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� and e�⇡�/2 from A. This step is crucial for making
these waveforms fast to evaluate. Since � � 1, these ex-
ponential factors can be su�ciently large or small that
one needs more than double precision accuracy to evalu-
ate them, resulting in a slow down when evaluating the
model. Properly factoring these out and cancelling them
results in a 1-2 order of magnitude speed up in evaluating
the model.
The exact evaluation time of the EFB-F2 waveform

polarizations given in Eq. (12) depends on the desired
frequency resolution. In Python, at a resolution of �f =
0.1 Hz, and sampling from flow = 10 Hz to fhigh = 2048
Hz, it takes roughly 0.26 seconds to evaluate the plus
polarization with parameters p0 = 20M , e0 = 0.9, and
◆ = 0 = �. For a higher resolution of �f = 0.01 Hz, which
is roughly what was used in [34], it takes ten times longer
to evaluate the model. This is still slow compared to the
EFB-T model developed in [34], but it is 4-5 orders of
magnitude faster than the original EFB-F model.
To study how faithful an approximation the EFB-F2

waveforms are to an exact answer, in this case a numer-
ical leading PN order burst waveform, we compute the
match given by [39]

M = max
tp

(hnum|hEFB) (tp)

(hnum|hnum)
1/2 (hEFB|hEFB)

1/2
(18)

where (A|B) is the noise weighted inner product between
waveforms A and B

(A|B) = 4Re
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with Sn(f) the noise spectral density of the detector and
† corresponding to complex conjugation. For Sn(f), we
use the design sensitivity curve provided in [40]. The
match is in the range [0, 1], and allows us to quantify the
error our approximations have introduced relative to a
detector’s sensitivity. The numerical leading PN order
waveforms hnum are generated by numerical integration
of the leading order PN equations of motion, which is
described in more detail in [34]. The results of the match
calculation are given in Fig. 2, for systems with parame-
ters p 2 [10, 60]M and e 2 [0.7, 0.9], with the remaining
parameters the same as those used in Fig. 1. The match
is always greater than 0.95 for all systems studied, with
only systems at low eccentricities and large semi-latus
recta having matches below 0.97. The reason for this is
that for such large values of p, only the high frequency
exponential tail of the numerical waveforms is “in band”
of the LIGO detectors. Meanwhile, the EFB-F2 template
has a high frequency cuto↵ that doesn’t accurately track
this tail above the frequency in Eq. 13. As an alternative
to the cuto↵ frequency, one could apply a high frequency
filter to cancel out the exponential growth created by
the transformation in Eq. 8. Since the systems with low
matches also corresponds to systems with low SNR that
are likely undetectable, we do not explore this here.

FIG. 2. Match (color) between the EFB-F2 waveforms and
numerical leading PN order burst waveforms as a function of
the semi-latus rectum p and eccentricity e. The white lines
show the contours corresponding to matches of 0.97, 0.98, and
0.99, respectively.

III. FISHER ANALYSIS

The draw of having fast to evaluate waveforms is the
desire to perform parameter estimation in reasonable
amounts of time. Since the EFB-F2 waveforms are an-
alytic, we may employ a Fisher analysis to study the
uncertainties of the waveform’s parameters without the
need of computationally expensive techniques.

A. Single Bursts

To study the accuracy to which we can measure the
parameters of the bursts, we use a Fisher analysis, with
the Fisher information matrix given by

�ab =
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where �a are the parameters of the waveform. The vari-
ance of the parameters is found by inverting the Fisher
matrix, specifically

��a =
⇥
��1

⇤
aa

. (21)

Further, the correlations among parameters are charac-
terized by the correlation coe�cients, specifically the o↵-


