇡(�) is uniform over all 12 population param-
eters with limits and additional cuts as in Ref. [5]. We
sample p(�|d) using GWPopulation [21], Dynesty [22],
and Bilby [23].

III. SPIN PROPAGATION

We propagate BH spin orientations across emission
frequencies using the precession-averaged PN formalism
first developed in Refs. [11, 24]. We use an updated
version of the precession code2 which, leveraging new
analytical advancements [25, 26] and numerical recipes,

1
From dcc.ligo.org/LIGO-P1200087-v47 (“early high”, for O1+O2)

and dcc.ligo.org/LIGO-T2000012 (“Livingston”, for O3a).
2

See github.com/dgerosa/precession.

Taylor DG 2018
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• Modeling selection effects instead requires propagat-
ing the tested population forward from past time
infinity to detection.

We first travel back in time (20 ! 0 Hz) when treating the
event likelihoods and then “back to the future” (0 ! 20 Hz)
when handling selection effects. Our DeLorean consists
of precession-averaged post-Newtonian (PN) evolutions.

II. STATISTICAL INFERENCE

The statistical problem we tackle is that of an inho-
mogeneous Poisson process including measurement errors
and selection effects [7, 8, 13]. We denote the parame-
ters of individual events with ✓ (e.g. BH masses, spins,
etc.) and those of the overarching population with �
(e.g. power-law index of the mass spectrum, etc.). The
targeted posterior is

p(�|d) / ⇡(�)��N (�)
NY

i=1

Z
ppop(✓|�)L(di|✓) d✓ (1)

where i = 1, ..., N labels the events in the catalog, d
indicates the entire data stream, di indicates a short
stretch of data around event i, L(di|✓) is the likelihood
of the single-event analysis, ppop(✓|�) is the population
model, and ⇡(�) is a prior on the population parameters.
Selection effects enter the population likelihood via

�(�) =

Z
ppop(✓|�)pdet(✓)d✓ (2)

where pdet(✓) 2 [0, 1] is the detection probability given a
binary with parameters ✓. The posterior of Eq. (1) has
been marginalized over the expected number of events
with a scale-free prior. The hyperparameters � thus only
capture the shape of the population distribution and
not the corresponding merger rate; this is equivalent to
imposing

R
ppop(✓|�) = 1.

For ppop(✓|�), we use the phenomenological model re-
ferred to as Power Law + Peak and Default Spin in
Ref. [5], which returns the highest Bayes factor among the
options they tested. The model covers dim(✓) = 6 event
parameters and dim(�) = 12 population parameters. The
distribution of the primary mass m1 is a superposition
of a power-law component with index ↵ truncated be-
tween mmax and mmin and a Gaussian component with
mean µm, width �m, and mixing fraction �m. The sec-
ondary mass m2 conditioned on m1 follows a power-law
distribution with index �q. The distributions of m1,2 are
smoothed over a range �m near mmin. The spin magni-
tudes �1,2 follow a beta distribution with mean µ� and
variance �2

�. The cosines of the angles between the spins
and the orbital angular momentum ✓1,2 are distributed
assuming a superposition of a uniform distribution and
a truncated Gaussian with a peak at cos ✓1,2 = 1, width
�t, and mixing fraction ⇣. Crucially, while we adopt the
same functional form of Ref. [5], the spin tilts ✓1,2 are

here inserted at past time infinity and not at detection.
The distributions of all other parameters (distance, sky
location, etc.) is assumed to be independent of � and
equal to the prior used in the underlying single-event
analyses.

The integrals at the numerator of Eq. (1) are approx-
imated with Monte Carlo summations using samples of
the posterior p(✓|di) / L(di|✓)⇡(✓) from the data release
accompanying Refs. [14] (O1+O2) and [2] (O3a), which in
total include 44 GW events with false-alarm rate < 1 yr�1.
The single-event priors ⇡(✓) are handled analytically with
suitable reweighting factors [15].

For the Power Law + Peak and Default Spin
model, BH masses and spins are not correlated and, con-
sequently, the population model ppop(✓|�) can be written
as the product of two terms, one only including masses
and one only including spins. In Ref. [5], the spin part
was included only in the integral of Eq. (1), and not in
that of Eq. (2). When computing �(�), they instead used
a fixed spin distribution, thus neglecting some � depen-
dencies and introducing a bias. This was motivated by
the large computational cost of the search injections used
to estimate pdet(✓).

We find that a simpler pdet(✓) prescription (as used pre-
viously, e.g. [16]) fully reproduces the results of Ref. [5]
while allowing for a consistent inclusion of spin effects.
In particular, we use the semianalytic approximation
of Ref. [17], assuming two data-taking periods of ap-
proximately 166 days (O1+O2 [1, 18]) and 150 days
(O3a [2]), and a single-detector signal-to-noise ratio (SNR)
threshold of 8 [19]. SNRs are computed with representa-
tive noise curves1 and the IMRPhenomPv2 waveform
model [20]. The integral at the denominator of Eq. (1)
is approximated with a Monte Carlo sum using samples
drawn from an injected population with p(m1) / m�2.35

1 ,
p(m2|m1) / m2

2 [2], uniform spin magnitudes, spin di-
rections with equally weighted isotropic and preferen-
tially aligned components (⇣ = 0.5 and �t = 0.02), and
redshifts distributed uniformly in comoving volume and
source-frame time.

The prior ⇡(�) is uniform over all 12 population param-
eters with limits and additional cuts as in Ref. [5]. We
sample p(�|d) using GWPopulation [21], Dynesty [22],
and Bilby [23].

III. SPIN PROPAGATION

We propagate BH spin orientations across emission
frequencies using the precession-averaged PN formalism
first developed in Refs. [11, 24]. We use an updated
version of the precession code2 which, leveraging new
analytical advancements [25, 26] and numerical recipes,

1
From dcc.ligo.org/LIGO-P1200087-v47 (“early high”, for O1+O2)

and dcc.ligo.org/LIGO-T2000012 (“Livingston”, for O3a).
2

See github.com/dgerosa/precession.
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• Modeling selection effects instead requires propagat-
ing the tested population forward from past time
infinity to detection.

We first travel back in time (20 ! 0 Hz) when treating the
event likelihoods and then “back to the future” (0 ! 20 Hz)
when handling selection effects. Our DeLorean consists
of precession-averaged post-Newtonian (PN) evolutions.

II. STATISTICAL INFERENCE

The statistical problem we tackle is that of an inho-
mogeneous Poisson process including measurement errors
and selection effects [7, 8, 13]. We denote the parame-
ters of individual events with ✓ (e.g. BH masses, spins,
etc.) and those of the overarching population with �
(e.g. power-law index of the mass spectrum, etc.). The
targeted posterior is

p(�|d) / ⇡(�)��N (�)
NY

i=1

Z
ppop(✓|�)L(di|✓) d✓ (1)

where i = 1, ..., N labels the events in the catalog, d
indicates the entire data stream, di indicates a short
stretch of data around event i, L(di|✓) is the likelihood
of the single-event analysis, ppop(✓|�) is the population
model, and ⇡(�) is a prior on the population parameters.
Selection effects enter the population likelihood via

�(�) =

Z
ppop(✓|�)pdet(✓)d✓ (2)

where pdet(✓) 2 [0, 1] is the detection probability given a
binary with parameters ✓. The posterior of Eq. (1) has
been marginalized over the expected number of events
with a scale-free prior. The hyperparameters � thus only
capture the shape of the population distribution and
not the corresponding merger rate; this is equivalent to
imposing

R
ppop(✓|�) = 1.

For ppop(✓|�), we use the phenomenological model re-
ferred to as Power Law + Peak and Default Spin in
Ref. [5], which returns the highest Bayes factor among the
options they tested. The model covers dim(✓) = 6 event
parameters and dim(�) = 12 population parameters. The
distribution of the primary mass m1 is a superposition
of a power-law component with index ↵ truncated be-
tween mmax and mmin and a Gaussian component with
mean µm, width �m, and mixing fraction �m. The sec-
ondary mass m2 conditioned on m1 follows a power-law
distribution with index �q. The distributions of m1,2 are
smoothed over a range �m near mmin. The spin magni-
tudes �1,2 follow a beta distribution with mean µ� and
variance �2

�. The cosines of the angles between the spins
and the orbital angular momentum ✓1,2 are distributed
assuming a superposition of a uniform distribution and
a truncated Gaussian with a peak at cos ✓1,2 = 1, width
�t, and mixing fraction ⇣. Crucially, while we adopt the
same functional form of Ref. [5], the spin tilts ✓1,2 are

here inserted at past time infinity and not at detection.
The distributions of all other parameters (distance, sky
location, etc.) is assumed to be independent of � and
equal to the prior used in the underlying single-event
analyses.

The integrals at the numerator of Eq. (1) are approx-
imated with Monte Carlo summations using samples of
the posterior p(✓|di) / L(di|✓)⇡(✓) from the data release
accompanying Refs. [14] (O1+O2) and [2] (O3a), which in
total include 44 GW events with false-alarm rate < 1 yr�1.
The single-event priors ⇡(✓) are handled analytically with
suitable reweighting factors [15].

For the Power Law + Peak and Default Spin
model, BH masses and spins are not correlated and, con-
sequently, the population model ppop(✓|�) can be written
as the product of two terms, one only including masses
and one only including spins. In Ref. [5], the spin part
was included only in the integral of Eq. (1), and not in
that of Eq. (2). When computing �(�), they instead used
a fixed spin distribution, thus neglecting some � depen-
dencies and introducing a bias. This was motivated by
the large computational cost of the search injections used
to estimate pdet(✓).

We find that a simpler pdet(✓) prescription (as used pre-
viously, e.g. [16]) fully reproduces the results of Ref. [5]
while allowing for a consistent inclusion of spin effects.
In particular, we use the semianalytic approximation
of Ref. [17], assuming two data-taking periods of ap-
proximately 166 days (O1+O2 [1, 18]) and 150 days
(O3a [2]), and a single-detector signal-to-noise ratio (SNR)
threshold of 8 [19]. SNRs are computed with representa-
tive noise curves1 and the IMRPhenomPv2 waveform
model [20]. The integral at the denominator of Eq. (1)
is approximated with a Monte Carlo sum using samples
drawn from an injected population with p(m1) / m�2.35

1 ,
p(m2|m1) / m2

2 [2], uniform spin magnitudes, spin di-
rections with equally weighted isotropic and preferen-
tially aligned components (⇣ = 0.5 and �t = 0.02), and
redshifts distributed uniformly in comoving volume and
source-frame time.

The prior ⇡(�) is uniform over all 12 population param-
eters with limits and additional cuts as in Ref. [5]. We
sample p(�|d) using GWPopulation [21], Dynesty [22],
and Bilby [23].

III. SPIN PROPAGATION

We propagate BH spin orientations across emission
frequencies using the precession-averaged PN formalism
first developed in Refs. [11, 24]. We use an updated
version of the precession code2 which, leveraging new
analytical advancements [25, 26] and numerical recipes,

1
From dcc.ligo.org/LIGO-P1200087-v47 (“early high”, for O1+O2)

and dcc.ligo.org/LIGO-T2000012 (“Livingston”, for O3a).
2

See github.com/dgerosa/precession.
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Spins: the magic number
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An explosion of new predictions
• Masses in the pair-instability mass gap 

• Peculiar spin distribution peaked at 0.7  

• But GW kicks require large escape 
speed 

• Very frequent in AGNs 

• Promising for GW190412 

• Leading explanation for GW190521 

• Perhaps several events in the LIGO 
catalog? 

• An exclusion region 

• … but don’t overdo it!

DG Berti 2017, Fishbach+ 2017

DG Berti 2019

DG Vitale Berti 2020, Rogriguez+ 2020

LIGO/Virgo 2020

And many more! Enough for a dedicated review

Heger+ 2003, Woosley+ 2007

Yang+ 2019, Tagawa+ 2020

Kimball+ 2021

DG Fishbach 2021
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Figure 1 | Masses, spins, and recoil velocities of first- and second-generation BHs. The corner plot on the right (panel a.) shows BH masses m and
spins c. The histogram on the left (panel b.) shows the corresponding kick velocities v. Blue scatter points and histograms indicate a population of 1g
BHs extracted from current LIGO/Virgo population fits.50 Orange scatter points and histograms indicate the corresponding distribution of their merger
remnants, which might form 2g GW events. Black dotted lines indicate typical values of astrophysical relevance: (i) the edge of the pair-instability mass
gap40 m = 45M�, (ii) the remnant spin of equal-mass, non-spinning BH mergers63 c = 0.69, and (iii) an approximate upper limit to the escape speed of
globular clusters81, 82 v = 100 km/s.

The simplified model by Gerosa and Berti89 also finds very small
fractions of hierarchical mergers from globulars if spinning BHs
are considered.

Semi-analytical treatments based on simulated stellar
populations132–134 suggest that the fraction of repeated mergers
in nuclear star cluster is ⇠ 1 order of magnitude larger than
that of globulars and ⇠ 3 orders of magnitude larger than that
of young star clusters. Similarly, energy arguments that relate
the hardening rate of BH binaries to the global properties of
the clusters135 indicate that the occurrence of repeated merg-
ers presents a steep increase in systems with escape speeds
& 300 km/s and mass densities & 105 M�/pc3. Monte Carlo
simulations136 and further analytical modeling80, 137–139 produce
qualitatively similar results: populating the upper mass gap via
in-cluster GW mergers seems possible, but requires sufficiently
massive environments.

Overall, these findings point towards galactic
nuclei99, 100, 140, 141 as the most likely cluster environments to
host repeated mergers. The key binary formation mechanism
is different for nuclear star cluster that do or do not host a
central supermassive BH.142 In the former case, short relaxation
time can result in the formation of a steep density cusp of
stellar-mass BHs around the central supermassive BH, which
facilitates mergers by GW captures.140 On the other hand,
nuclear star clusters without a supermassive BH are akin to
heavier globulars where hardening is driven by three-body
encounters.100

Nevertheless, it is important to point our that globular clus-
ters could also host a sizable population of second-generation
mergers if BH spins at birth turn out to be small, which is in
line with some of the current predictions.69 Furthermore, glob-
ular clusters were on average ⇠ 5 times more massive at birth
compared to the present time,143 which increases their escape
speeds by a factor of ⇠

p
5 > 2. These are crucial details be-

cause globulars are thought to be extremely efficient factories of
GW events.144–151

The cluster metallicity might play an important role in the
formation of hierarchical GW events, with a preference for
metal-poor environments133 (but see Ref.152 for opposite claims).
Additionally, a notable boost in the rate of hierarchical stellar-
mass BH mergers in clusters could be provided by Kozai-Lidov
oscillation induced by a massive perturber.138 We also note that
hierarchical mergers involving NSs have also been explored as
a potential formation channel of GW events with one of more
components in the lower mass gap (3M� . M . 5M�), both in
clusters153 and few-body configurations in the field.154–157

3.3 AGN disks

Gaseous AGN disks are also promising environments for
the production of BH binaries merging in the LIGO/Virgo
band.21, 101, 102, 158–161 In this scenario, stellar-mass BHs are embed-
ded in accretion disks surrounding supermassive BHs, and their
evolution is driven by angular-momentum transfer via viscous
interactions —a process that is analogous to that of planetary

4
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environment with constant escape speed vesc: we do not
necessarily refer to specific astrophysical settings, such
as globular clusters, young star clusters or nuclear star
clusters. We randomly choose two BHs from the cluster
and we estimate the properties of their merger remnant
using fitting formulas to numerical-relativity simulations:
we compute the final mass as in Ref. [48], the final spin as
in Ref. [49], and the kick using the expression collected in
Ref. [50] following [51–55]. These formulas are evaluated
assuming isotropic spin directions. If the recoil velocity of
the remnant BH is greater than vesc the merger product
is removed, otherwise it is left in the cluster. We iterate
this procedure and randomly extract pairs of BHs until
less than two objects remain.

First-generation BHs are injected into the cluster with
masses distributed according to p(m) / m� , and dimen-
sionless spin magnitudes distributed uniformly in [0, �max].
Crucially, we assume the presence of a mass gap and re-
strict the initial BH masses to m 2 [5, 50]M�. We choose
� = �2.3 as expected from the Kroupa initial mass func-
tion [56] and used to model GW event rates [57].

The pairing probability (i.e., how BHs in the cluster
choose their partners) is a key ingredient of the model.
We explore two possibilities:

• Random pairing. We randomly pick two BHs
from the cluster with uniform probability, i.e.
ppair(m1, m2) = const.

• Selective pairing. We assume a pairing probability
p(m1) / m↵

1 , p(m2|m1) / m�
2 with m1 > m2, ↵ =

�1.6, and � = 6.7 as measured by Ref. [1] using
current GW data (cf. their model B).

Selective pairing favors mergers with m1 ' m2, as pre-
dicted for mass-segregated clusters and currently sup-
ported by the data [58]. We opt for a pairing prescription
motivated by current observations, but alternative expres-
sions have been derived theoretically (see e.g. [23]).

Every time two BHs merge, their GW signal could
potentially be detected. We pair each merger with a
redshift value z extracted uniformly in comoving volume
and source-frame time, i.e. p(z) / (dVc/dz)/(1+ z). This
is a simple prescription to average over a large number
of clusters at different redshifts. We then estimate the
probability of detection pdet(m1, m2, z) as in Refs. [59–66].
We set a signal-to-noise-ratio threshold of ⇢thr = 8 [67],
computed assuming a single LIGO instrument at design
sensitivity [68] and the waveform model of Ref. [69] for
nonspinning BHs (Refs. [62, 70, 71] showed that spins
have a marginal effect on pdet unless strong alignment
is present, which is not our case). The probability pdet
corresponds to the (unnormalized) detection rate, allowing
us to estimate detector selection effects on the GW events
resulting from our model.

For each cluster, we define pgap to be the fraction of
component masses in the mass gap weighted by the de-
tection rate pdet.

FIG. 1. Detectable distribution of component masses for
clusters with different escape speeds. If the escape speed is
large enough, second-generation mergers populate the mass
gap. We assume �max = 0.5, N = 103, and selective pairing.

III. RESULTS

To summarize, our toy model has four main parameters:

• the escape speed of the cluster vesc,

• the largest injected spin �max,

• a pairing prescription, random or selective,

• the initial number of objects N .

For each choice of these parameters, we simulate several
clusters to decrease counting errors.

Figure 1 shows the detectable distribution of component
masses for some of our models. Multiple generations
of mergers allow BHs to leak into the mass gap. As
expected, clusters with higher escape speeds retain more
BHs and populate the mass gap more efficiently. Besides
the number of systems in the gap, the escape speed affects
also the slope of the mass spectrum in that region: larger
(smaller) values of vesc yield steeper (shallower) spectra.
In principle, a very large number of observations could
allow us to measure the slope, hence vesc. On the other
hand, the shape of the mass spectrum below the mass
gap (5M� < m1, m2 < 50M� ) is only mildly dependent
on the escape velocity vesc.

In Fig. 2 we analyze the contribution of different genera-
tions of merging BHs to the mass and spin distributions in
a representative case (vesc = 200 km/s, �max = 0.5, and
selective pairing). We find that ⇠ 50% of the BHs belong
the first generation of mergers (1g+1g). The fraction of
BH binaries where only one of the two components had a

ppair(m1) / m↵
1
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•  Spins: � 2 [0,�max]
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•  Pairing:

Just balls of black holes for now…. 

Here is a real expert on 
BH dynamics when 

hearing about my model

We need a population that is easy enough for now but non-analytic… 

Key idea: take a parametrized model 
but allow for hierarchical mergers
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environment with constant escape speed vesc: we do not
necessarily refer to specific astrophysical settings, such
as globular clusters, young star clusters or nuclear star
clusters. We randomly choose two BHs from the cluster
and we estimate the properties of their merger remnant
using fitting formulas to numerical-relativity simulations:
we compute the final mass as in Ref. [48], the final spin as
in Ref. [49], and the kick using the expression collected in
Ref. [50] following [51–55]. These formulas are evaluated
assuming isotropic spin directions. If the recoil velocity of
the remnant BH is greater than vesc the merger product
is removed, otherwise it is left in the cluster. We iterate
this procedure and randomly extract pairs of BHs until
less than two objects remain.

First-generation BHs are injected into the cluster with
masses distributed according to p(m) / m� , and dimen-
sionless spin magnitudes distributed uniformly in [0, �max].
Crucially, we assume the presence of a mass gap and re-
strict the initial BH masses to m 2 [5, 50]M�. We choose
� = �2.3 as expected from the Kroupa initial mass func-
tion [56] and used to model GW event rates [57].

The pairing probability (i.e., how BHs in the cluster
choose their partners) is a key ingredient of the model.
We explore two possibilities:

• Random pairing. We randomly pick two BHs
from the cluster with uniform probability, i.e.
ppair(m1, m2) = const.

• Selective pairing. We assume a pairing probability
p(m1) / m↵

1 , p(m2|m1) / m�
2 with m1 > m2, ↵ =

�1.6, and � = 6.7 as measured by Ref. [1] using
current GW data (cf. their model B).

Selective pairing favors mergers with m1 ' m2, as pre-
dicted for mass-segregated clusters and currently sup-
ported by the data [58]. We opt for a pairing prescription
motivated by current observations, but alternative expres-
sions have been derived theoretically (see e.g. [23]).

Every time two BHs merge, their GW signal could
potentially be detected. We pair each merger with a
redshift value z extracted uniformly in comoving volume
and source-frame time, i.e. p(z) / (dVc/dz)/(1+ z). This
is a simple prescription to average over a large number
of clusters at different redshifts. We then estimate the
probability of detection pdet(m1, m2, z) as in Refs. [59–66].
We set a signal-to-noise-ratio threshold of ⇢thr = 8 [67],
computed assuming a single LIGO instrument at design
sensitivity [68] and the waveform model of Ref. [69] for
nonspinning BHs (Refs. [62, 70, 71] showed that spins
have a marginal effect on pdet unless strong alignment
is present, which is not our case). The probability pdet
corresponds to the (unnormalized) detection rate, allowing
us to estimate detector selection effects on the GW events
resulting from our model.

For each cluster, we define pgap to be the fraction of
component masses in the mass gap weighted by the de-
tection rate pdet.

FIG. 1. Detectable distribution of component masses for
clusters with different escape speeds. If the escape speed is
large enough, second-generation mergers populate the mass
gap. We assume �max = 0.5, N = 103, and selective pairing.

III. RESULTS

To summarize, our toy model has four main parameters:

• the escape speed of the cluster vesc,

• the largest injected spin �max,

• a pairing prescription, random or selective,

• the initial number of objects N .

For each choice of these parameters, we simulate several
clusters to decrease counting errors.

Figure 1 shows the detectable distribution of component
masses for some of our models. Multiple generations
of mergers allow BHs to leak into the mass gap. As
expected, clusters with higher escape speeds retain more
BHs and populate the mass gap more efficiently. Besides
the number of systems in the gap, the escape speed affects
also the slope of the mass spectrum in that region: larger
(smaller) values of vesc yield steeper (shallower) spectra.
In principle, a very large number of observations could
allow us to measure the slope, hence vesc. On the other
hand, the shape of the mass spectrum below the mass
gap (5M� < m1, m2 < 50M� ) is only mildly dependent
on the escape velocity vesc.

In Fig. 2 we analyze the contribution of different genera-
tions of merging BHs to the mass and spin distributions in
a representative case (vesc = 200 km/s, �max = 0.5, and
selective pairing). We find that ⇠ 50% of the BHs belong
the first generation of mergers (1g+1g). The fraction of
BH binaries where only one of the two components had a

ppair(m1) / m↵
1
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•  Masses:
•  Spins: � 2 [0,�max]
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•  Pairing:

Just balls of black holes for now…. 
We need a population that is easy enough for now but non-analytic… 

Key idea: take a parametrized model 
but allow for hierarchical mergers
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p(vesc) / v�esc

Six population parameters

DG, Berti 2019, DG Giacobbo Vecchio  2021, Zevin Holz 2022

Here is a real expert on 
BH dynamics when 

hearing about my model



Out of the cluster,  
one kick at the time

vk > vesc
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FIG. 3. Example marginal distributions of chirp mass Mc, mass ratio q, effective aligned spin �e↵ , and our precession parameter
�p for different population parameters � = {↵, �, �, �, mmax, �max}. We select four of our simulations to illustrate different
features of the resulting binary BH distributions. Blue, “broad masses”, � = {�1.7, 1.7, �0.5, �3.4, 96M�, 0.57}: this set of
hyperparameters results in a large range of binary BH masses due to a high maximum first-generation mass, broad mass
function and broad binary pairing probabilities. Orange, “narrow mass ratio”, � = {�8.8, 8.3, 6.8, �4.1, 40M�, 0.43}: binaries
are preferentially selected with equal component masses due to pairing probabilities that favor the lightest primary BHs and
heaviest secondary BHs. Green, “broad mass ratio”, � = {9.2, �9.8, �0.5, �4.0, 74M�, 0.50}: the pairing slopes produce binaries
with the heaviest primaries and lightest secondaries, resulting in an extended range of mass ratios peaking at lower values. Red,
“repeated mergers”, � = {4.1, 3.1, 5.5, 5.1, 70M�, 0.37}: clusters are preferentially generated with large escape speeds, boosting
the presence of repeated mergers, which appear as multiple narrow peaks in the mass distributions; the lower maximum natal
spin causes a narrow peak around �e↵ = 0; the occurrence of repeated mergers extends the tails of the �e↵ distribution and
creates a secondary peak in the �p distribution.

hierarchical mergers. The combined set of hyperparame-
ters � = {↵, �, �, �, mmax, �max} are very interdependent
and changes in their values cause large variations in the
distributions of source parameters ✓ = {Mc, q, �e↵ , �p}.
The total set of simulated events is

�
{✓ij}

Nh(�
i)

j=1

 N�

i=1
, where

Nh(�i
) is the number of mergers occurring in the sim-

ulation with hyperparameter coordinate �i. The total
number of mergers occurring at a given hyperparameter
coordinate strongly depends on the distribution of escape
speeds, determined by �. For the numerical setup adopted
here it ranges from min� Nh(�) = NclNBH/2 = 1.25⇥10

6

–when each remnant BH is ejected so only first-generation
mergers occur– to max� Nh(�) = NclNBH � 1 ⇡ 2.5 ⇥ 10

6

–when BHs are repeatedly paired with the same single
retained remnant– and the upper range is populated by
simulations with larger numbers of repeated mergers. This
is demonstrated in Fig. 2, where we plot the branching
fractions of different merger generations as a function of
the total number of mergers. Four representative cases
among the set of N� = 1000 simulations we performed are
illustrated in Fig. 3 and labeled based on the qualitative
properties of the resulting source distributions: “broad
masses”, “narrow mass ratio”, “broad mass ratio”, and
“repeated mergers”.

If clusters are preferentially formed with larger escape
speeds, many remnants are retained and proceed to take
part in hierarchical mergers, leading to multiple modes
in the mass distributions. This is the case for the red
curves (“repeated mergers”) in Fig. 3, where � = 5.1.
Since the sharp IMF (� = 5.5) forms first-generation

BHs with masses that are all very close to the maximum
mmax = 70M�, hierarchical mergers appear as distinct
peaks in the mass distributions. The first generation
of mergers has m1 ⇡ m2 ⇡ mmax, giving Mc ⇡ 50M�.
Cross-generational mergers also occur. For example, there
is a 1g+2g peak; the peak does not occur at q = 0.5
because a fraction 1�✏ ⇡ 5% of mass is lost via GWs [108]
such that second-generation BHs have mass ⇡ 2✏mmax,
implying q = 1/(2✏) ⇡ 0.53 and Mc ⇡ 80M�. Similarly,
for a 1g+3g merger one has q ⇡ 1/[✏(2✏ + 1)] ⇡ 0.36,
which explains the third peak observed in the red curves
of Fig. 3.

When more first-generation BHs are born with large
spins, set by �max, fewer second-generation mergers occur
due to the larger imparted recoils [69]. On the other hand,
if natal spins are small and repeated mergers do occur,
the distribution of effective spins features a sharp peak at
�e↵ = 0 from first-generation mergers as well as extended
tails from high-generation mergers, as is the case for the
red curve in third column of Fig. 3. The �e↵ distributions
are always symmetric about 0 due to the assumption of
spin isotropy. For the 1g+2g populations, the 2g BH spin
is ⇡ 0.7 [14] and, because in this case �max = 0.37, is
typically higher than the spin of the 1g BH. In this limit,
one has �p ⇡

p
0.72 � 4�2

e↵ ⇡ 0.7 [71], thus explaining
the secondary peak in the �p distribution.

Whether higher-generation BHs pair with other BHs of
equal generation or form cross-generational binaries (e.g.,
1g+2g) depends on the the pairing slopes ↵ and �. If
↵, �, � ⇡ 0, then the first-generation mass distribution is
broad and binary components are selected with uniform
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FIG. 3. Example marginal distributions of chirp mass Mc, mass ratio q, effective aligned spin �e↵ , and our precession parameter
�p for different population parameters � = {↵, �, �, �, mmax, �max}. We select four of our simulations to illustrate different
features of the resulting binary BH distributions. Blue, “broad masses”, � = {�1.7, 1.7, �0.5, �3.4, 96M�, 0.57}: this set of
hyperparameters results in a large range of binary BH masses due to a high maximum first-generation mass, broad mass
function and broad binary pairing probabilities. Orange, “narrow mass ratio”, � = {�8.8, 8.3, 6.8, �4.1, 40M�, 0.43}: binaries
are preferentially selected with equal component masses due to pairing probabilities that favor the lightest primary BHs and
heaviest secondary BHs. Green, “broad mass ratio”, � = {9.2, �9.8, �0.5, �4.0, 74M�, 0.50}: the pairing slopes produce binaries
with the heaviest primaries and lightest secondaries, resulting in an extended range of mass ratios peaking at lower values. Red,
“repeated mergers”, � = {4.1, 3.1, 5.5, 5.1, 70M�, 0.37}: clusters are preferentially generated with large escape speeds, boosting
the presence of repeated mergers, which appear as multiple narrow peaks in the mass distributions; the lower maximum natal
spin causes a narrow peak around �e↵ = 0; the occurrence of repeated mergers extends the tails of the �e↵ distribution and
creates a secondary peak in the �p distribution.
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retained remnant– and the upper range is populated by
simulations with larger numbers of repeated mergers. This
is demonstrated in Fig. 2, where we plot the branching
fractions of different merger generations as a function of
the total number of mergers. Four representative cases
among the set of N� = 1000 simulations we performed are
illustrated in Fig. 3 and labeled based on the qualitative
properties of the resulting source distributions: “broad
masses”, “narrow mass ratio”, “broad mass ratio”, and
“repeated mergers”.

If clusters are preferentially formed with larger escape
speeds, many remnants are retained and proceed to take
part in hierarchical mergers, leading to multiple modes
in the mass distributions. This is the case for the red
curves (“repeated mergers”) in Fig. 3, where � = 5.1.
Since the sharp IMF (� = 5.5) forms first-generation

BHs with masses that are all very close to the maximum
mmax = 70M�, hierarchical mergers appear as distinct
peaks in the mass distributions. The first generation
of mergers has m1 ⇡ m2 ⇡ mmax, giving Mc ⇡ 50M�.
Cross-generational mergers also occur. For example, there
is a 1g+2g peak; the peak does not occur at q = 0.5
because a fraction 1�✏ ⇡ 5% of mass is lost via GWs [108]
such that second-generation BHs have mass ⇡ 2✏mmax,
implying q = 1/(2✏) ⇡ 0.53 and Mc ⇡ 80M�. Similarly,
for a 1g+3g merger one has q ⇡ 1/[✏(2✏ + 1)] ⇡ 0.36,
which explains the third peak observed in the red curves
of Fig. 3.

When more first-generation BHs are born with large
spins, set by �max, fewer second-generation mergers occur
due to the larger imparted recoils [69]. On the other hand,
if natal spins are small and repeated mergers do occur,
the distribution of effective spins features a sharp peak at
�e↵ = 0 from first-generation mergers as well as extended
tails from high-generation mergers, as is the case for the
red curve in third column of Fig. 3. The �e↵ distributions
are always symmetric about 0 due to the assumption of
spin isotropy. For the 1g+2g populations, the 2g BH spin
is ⇡ 0.7 [14] and, because in this case �max = 0.37, is
typically higher than the spin of the 1g BH. In this limit,
one has �p ⇡
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the secondary peak in the �p distribution.

Whether higher-generation BHs pair with other BHs of
equal generation or form cross-generational binaries (e.g.,
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pairing cluster members according to

p(m1|↵) / m↵
1 , p(m2|�, m1) /

(
m�

2 if m2  m1 ,

0 otherwise ,

(3)

where m1 > m2 are the component BH masses. As for the
other power-law indices, we again take ↵, � 2 [�10, 10];
this broad range is taken in each case so that the simu-
lated populations encompass the prior bounds used later
in our statistical inference of Sec. III A. One-by-one, BH
pairs are drawn from the collection according to Eq. (3)
and the properties of their merger remnants are esti-
mated (assuming a uniform sampling of the orbital phase)
with the implementation of Ref. [96], which collects vari-
ous numerical relativity fitting formulae [67, 68, 97–102].
Upon merging, the remnant BHs receive a gravitational
recoil [103, 104]. If the magnitude vkick of this kick ve-
locity exceeds the escape speed of the host cluster, i.e.,
vkick > vesc, the remnant BH is removed and does not
merge again. Otherwise, it remains inside the cluster and
can undergo subsequent mergers. The estimated remnant
mass and spin magnitude are retained, while the spin di-
rections are resampled isotropically. This pairing, merger
and ejection proce

For each merger we record the source parameters ✓ :=

{Mc, q, �e↵ , �p}. In particular, Mc = (m1m2)
3/5/(m1 +

m2)
1/5 is the chirp mass, q = m2/m1  1 is the mass

ratio, �e↵ 2 [�1, 1] is the effective aligned spin [105], and
�p 2 [0, 2] is a suitable parameter encoding the dominant
effect of orbital-plane precession; for the latter, we use
the augmented definition of Ref. [106] which consistently
averages over the precessional motion including effects
from both component spins. While this definition of �p

is still a frequency-dependent quantity over the inspiral
timescale, recent work has shown that the influence of GW
reference frequency at the population level is currently
subdominant compared to measurement errors [33]. In
the simulated populations we measure �p at the reference
frequency of 20 Hz.

Additionally, we record whether each merger is that
of two first-generation BHs (1g+1g) which produces
a second-generation (2g) remnant, a first- and second-
generation BH (1g+2g), two second-generation BHs
(2g+2g), or whether it contains a component BH of higher
generation (>2g). From these, we compute the fraction of
mergers in each generation: f1g+1g, f1g+2g, f2g+2g, and
f>2g = 1 � f1g+1g � f1g+2g � f2g+2g.

D. Cosmic placement

The distribution of sources is assumed to be isotropic
over the sky, inclination and polarization angle. We do not
infer the redshift distribution of BH binaries but consider
it fixed, i.e., independent of the hyperparameters �. Each
merger is placed at a redshift z according to a distribution
that is uniform in comoving volume Vc and source-frame
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FIG. 2. The fraction of mergers in our simulations from
each binary generation as a function of the total number of
mergers. The simulations are separated into bins equally
spaced in the total number of mergers and the bin-averaged
branching fraction of each binary generation –1g+1g (blue),
1g+2g (orange), 2g+2g (green), and higher generations (red)–
is plotted. At the lower (upper) end, simulations are dominated
by mergers between first- (higher-) generation BHs.

time, i.e.,

p(z) / 1

1 + z

dVc

dz
. (4)

An immediate generalization of this work would include
taking into account the longer assembly times of higher-
generation binaries (e.g., [107]) via their redshift distri-
bution. This can be implemented with an additional
hyperparameter and will be tackled in future work.

Ostensibly z 2 (0, 1), but in practice there is a
detector-dependent horizon, zmax, beyond which binary
BH mergers are not observable. To find a conservative
zmax, we consider a series of binaries with aligned max-
imal spins, equal masses, and optimal orientation with
respect to a single detector (overhead and face on). These
are the loudest sources for a given total mass and redshift.
We compute signal-to-noise ratios (SNRs) as described in
Sec. III C and find that the entire mass range becomes
sub-threshold above an upper bound zmax = 2.3, which
we thus take as the maximum of the redshift distribution
(in agreement with Appendix E of Ref. [27]).

E. Resulting populations

The above prescription allows us to transform a simple
phenomenological description of first-generation BH pop-
ulations into a complex numerical distribution containing

Four representative hyperparameter locations

This is a hard problem! 
Strong correlations, multimodalities,  

spikes, gaps, degeneracies

… and we keep track of the merger generation

Mould, DG, Taylor 2022

Mould, DG, Taylor 2022

Tackling inference on four event parameters 
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✓ = {Mc, q,�e↵ ,�p}

DG+ 2021
Ask me at coffee  
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1. The population problem 
2. Current pipeline: hierarchical mergers 
3. Current pipeline: machine learning 
4. Things we (haven’t) figured out (yet)
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FIG. 1. A schematic diagram of our population modeling and inference procedure. Arrows indicate information that is passed
from one element to another, and elements that occur at the same stage of the pipeline are grouped into rows. The first
row represents simulations of binary BH mergers, while the second lists postprocessing applied to the simulated data. We
leverage deep learning, shown in the third row, by constructing DNNs to act as functional emulators for key ingredients of
GW population inference, indicated within the fourth row. In the final row, the deep-learned selection function and population
model are combined with data from GW catalogs to feed into a hierarchical Bayesian inference which, along with a third DNN
to predict branching fractions between subpopulations, is used to make conclusions about the underlying distribution of merging
stellar-mass binary BHs.

In Sec. V we report the results of our inference on the
latest catalog of GW events, discussing the astrophysical
implications and comparing to recent related works. Fi-
nally, we finish with a summary of future extensions to
our work in Sec. VI and concluding remarks in Sec. VII.
The GW events that are included in our analysis and
their source parameters are enumerated in Appendix A.

The inference pipeline established here highlights ad-
vancements at the intersection of GW astronomy with
statistical analysis and deep learning, and readily accom-
modates more realistic astrophysical simulations such as
binary population synthesis.

II. HIERARCHICAL MERGER POPULATIONS

We model the retention and ejection of merger remnants
in a “cluster”, which here simply refers to a collection of
BHs in an environment with constant escape speed, vesc.
We use the setup described in Ref. [70] (see Refs. [51,
72] for additional applications). Our model depends on
six population parameters, � := {↵, �, �, �, mmax, �max}.
These are reported in Table I and described below. In
particular, the quantities �, mmax, and �max parametrize
the population of first-generation (1g) BHs, while the
quantities ↵, �, and � parametrize the pairing and merger
process.

This setup is an excellent testbed for our deep-learning
explorations because these simulations are not computa-
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FIG. 1. A schematic diagram of our population modeling and inference procedure. Arrows indicate information that is passed
from one element to another, and elements that occur at the same stage of the pipeline are grouped into rows. The first
row represents simulations of binary BH mergers, while the second lists postprocessing applied to the simulated data. We
leverage deep learning, shown in the third row, by constructing DNNs to act as functional emulators for key ingredients of
GW population inference, indicated within the fourth row. In the final row, the deep-learned selection function and population
model are combined with data from GW catalogs to feed into a hierarchical Bayesian inference which, along with a third DNN
to predict branching fractions between subpopulations, is used to make conclusions about the underlying distribution of merging
stellar-mass binary BHs.

In Sec. V we report the results of our inference on the
latest catalog of GW events, discussing the astrophysical
implications and comparing to recent related works. Fi-
nally, we finish with a summary of future extensions to
our work in Sec. VI and concluding remarks in Sec. VII.
The GW events that are included in our analysis and
their source parameters are enumerated in Appendix A.

The inference pipeline established here highlights ad-
vancements at the intersection of GW astronomy with
statistical analysis and deep learning, and readily accom-
modates more realistic astrophysical simulations such as
binary population synthesis.

II. HIERARCHICAL MERGER POPULATIONS

We model the retention and ejection of merger remnants
in a “cluster”, which here simply refers to a collection of
BHs in an environment with constant escape speed, vesc.
We use the setup described in Ref. [70] (see Refs. [51,
72] for additional applications). Our model depends on
six population parameters, � := {↵, �, �, �, mmax, �max}.
These are reported in Table I and described below. In
particular, the quantities �, mmax, and �max parametrize
the population of first-generation (1g) BHs, while the
quantities ↵, �, and � parametrize the pairing and merger
process.

This setup is an excellent testbed for our deep-learning
explorations because these simulations are not computa-
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FIG. 1. A schematic diagram of our population modeling and inference procedure. Arrows indicate information that is passed
from one element to another, and elements that occur at the same stage of the pipeline are grouped into rows. The first
row represents simulations of binary BH mergers, while the second lists postprocessing applied to the simulated data. We
leverage deep learning, shown in the third row, by constructing DNNs to act as functional emulators for key ingredients of
GW population inference, indicated within the fourth row. In the final row, the deep-learned selection function and population
model are combined with data from GW catalogs to feed into a hierarchical Bayesian inference which, along with a third DNN
to predict branching fractions between subpopulations, is used to make conclusions about the underlying distribution of merging
stellar-mass binary BHs.

In Sec. V we report the results of our inference on the
latest catalog of GW events, discussing the astrophysical
implications and comparing to recent related works. Fi-
nally, we finish with a summary of future extensions to
our work in Sec. VI and concluding remarks in Sec. VII.
The GW events that are included in our analysis and
their source parameters are enumerated in Appendix A.

The inference pipeline established here highlights ad-
vancements at the intersection of GW astronomy with
statistical analysis and deep learning, and readily accom-
modates more realistic astrophysical simulations such as
binary population synthesis.

II. HIERARCHICAL MERGER POPULATIONS

We model the retention and ejection of merger remnants
in a “cluster”, which here simply refers to a collection of
BHs in an environment with constant escape speed, vesc.
We use the setup described in Ref. [70] (see Refs. [51,
72] for additional applications). Our model depends on
six population parameters, � := {↵, �, �, �, mmax, �max}.
These are reported in Table I and described below. In
particular, the quantities �, mmax, and �max parametrize
the population of first-generation (1g) BHs, while the
quantities ↵, �, and � parametrize the pairing and merger
process.

This setup is an excellent testbed for our deep-learning
explorations because these simulations are not computa-
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FIG. 1. A schematic diagram of our population modeling and inference procedure. Arrows indicate information that is passed
from one element to another, and elements that occur at the same stage of the pipeline are grouped into rows. The first
row represents simulations of binary BH mergers, while the second lists postprocessing applied to the simulated data. We
leverage deep learning, shown in the third row, by constructing DNNs to act as functional emulators for key ingredients of
GW population inference, indicated within the fourth row. In the final row, the deep-learned selection function and population
model are combined with data from GW catalogs to feed into a hierarchical Bayesian inference which, along with a third DNN
to predict branching fractions between subpopulations, is used to make conclusions about the underlying distribution of merging
stellar-mass binary BHs.

In Sec. V we report the results of our inference on the
latest catalog of GW events, discussing the astrophysical
implications and comparing to recent related works. Fi-
nally, we finish with a summary of future extensions to
our work in Sec. VI and concluding remarks in Sec. VII.
The GW events that are included in our analysis and
their source parameters are enumerated in Appendix A.

The inference pipeline established here highlights ad-
vancements at the intersection of GW astronomy with
statistical analysis and deep learning, and readily accom-
modates more realistic astrophysical simulations such as
binary population synthesis.

II. HIERARCHICAL MERGER POPULATIONS

We model the retention and ejection of merger remnants
in a “cluster”, which here simply refers to a collection of
BHs in an environment with constant escape speed, vesc.
We use the setup described in Ref. [70] (see Refs. [51,
72] for additional applications). Our model depends on
six population parameters, � := {↵, �, �, �, mmax, �max}.
These are reported in Table I and described below. In
particular, the quantities �, mmax, and �max parametrize
the population of first-generation (1g) BHs, while the
quantities ↵, �, and � parametrize the pairing and merger
process.

This setup is an excellent testbed for our deep-learning
explorations because these simulations are not computa-
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FIG. 1. A schematic diagram of our population modeling and inference procedure. Arrows indicate information that is passed
from one element to another, and elements that occur at the same stage of the pipeline are grouped into rows. The first
row represents simulations of binary BH mergers, while the second lists postprocessing applied to the simulated data. We
leverage deep learning, shown in the third row, by constructing DNNs to act as functional emulators for key ingredients of
GW population inference, indicated within the fourth row. In the final row, the deep-learned selection function and population
model are combined with data from GW catalogs to feed into a hierarchical Bayesian inference which, along with a third DNN
to predict branching fractions between subpopulations, is used to make conclusions about the underlying distribution of merging
stellar-mass binary BHs.

In Sec. V we report the results of our inference on the
latest catalog of GW events, discussing the astrophysical
implications and comparing to recent related works. Fi-
nally, we finish with a summary of future extensions to
our work in Sec. VI and concluding remarks in Sec. VII.
The GW events that are included in our analysis and
their source parameters are enumerated in Appendix A.

The inference pipeline established here highlights ad-
vancements at the intersection of GW astronomy with
statistical analysis and deep learning, and readily accom-
modates more realistic astrophysical simulations such as
binary population synthesis.

II. HIERARCHICAL MERGER POPULATIONS

We model the retention and ejection of merger remnants
in a “cluster”, which here simply refers to a collection of
BHs in an environment with constant escape speed, vesc.
We use the setup described in Ref. [70] (see Refs. [51,
72] for additional applications). Our model depends on
six population parameters, � := {↵, �, �, �, mmax, �max}.
These are reported in Table I and described below. In
particular, the quantities �, mmax, and �max parametrize
the population of first-generation (1g) BHs, while the
quantities ↵, �, and � parametrize the pairing and merger
process.

This setup is an excellent testbed for our deep-learning
explorations because these simulations are not computa-
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FIG. 1. A schematic diagram of our population modeling and inference procedure. Arrows indicate information that is passed
from one element to another, and elements that occur at the same stage of the pipeline are grouped into rows. The first
row represents simulations of binary BH mergers, while the second lists postprocessing applied to the simulated data. We
leverage deep learning, shown in the third row, by constructing DNNs to act as functional emulators for key ingredients of
GW population inference, indicated within the fourth row. In the final row, the deep-learned selection function and population
model are combined with data from GW catalogs to feed into a hierarchical Bayesian inference which, along with a third DNN
to predict branching fractions between subpopulations, is used to make conclusions about the underlying distribution of merging
stellar-mass binary BHs.

In Sec. V we report the results of our inference on the
latest catalog of GW events, discussing the astrophysical
implications and comparing to recent related works. Fi-
nally, we finish with a summary of future extensions to
our work in Sec. VI and concluding remarks in Sec. VII.
The GW events that are included in our analysis and
their source parameters are enumerated in Appendix A.

The inference pipeline established here highlights ad-
vancements at the intersection of GW astronomy with
statistical analysis and deep learning, and readily accom-
modates more realistic astrophysical simulations such as
binary population synthesis.

II. HIERARCHICAL MERGER POPULATIONS

We model the retention and ejection of merger remnants
in a “cluster”, which here simply refers to a collection of
BHs in an environment with constant escape speed, vesc.
We use the setup described in Ref. [70] (see Refs. [51,
72] for additional applications). Our model depends on
six population parameters, � := {↵, �, �, �, mmax, �max}.
These are reported in Table I and described below. In
particular, the quantities �, mmax, and �max parametrize
the population of first-generation (1g) BHs, while the
quantities ↵, �, and � parametrize the pairing and merger
process.

This setup is an excellent testbed for our deep-learning
explorations because these simulations are not computa-
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Population neural network
9

with a Gaussian KDE. To efficiently evaluate p0pop with
sufficient resolution in the four-dimensional space of source
parameters, we use a version of the convolution-based im-
plementation in KDEpy [116], which we modify to enforce
the parameter limits (Table I) with reflective boundary
conditions [112]. With this method, density estimations
of multivariate data with millions of samples evaluated
on millions of points takes seconds on a standard, off-the-
shelf machine, compared to hours with standard KDE
routines (the evaluation points must, however, lie on a lin-
early spaced Cartesian grid that bound the data extrema).
Each dimension is individually scaled with bandwidths
determined by the Improved Sheather Jones (ISJ) plug-in
selection rule [117, 118]. The ISJ algorithm does not make
the assumption of normality on the underlying distribu-
tion and as such is more robust when determining optimal
bandwidths for non-Gaussian multi-modal distributions.
We evaluate each of the N� KDEs on a linearly spaced
Cartesian grid, including the parameter bounds, with 21
points in each axis.

2. Regression with a deep neural network

Elucidating the scale of the regression problem, there
are 21

4 ⇡ 2 ⇥ 10
5 KDE evaluations estimating p0pop(✓|�)

over the combined ten-dimensional vectors of source and
population parameters (✓,�) at each of the N� = 1000

hyperparameter locations. While the KDEs approximate
the N� functions {✓ 7! p0pop(✓|�i

)}N�
i=1, we must also inter-

polate over the population parameters to find an accurate
mapping (✓,�) 7! p0pop(✓|�).

To achieve this, we make use of a fully-connected DNN
implemented with Google’s TensorFlow deep-learning
library [119]. The network performs a regression of the
KDE values of p0pop over the space of (✓,�) coordinates.
As a preprocessing step we normalize all coordinates (✓,�)

to a unit hypercube using the limits given in Table I, while
the values of p0pop are similarly scaled between zero and
their maximum. The input layer has dim(✓)+dim(�) = 10

neurons, while the output layer has one with enforced
nonnegativity corresponding to the predicted value of
the probability density. Between the input and output
layers, the network architecture consists of five hidden
layers, each with 128 neurons. We summarize the network
architecture in Table II. The number of parameters in a
given layer is given by the number of weights (equal to
the product of the number of neurons with that of the
preceding layer) plus the number of biases (equal to the
number of neurons).

We use randomized leaky rectified linear units (RRe-
LUs) [120] in each layer. This modifies the standard
rectified linear unit (ReLU) activation function, given by
ReLU(x) := max(0, x), in two ways. Firstly, leaky ReLU
activation functions are maps x 7! max(0, x)+min(0, ax),
where a 2 [l, u] is a parameter fixed to a small number,
i.e., the positive region is linear with unit slope while
the negative region is linear with slope a. Secondly, the

Layer Neurons Activation Parameters

Input 10 – 0
Dense 1 128 RReLU 1408
Dense 2 128 RReLU 16,512
Dense 3 128 RReLU 16,512
Dense 4 128 RReLU 16,512
Dense 5 128 RReLU 16,512
Output 1 Absolute value 129

Total 67,585

TABLE II. The architecture of the DNN that emulates the
simulated populations by predicting the conditional density
p0
pop(✓|�) of the source parameters ✓ given population-level

parameters �. Each row represents a single layer of the network
and lists the number of neurons in the layer, the activation
function of those neurons (RReLU for the hidden layers and
absolute value for the final output), and the corresponding
number of free parameters.

randomized leaky variant RReLU samples a uniformly in
[l, u] during training, and fixes a = (l+u)/2 when making
predictions (we keep the default values of l = 1/8 and
u = 1/3 [120]). We found empirically that, among other
ReLU variants and nonlinear activations, RReLU gave the
best predictive performance whilst reducing overfitting to
the training data.

We split the N� = 1000 simulations into a training
data set of 900 runs and validation set of 100 runs. The
validation sample is unseen by the training process except
to assess the network performance. The training input to
the network, which is randomly shuffled at each iteration,
thus consists of ⇡ 1.75⇥10

8 values of the ten-dimensional
vector (✓,�) and the corresponding KDE estimates of
p0pop(✓|�). The network is trained using the Adam opti-
mizer [121], the mean absolute error (MAE) loss function,
a learning rate of 10

�4, and batch size equal to 0.01%

of the total number of training data points. Training is
performed for 10

4 epochs on an NVIDIA A100 Tensor
Core GPU, taking about four days. With this setup, the
number of training epochs was sufficient to ensure conver-
gence of the MAE; the average gradient of the (smoothed)
validation MAE over the penultimate 100 epochs was
< 0.1% that of the first 100.

When making predictions with the trained NN, the
values are first rescaled from the unit interval to the prob-
ability density parameter space. While the predictions are
approximately normalized, the network does not enforce
unit normalization. Therefore, we estimate normaliza-
tion factors

R
p0pop(✓|�)d✓ by numerically integrating the

predicted distributions.
In Fig. 4 we summarize the training procedure and

predictive performance of our NN population model. The
convergence of the MAE loss function for the training
and validation samples is plotted in the top panel. The
NN fits slightly better to the training data, the validation
MAE being on average ⇠ 1.2 times larger, but there is no

10

FIG. 4. Top: Loss functions versus epoch for the training
(blue) and validation (orange) data of the population density
NN p0

pop(✓|�). Smoothed versions are overplotted in bold.
Bottom: Distribution across all simulations of the Hellinger
distances dH between the true KDE evaluations of p0

pop(✓|�)
and those predicted by the NN. The medians and 90% intervals
of dH are plotted as vertical dashed lines and listed explicitly.

significant overfitting. In the bottom panel of Fig. 4 we
quantify this statement by comparing the predictive accu-
racy of the trained population model using the Hellinger
distance [122], a metric dH over the space of probability
densities that measures the “distance” between two distri-
butions. For two probability densities p and q, it is given
by

dH(p, q)2 = 1 �
Z p

p(x)q(x)dx . (15)

dH has the desirable properties of being symmetric and
bounded in [0, 1], with dH(p, q) = 0 only when p ⌘ q and
dH(p, q) = 1 when p and q have disjoint supports (see
Appendix C of Ref. [123] for a physics-oriented summary
of the properties of the Hellinger distance). For each of
our simulations we compute the distance between the
KDE evaluation and NN prediction for the probability
density. While the mild overfitting presents itself as a
small number of outliers at larger values of dH in the
validation distribution, both the training and validations
subsets have median values ⇡ 0.05 and are consistent
with each other.

In Fig. 5 we illustrate example predictions from our
deep-learned population model. For a given set of
population-level parameters �, the NN predicts the value
of the joint four-dimensional probability density over the
source parameters ✓ = {Mc, q, �e↵ , �p}. For three valida-
tion simulations, we plot the predicted values of p0pop(✓|�)

(solid lines) along with the true KDE evaluations for com-
parison (circle markers), numerically marginalizing to
one-dimensional distributions for the purpose of visual-
ization.

The first example (red) has good predictive accuracy,
with dH = 0.10. Here, we use the same distribution that
was labeled “repeated mergers” in Fig. 3, with parameters
↵ = 4.1, � = 3.1, � = 5.5, � = 5.1, mmax = 70M� and
�max = 0.37. Here, the larger escape velocities and sharp
mass function and pairing probabilities lead to distinct
peaks due to higher-generational mergers. Even though
the Hellinger distance of this simulation is greater than the
median value, the one-dimensional marginal predictions
present excellent matches to the true validation data,
accurately capturing all sharp features.

The second case (“max dH”, in blue) is a very con-
servative bound on the performance of our NN, taking
the validation simulation with the largest value of the
Hellinger distance dH = 0.29 (i.e., that with the worst
predictive accuracy). The population parameters are
↵ = 3.8, � = 1.5, � = �2.8, � = 3.6, mmax = 66M�,
and �max = 0.81. While the distributions of the spin
parameter �e↵ and �p are captured well, the predictions
in the mass distributions suffer from larger errors. The
higher value of the maximum natal spin �max = 0.81

blends the values of the spin parameters between different
generations, while the pairing process generates smaller
mass ratios. We stress that this is the worst case among
the entire validation set and a rather extreme outlier (cf.
Fig. 4).

The third case (“min dH”, in green) represents the
best predictive accuracy of our population model, with
dH = 0.02. In this validation simulation, the hyperpa-
rameters are ↵ = �9.2, � = 7.4, � = �8.9, � = �2.8,
mmax = 33M�, and �max = 0.27, which produce a narrow
unimodal distribution in the joint four-dimensional space
of source parameters. Unsurprisingly, distributions with
a simple feature set like this are easier to learn by our
DNN population model.

C. Selection function

1. Detection probability

We assume sources are distributed uniformly in sky
location, inclination, and polarization angle. We estimate
Pdet using the widely used single-detector semi-analytic
approximation of Refs. [124, 125], as implemented in the
Python package gwdet [126], which relies on computing
the SNR of optimally oriented sources with the same in-
trinsic parameters. This is estimated using pyCBC [127],
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FIG. 5. True KDE evaluations (circle markers) of the population density p0
pop(✓|�) compared against the NN population

model predictions (solid lines) for three validation simulations. The full four-dimensional distributions are marginalized to
each one-dimensional event-level parameter (left to right: chirp mass Mc, mass ratio q, effective aligned spin �e↵ , and effective
precessing spin �p) for the purpose of visualization. In blue is the validation simulation that has the worst predictive accuracy,
with a Hellinger distance of dH = 0.29 and population-level parameters ↵ = 3.8, � = 1.5, � = �2.8, � = 3.6, mmax = 66M�,
and �max = 0.81. In green is the validation simulation with the smallest Hellinger distance dH = 0.02 and ↵ = �9.2, � = 7.4,
� = �8.9, � = �2.8, mmax = 33sM�, �max = 0.27. In red is a validation simulation (as in Fig. 3) with dH = 0.10 and whose
distribution contains distinct features due to repeat mergers.

the IMRPhenomPv2 waveform approximant [128–130],
and noise curves representative of the LIGO detector
performance during O1O25 and O36 [131]. While the
analytic marginalization of Refs. [124, 125] is, strictly
speaking, only valid if one neglects spin precession and
higher-order GW modes, the impact of these additional
effects is subdominant [47]. Their inclusion requires fur-
ther modeling, which has also been recently tackled using
machine-learning techniques [47, 48]; we plan to include
these refinements in future versions of our population
inference pipeline. We employ a SNR threshold of 8 [132]
and thus set Pdet = 0 for all subthreshold binaries.

At each location in the population parameter space
{�i}N�

i=1, we compute Pdet for all the binaries in the sim-
ulation. These have parameters {#i

j}
Nh(�

i)
j=1 ⇠ ppop(#|�i

),
allowing us to approximate the refactored detection effi-
ciency of Eq. (12) as

�0
(�i

) =

X

r

Tr

T

2

4 1

Np(�i)

Nh(�
i)X

j=1

Pdet(#
i
j , r)

3

5 , (16)

where the term in brackets is the Monte-Carlo approxi-
mation of the integral in Eq. (7).

2. Regression with a deep neural network

To evaluate the (refactored) detection efficiency at ar-
bitrary values of the population parameters, the function

5
Early high from dcc.ligo.org/LIGO-P1200087-v47/public.

6
LIGO Livingston from dcc.ligo.org/LIGO-T2000012/public.

Layer Neurons Activation Parameters

Input 6 – 0
Dense 1 128 RReLU 896
Dense 2 128 RReLU 16,512
Dense 3 128 RReLU 16,512
Output 1 – 129

Total 34,049

TABLE III. The architecture of the DNN that predicts the
logarithmic selection function ln �0(�) as a function of the
population-level parameters �. Each row represents a single
layer and lists its number of neurons, the activation function
used, and the corresponding number of free parameters. All
hidden layers employ RReLU nonlinearities.

�0
(�) must be emulated using the discrete evaluations at

�i. Here, we also use a DNN with TensorFlow [119].
The network architecture consists of an input layer with
dim(�) = 6 neurons and a linear output layer with one,
corresponding to the predicted value of ln �0

(�). We add
three hidden layers with 128 neurons each and RReLU
activation. This network architecture is summarized in
Table III.

We split the hyperparameter coordinates into the
same 90% training and 10% validation simulations as
in Sec. III B, though note that the training data here
consists only of the hyperparameters � rather than the
joint vector (✓,�). As a preprocessing stage, we again
normalize the input values of {�i}N�

i=1 to a unit hypercube
and train on the output values of {ln �0

(�i
)}N�

i=1, which
are normalized to the unit interval according to the ex-
trema across the simulations. Predictions are rescaled
back to the relevant parameter space. We use Adam opti-
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FIG. 5. True KDE evaluations (circle markers) of the population density p0
pop(✓|�) compared against the NN population

model predictions (solid lines) for three validation simulations. The full four-dimensional distributions are marginalized to
each one-dimensional event-level parameter (left to right: chirp mass Mc, mass ratio q, effective aligned spin �e↵ , and effective
precessing spin �p) for the purpose of visualization. In blue is the validation simulation that has the worst predictive accuracy,
with a Hellinger distance of dH = 0.29 and population-level parameters ↵ = 3.8, � = 1.5, � = �2.8, � = 3.6, mmax = 66M�,
and �max = 0.81. In green is the validation simulation with the smallest Hellinger distance dH = 0.02 and ↵ = �9.2, � = 7.4,
� = �8.9, � = �2.8, mmax = 33sM�, �max = 0.27. In red is a validation simulation (as in Fig. 3) with dH = 0.10 and whose
distribution contains distinct features due to repeat mergers.

the IMRPhenomPv2 waveform approximant [128–130],
and noise curves representative of the LIGO detector
performance during O1O25 and O36 [131]. While the
analytic marginalization of Refs. [124, 125] is, strictly
speaking, only valid if one neglects spin precession and
higher-order GW modes, the impact of these additional
effects is subdominant [47]. Their inclusion requires fur-
ther modeling, which has also been recently tackled using
machine-learning techniques [47, 48]; we plan to include
these refinements in future versions of our population
inference pipeline. We employ a SNR threshold of 8 [132]
and thus set Pdet = 0 for all subthreshold binaries.

At each location in the population parameter space
{�i}N�

i=1, we compute Pdet for all the binaries in the sim-
ulation. These have parameters {#i

j}
Nh(�

i)
j=1 ⇠ ppop(#|�i

),
allowing us to approximate the refactored detection effi-
ciency of Eq. (12) as

�0
(�i

) =

X

r

Tr

T

2

4 1

Np(�i)

Nh(�
i)X

j=1

Pdet(#
i
j , r)

3

5 , (16)

where the term in brackets is the Monte-Carlo approxi-
mation of the integral in Eq. (7).

2. Regression with a deep neural network

To evaluate the (refactored) detection efficiency at ar-
bitrary values of the population parameters, the function

5
Early high from dcc.ligo.org/LIGO-P1200087-v47/public.

6
LIGO Livingston from dcc.ligo.org/LIGO-T2000012/public.

Layer Neurons Activation Parameters

Input 6 – 0
Dense 1 128 RReLU 896
Dense 2 128 RReLU 16,512
Dense 3 128 RReLU 16,512
Output 1 – 129

Total 34,049

TABLE III. The architecture of the DNN that predicts the
logarithmic selection function ln �0(�) as a function of the
population-level parameters �. Each row represents a single
layer and lists its number of neurons, the activation function
used, and the corresponding number of free parameters. All
hidden layers employ RReLU nonlinearities.

�0
(�) must be emulated using the discrete evaluations at

�i. Here, we also use a DNN with TensorFlow [119].
The network architecture consists of an input layer with
dim(�) = 6 neurons and a linear output layer with one,
corresponding to the predicted value of ln �0

(�). We add
three hidden layers with 128 neurons each and RReLU
activation. This network architecture is summarized in
Table III.

We split the hyperparameter coordinates into the
same 90% training and 10% validation simulations as
in Sec. III B, though note that the training data here
consists only of the hyperparameters � rather than the
joint vector (✓,�). As a preprocessing stage, we again
normalize the input values of {�i}N�

i=1 to a unit hypercube
and train on the output values of {ln �0

(�i
)}N�

i=1, which
are normalized to the unit interval according to the ex-
trema across the simulations. Predictions are rescaled
back to the relevant parameter space. We use Adam opti-
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FIG. 4. Top: Loss functions versus epoch for the training
(blue) and validation (orange) data of the population density
NN p0

pop(✓|�). Smoothed versions are overplotted in bold.
Bottom: Distribution across all simulations of the Hellinger
distances dH between the true KDE evaluations of p0

pop(✓|�)
and those predicted by the NN. The medians and 90% intervals
of dH are plotted as vertical dashed lines and listed explicitly.

significant overfitting. In the bottom panel of Fig. 4 we
quantify this statement by comparing the predictive accu-
racy of the trained population model using the Hellinger
distance [122], a metric dH over the space of probability
densities that measures the “distance” between two distri-
butions. For two probability densities p and q, it is given
by

dH(p, q)2 = 1 �
Z p

p(x)q(x)dx . (15)

dH has the desirable properties of being symmetric and
bounded in [0, 1], with dH(p, q) = 0 only when p ⌘ q and
dH(p, q) = 1 when p and q have disjoint supports (see
Appendix C of Ref. [123] for a physics-oriented summary
of the properties of the Hellinger distance). For each of
our simulations we compute the distance between the
KDE evaluation and NN prediction for the probability
density. While the mild overfitting presents itself as a
small number of outliers at larger values of dH in the
validation distribution, both the training and validations
subsets have median values ⇡ 0.05 and are consistent
with each other.

In Fig. 5 we illustrate example predictions from our
deep-learned population model. For a given set of
population-level parameters �, the NN predicts the value
of the joint four-dimensional probability density over the
source parameters ✓ = {Mc, q, �e↵ , �p}. For three valida-
tion simulations, we plot the predicted values of p0pop(✓|�)

(solid lines) along with the true KDE evaluations for com-
parison (circle markers), numerically marginalizing to
one-dimensional distributions for the purpose of visual-
ization.

The first example (red) has good predictive accuracy,
with dH = 0.10. Here, we use the same distribution that
was labeled “repeated mergers” in Fig. 3, with parameters
↵ = 4.1, � = 3.1, � = 5.5, � = 5.1, mmax = 70M� and
�max = 0.37. Here, the larger escape velocities and sharp
mass function and pairing probabilities lead to distinct
peaks due to higher-generational mergers. Even though
the Hellinger distance of this simulation is greater than the
median value, the one-dimensional marginal predictions
present excellent matches to the true validation data,
accurately capturing all sharp features.

The second case (“max dH”, in blue) is a very con-
servative bound on the performance of our NN, taking
the validation simulation with the largest value of the
Hellinger distance dH = 0.29 (i.e., that with the worst
predictive accuracy). The population parameters are
↵ = 3.8, � = 1.5, � = �2.8, � = 3.6, mmax = 66M�,
and �max = 0.81. While the distributions of the spin
parameter �e↵ and �p are captured well, the predictions
in the mass distributions suffer from larger errors. The
higher value of the maximum natal spin �max = 0.81

blends the values of the spin parameters between different
generations, while the pairing process generates smaller
mass ratios. We stress that this is the worst case among
the entire validation set and a rather extreme outlier (cf.
Fig. 4).

The third case (“min dH”, in green) represents the
best predictive accuracy of our population model, with
dH = 0.02. In this validation simulation, the hyperpa-
rameters are ↵ = �9.2, � = 7.4, � = �8.9, � = �2.8,
mmax = 33M�, and �max = 0.27, which produce a narrow
unimodal distribution in the joint four-dimensional space
of source parameters. Unsurprisingly, distributions with
a simple feature set like this are easier to learn by our
DNN population model.

C. Selection function

1. Detection probability

We assume sources are distributed uniformly in sky
location, inclination, and polarization angle. We estimate
Pdet using the widely used single-detector semi-analytic
approximation of Refs. [124, 125], as implemented in the
Python package gwdet [126], which relies on computing
the SNR of optimally oriented sources with the same in-
trinsic parameters. This is estimated using pyCBC [127],

• A fully connected network 
• A total of ~70k parameters! 
• Implemented in Google’s Tensorflow 
• Fast (~days) training on GPU  

No significant overfitting

Interpolated distributions 
are statistically the same

Able to capture spikes 
and almost-discontinuous 
features
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FIG. 11. The one- and two-dimensional marginal distributions of the population-level parameters � = {↵, �, �, �, mmax, �max} in
our model of hierarchical mergers as measured using the real GW data from the confident (FAR < 1 yr�1) binary BH events
through GWTC-3. In each two-dimensional distribution the contours enclose the 50% (dark shading) and 90% (light shading)
confidence regions. The one-dimensional median and symmetric 90% intervals are reported above each diagonal and are plotted
as vertical dashed lines in the below panels.

only the mean of a broadened feature, such that mmax

and µm are not directly equivalent. In our case, BH
with masses larger than mmax are accommodated with
hierarchical mergers.

Here we point out a key distinction of our model-
ing procedure: we assume all first-generation compo-
nent BHs are drawn from a shared distribution (above)
and then binary formation is separately modeled with
component pairing probabilities p(m1|↵) / m↵

1 and
p(m2|�, m1) / m�

2 (m2 < m1). This choice differs to, e.g.,

Power Law + Peak [28], which models each component
mass distribution with multiple features superimposed
on a power law distribution. One may be tempted to
think that, e.g., the primary mass distribution is equiv-
alent p(m1|↵)p(m1|�, mmax) / m↵+�

1 (and similarly for
secondary masses), however this applies only to 1g+1g bi-
naries. Our DNN population model additionally captures
the interdependence between binary pairing and remnant
retention. In short, the power law indices parametrizing
the distributions in this work are not directly comparable

A full fit of 4 event parameters and 6 population parameters, 
all correlated, with a non-analytical population model!
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FIG. 13. The astrophysical distributions of the modeled chirp mass Mc (middle) and mass ratio q (right), as well as the implied
distributions of primary and secondary masses, m1 and m2 respectively (left), as determined by our DNN population model and
Bayesian analysis of the binary BH merger events in GWTC-3. The solid blue lines represent the PPDs while the dashed lines
enclose the 90% symmetric confidence intervals (shaded). In the left panel the vertical gray band encloses the 90% confidence
interval for the maximum mass of first-generation BHs, mmax.
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FIG. 14. The PPDs (in logarithmic scale) of the first-
generation BH masses m1g (purple) and the combined distri-
bution of all components masses m1, m2 (blue). The solid lines
denoted the means while the dashed lines bound the shaded
90% symmetric confidence regions. The vertical gray band
encloses the 90% constraint on the maximum first-generation
BH mass, mmax.

more constraining predictions are very much needed. The
overall distribution of spins is determined jointly by the
first-generation distribution, the binary pairing procedure
(as inferred above), the general-relativistic mapping of bi-
nary to remnant properties, and the ejection/retention of
merger remnants in host environments. While we account
for the dimensionless spin magnitudes of higher-generation
binaries in our population modeling, the spin directions
are resampled isotropically.

A more solid finding we report is that the spins of 1g+1g
binary BHs are limited below the typical dimensionless
spin of merger remnants ⇡ 0.7 [14]. Hierarchical BHs
with much lower spins are extremely rare [72], yet another
indication that some higher-generation binary BH are
required to fit the data with our model (cf. Sec. V D). We
measure spins using two effective parameters; the effective

aligned spin �e↵ measures the binary spin component par-
allel to the orbital plane [105], and the effective precessing
spin �p measures the in-plane two-spin projection [106].
For sources with negligible, misaligned, or (equal-mass)
oppositely aligned spins we have �e↵ ⇡ 0, while large pos-
itive (negative) values indicate high aligned (antialigned)
spins. Similarly, �p ⇡ 0 for spins which are small, aligned
with the orbital angular momentum, or oppositely aligned
in the orbital plane. Nonzero values of �p indicate the
presence of spin precession, with �p > 1 being a region
exclusively occupied by binaries with precessing spin con-
tributions from both BH components.

Figure 15 displays the PPDs of these two modeled effec-
tive spin parameters. In the left panel is the distribution
of effective aligned spins �e↵ . Here the assumption of
isotropic spins leads to an overly tight constraint. This
mismodeling enforces a distribution which is symmetric
about and centered on �e↵ = 0, in contrast with more
generic spin models which infer asymmetric distributions
skewed to positive �e↵ [28] (and thus favoring alignment)
or those that rule out negative �e↵ [31, 32]. However, we
do find that typically |�e↵ | . 0.4, in agreement with the
results of Ref. [28] (Gaussian Spin model); in particular,
we report |�e↵ | < 0.46

+0.04
�0.05 for 99% of the population.

On the other hand, the right panel of Fig. 15 shows
the distribution of precessing spins measured with �p,
where unlike Ref. [28] we observe substructure; note that
although they use the earlier �p definition of Ref. [139],
for the majority of events the two measurements are
indistinguishable [106, 140]. The distribution features
two prominent modes. The primary peak appears at
�p ⇡ 0.2, suggesting sources with at least moderately
misaligned spins, and thus undergoing spin precession,
make up a large portion of the population. The shape
and location of this mode are in broad agreement with
the results of Ref. [28]; see their Fig. 16.

However, in contrast to their finding that �p measure-
ments can be explained by either a narrow distribution
with peak �p ⇡ 0.2 or a broad distribution centered on

• Repeated mergers populate the upper 
mass gap 

• 1g cutoff ok with pair instability SN? 
• Additional structure in the gap due to 

higher generations
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FIG. 15. The PPDs of the effective aligned (�e↵ , left) and precessing (�p, right) spins derived from our DNN population
inference of binary BHs in GWTC-3. The means of the distributions are plotted with solid blue lines and the symmetric
90% confidence intervals are given by the shaded bands bounded by dashed lines. The inset for the �p panel shows the same
distribution with logarithmic scaling to highlight smaller-scale features.

�p = 0 (which results in multimodality when marginalized
over the posterior uncertainty), we find that individual
distributions drawn according to the hyperposterior al-
ways decrease at �p = 0, peak at �p ⇡ 0.2, and feature
a secondary mode typically around �p ⇡ 0.6. While our
population model naturally accommodates such multi-
modal structure, the Gaussian Spin model employed in
Ref. [28] only allows for a single peak and is thus unable
to jointly capture the narrow �p ⇡ 0.2 peak in addition to
the extended distribution above �p & 0.5, instead favoring
one or the other. Indeed, a single Gaussian distribution
cannot fit the distribution of �p within the 90% credible
bounds.

We verify that this secondary structure is due to re-
peated mergers as follows. Starting with the 1g+1g PPD
and binary pairing measurements to compute the dis-
tribution of 2g remnant masses and dimensionless spin
magnitudes (computed with Ref. [96] as in Sec. II C), the
distributions of �p for binaries formed either with one BH
each from the 1g and remnant distributions (i.e., 1g+2g)
or two remnant components (i.e., 2g+2g) both feature
peaks at �p ⇡ 0.6.

The inset in the �p panel of Fig. 15 shows the same
distribution with logarithmic scaling to highlight smaller-
scale features. The distribution falls off above the feature
at �p ⇡ 0.6 before a tertiary buildup at �p ⇡ 1 and a final
minor mode at � ⇡ 1.25, with a large decline inbetween
and eventual declivity beyond. We find minor evidence for
a population of sources occupying the exclusive two-spin
region �p > 1; the 99% quantile lies at �p = 0.88

+0.13
�0.07

while P (�p > 1) = 0.6+0.5
�0.3%. There is no support in the

population for �p & 1.5.

D. Merger generations

Given our DNN population model, the observations
of the previous sections suggest the presence of hierar-

chical mergers in the underlying population of merging
stellar-mass binary BHs. Taking samples � ⇠ p(�|d)

from the posterior distribution of population parameters
in Eq. (14), the corresponding draws from the poste-
rior of merger generation fractions can be derived as
fg(�) ⇠ p(fg|d), where fg is given by the DNN described
in Sec. III D.

Figure 16 presents the posterior distributions of the
fractional contribution to the population from each bi-
nary merger generation; the medians and 90% symmetric
intervals are quoted and indicated as vertical dashed lines.
In the underlying distribution, 74

+8
�6% of sources con-

tain only first-generation BHs (1g+1g), which implies
around 25% contain a component that is the remnant
of a previous merger, with 90% (99%) one-sided sup-
port for 1 � f1g+1g & 0.20 (0.15). Mixed-generation
binaries with both a first- and second-generation compo-
nent make up the second largest portion of the popula-
tion, with f1g+2g = 0.16

+0.04
�0.05, while binaries containing

two second-generation BHs or any component of even
higher generation contribute equally at the ⇠ 5% level
(f2g+2g = 0.04

+0.01
�0.01 and f>2g = 0.05

+0.02
�0.02, respectively).

Previous studies of older GW catalogs found weak evi-
dence for the presence of hierarchical mergers [141, 142].
However, further detections through GWTC-2 brought
the addition of events whose properties, including higher
masses and mass ratios, hinted at higher-generation ori-
gins. Ref. [58] presented a population analysis based on
a phenomenological model of globular clusters, imply-
ing the presence of at least one second-generation BH
in the GWTC-2 events with > 96% probability, rising
to > 99.99% when considering their highest Bayes factor
model corresponding to an escape speed vesc ⇠ 300km s

�1.
In this case they found median relative merger rates of
0.15 and 0.01 comparing 1g+2g and 2g+2g binaries to
the 1g+1g case, respectively, with 99% upper limits of
0.29 and 0.04. Equivalently, in our GWTC-3 analysis
we find broadly consistent relative branching fractions

Masses

• Fat tails in the effective spin 
• Fine structures in spin precession

Spins
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• If we allow for hierarchical mergers, the fit wants 
to go there! 

• Easy to infer subchannels (here the generation) 
• But can go crazy! Any label in the population…
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FIG. 16. The distributions of the branching fractions (left to right: f1g+1g, f1g+2g, f2g+2g, f>2g) for merger generations in the
astrophysical distribution of merging stellar-mass binary BHs, as measured with our deep learning approach to population
inference on the GWTC-3 catalog. The median and symmetric 90% confidence region for each generation fraction is reported
above –and plotted as vertical dashed lines within– the corresponding panel.

f1g+2g/f1g+1g = 0.22
+0.07
�0.08 and f2g+2g/f1g+1g = 0.06

+0.02
�0.02

(reporting medians and symmetric 90% confidence in-
tervals). Given the disparity of the underlying model
assumptions between the two analyses and the addition
of new detections in GWTC-3, our results jointly point
to the fact that, if admitted in the fitted population, a
modest number of binary BHs with hierarchical origin
appears necessary to best explain the data.

VI. SUMMARY AND FUTURE PROSPECTS

Our astrophysical findings were made possible by ad-
vances in the treatment of the GW data, in particular
exploiting deep-learning techniques. These two aspects
are summarized in Sec. VI A and VIB, respectively.

A. Astrophysics summary

We fitted current LIGO/Virgo data assuming a popula-
tion of sources that generalizes current phenomenological
functional forms while consistently allowing for the oc-
currence of hierarchical mergers. Therefore, the crucial
feature of our model is the separation of first- and higher-
generation merger populations, the latter of which is not
phenomenological. This allows us to place constraints
directly on the properties of those BHs born as stellar
remnants in addition to the population as a whole. We
summarize our key results as follows (quoting medians
and 90% credible regions):

• The distribution of escape speeds of environments
hosting binary BH mergers is relatively flat, though
lower values are preferred; modeled as a power law
between 0 < vesc < 500 km s

�1 the index is � =

�0.3+0.4
�0.3. Such environments may retain merger

remnants since, e.g., 85
+6
�7% of 1g+1g remnants

receive gravitational recoils vkick < 500 km s
�1.

• When parameterized as a truncated power law
(whose minimum is fixed to 5M�), the distribution
of first-generation masses has index � = �1.4+0.4

�0.5
and thus favors lighter BHs. First-generation BHs
have an upper mass limit mmax = 39

+3.6
�3.4M�.

• Negative power-law slopes are recovered for the
binary pairing probabilities distributions, indicating
both components are selected with a preference for
lighter BHs, though this preference is stronger for
secondaries; the primary (secondary) pairing index
is ↵ = �0.9+0.6

�0.7 (� = �2.4+1.8
�1.7). This finding is

inconsistent with uniform binary pairing (↵ = � =

0) at the 90% level.

• This results in a primary (secondary) mass distribu-
tion that peaks around m1 ⇡ 12M� (m2 ⇡ 8M�),
with a buildup and then decline before the first-
generation upper mass limit. Mass ratios peak at
unity but extend to q & 0.1. While 99% of the
population has masses < 60

+7.2
�6.5M�, there is an ex-

tended spectrum beyond the first-generation mass
distribution due to repeated mergers.

• Assuming a distribution of first-generation BH spins
that is isotropic in direction and uniform in mag-
nitude, we find that the maximum spin formed in
stellar collapse is �max = 0.41

+0.08
�0.06. The distri-

bution of effective aligned spins features support
within |�e↵ | < 0.46

+0.04
�0.05. The effective precessing

spins are multimodal with a maximum at �p ⇡ 0.2
and a secondary peak due to repeated mergers at
�p ⇡ 0.6, but fall off in the two-spin region with
. 1% of the distribution at �p > 1 and vanishing
support for �p & 1.5.
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FIG. 16. The distributions of the branching fractions (left to right: f1g+1g, f1g+2g, f2g+2g, f>2g) for merger generations in the
astrophysical distribution of merging stellar-mass binary BHs, as measured with our deep learning approach to population
inference on the GWTC-3 catalog. The median and symmetric 90% confidence region for each generation fraction is reported
above –and plotted as vertical dashed lines within– the corresponding panel.

f1g+2g/f1g+1g = 0.22
+0.07
�0.08 and f2g+2g/f1g+1g = 0.06

+0.02
�0.02

(reporting medians and symmetric 90% confidence in-
tervals). Given the disparity of the underlying model
assumptions between the two analyses and the addition
of new detections in GWTC-3, our results jointly point
to the fact that, if admitted in the fitted population, a
modest number of binary BHs with hierarchical origin
appears necessary to best explain the data.

VI. SUMMARY AND FUTURE PROSPECTS

Our astrophysical findings were made possible by ad-
vances in the treatment of the GW data, in particular
exploiting deep-learning techniques. These two aspects
are summarized in Sec. VI A and VIB, respectively.

A. Astrophysics summary

We fitted current LIGO/Virgo data assuming a popula-
tion of sources that generalizes current phenomenological
functional forms while consistently allowing for the oc-
currence of hierarchical mergers. Therefore, the crucial
feature of our model is the separation of first- and higher-
generation merger populations, the latter of which is not
phenomenological. This allows us to place constraints
directly on the properties of those BHs born as stellar
remnants in addition to the population as a whole. We
summarize our key results as follows (quoting medians
and 90% credible regions):

• The distribution of escape speeds of environments
hosting binary BH mergers is relatively flat, though
lower values are preferred; modeled as a power law
between 0 < vesc < 500 km s

�1 the index is � =

�0.3+0.4
�0.3. Such environments may retain merger

remnants since, e.g., 85
+6
�7% of 1g+1g remnants

receive gravitational recoils vkick < 500 km s
�1.

• When parameterized as a truncated power law
(whose minimum is fixed to 5M�), the distribution
of first-generation masses has index � = �1.4+0.4

�0.5
and thus favors lighter BHs. First-generation BHs
have an upper mass limit mmax = 39

+3.6
�3.4M�.

• Negative power-law slopes are recovered for the
binary pairing probabilities distributions, indicating
both components are selected with a preference for
lighter BHs, though this preference is stronger for
secondaries; the primary (secondary) pairing index
is ↵ = �0.9+0.6

�0.7 (� = �2.4+1.8
�1.7). This finding is

inconsistent with uniform binary pairing (↵ = � =

0) at the 90% level.

• This results in a primary (secondary) mass distribu-
tion that peaks around m1 ⇡ 12M� (m2 ⇡ 8M�),
with a buildup and then decline before the first-
generation upper mass limit. Mass ratios peak at
unity but extend to q & 0.1. While 99% of the
population has masses < 60

+7.2
�6.5M�, there is an ex-

tended spectrum beyond the first-generation mass
distribution due to repeated mergers.

• Assuming a distribution of first-generation BH spins
that is isotropic in direction and uniform in mag-
nitude, we find that the maximum spin formed in
stellar collapse is �max = 0.41

+0.08
�0.06. The distri-

bution of effective aligned spins features support
within |�e↵ | < 0.46

+0.04
�0.05. The effective precessing

spins are multimodal with a maximum at �p ⇡ 0.2
and a secondary peak due to repeated mergers at
�p ⇡ 0.6, but fall off in the two-spin region with
. 1% of the distribution at �p > 1 and vanishing
support for �p & 1.5.
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FIG. 12. The PPDs of cluster escape velocities vesc (blue),
and of gravitational recoils vkick for binaries consisting of two
first-generation BHs (orange). The orange distributions are
normalized over a range extending beyond the upper vesc
limit, as indicated by the arrow. The colored shaded bands
contextualize the velocity scale by denoting the typical escape
speeds of globular clusters (green) and nuclear star clusters
(purple).

to such models. We infer ↵ = �0.9+0.6
�0.7 and � = �2.4+1.8

�1.7,
such that both component pairing probabilities are bot-
tom heavy with positive power-law indices ruled out at
the 90% confidence level.

Having reported the inferred population-level parame-
ters governing the binary BH distributions, we now turn
to the implied source-parameter PPDs given by

PPD(✓) =

Z
p0pop(✓|�)p(�|d)d� , (19)

such that the astrophysical distribution of each source
parameter is given by the one-dimensional marginaliza-
tions of PPD(✓). In Fig. 13 we present the inferred source
distributions of the modeled mass parameters –chirp mass
Mc and mass ratio q– and the implied distributions of
primary and secondary masses, m1 = Mc(1 + q)1/5/q3/5

and m2 = qm1, respectively. Each PPD is plotted as a
bold solid line while the symmetric 90% confidence region
of each marginal p0pop(✓|�) with � ⇠ p(�|d) is represented
by shaded bands. The chirp mass distribution peaks at
the minimum value 5M� allowed by our model before
an approximately exponential decline, with Mc . 40M�.
Equal-mass binaries are preferred in the underlying popu-

lation, the mass ratio distribution having a peak at q = 1

but with a broader linear decline down to q & 0.1.
Substructure is apparent in the distributions of compo-

nent source masses, corroborating the findings of Ref. [28].
Tighter constraints at Mc ⇡ 13M� and q ⇡ 0.6 result in a
cusp in the primary (secondary) mass distribution around
m1 ⇡ 20M� (m2 ⇡ 12M�) between two features: the
peak of the distribution at m1 ⇡ 12M� (m2 ⇡ 8M�) and
a buildup-following decline at the first-generation mass
limit mmax ⇡ 40M�. This suggests two contributions to
the mass distribution in the range 20M� . m1 . 40M�:
(1) first-generation BHs with masses above the peak of the
distribution, and (2) higher-generation BHs with masses
still smaller than mmax but whose parents originally had
masses in the peak 10–20M� region. While high-mass
outliers above mmax might be considered as clear indi-
cators of repeated mergers, the bottom-heavy nature of
the stellar initial mass function implies that hierarchical
mergers may be prominent also for sources with masses
below mmax.

The first-generation and combined component mass
distributions are compared in Fig. 14. In purple is the
reconstructed distribution of first-generation masses,

PPD(m1g) =

Z
p(m1g|�, mmax)p(�, mmax|d)d�dmmax ,

(20)
and in blue is the joint distribution of all primary and
secondary masses. The gray shaded band represents the
90% constraint on the mass limit of first-generation BHs,
mmax. Note the logarithmic scale, and that the PPD is
a set expectation values (i.e., means) and as such can lie
outside the region bounded by given quantiles. Though
declining above the first-generation cutoff, the mass distri-
bution features an extended spectrum above mmax which
cannot result from 1g+1g mergers. We find that 99% of all
BHs have masses < 60

+7.2
�6.5M�. The spectrum ultimately

abates at m1 > 80M� –roughly ⇠ 2mmax, implying a
lack of greater-than-2g mergers with parent components
from the upper end of the 1g mass spectrum– and fea-
tures multiple small-scale modes in the intervening region.
These observations again point to hierarchical mergers in
the underlying population.

C. Spin distribution

Moving to binary BH spins, recall that the first gener-
ation of BHs are modeled with isotropic spins whose di-
mensionless magnitudes are distributed uniformly up to a
maximum �max 2 (0, 1), representing the maximum natal
spin a BH may be born with in stellar collapse. We infer a
value �max = 0.41

+0.08
�0.06. With limited constraining power

in the spin observables, the precise constraints reported
here are likely to be very model dependent. We opted for a
uniform distribution of 1g spin magnitudes because of the
large uncertainties surrounding the spin of compact object
following core collapse (e.g. Refs. [13, 91, 92, 137, 138]);
this is an area where more accurate observations and
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