Binary evolution & gravitational-wave mergers in second-generation gas-enriched globular-clusters

Mor Rozner

Aleksey Generozov

Hagai B. Perets

June 2022

Mor Rozner

GWs in 2nd gen. environments

June 2022 1 / 26

San

There are many gaseous media

(a) AGN disks (Ford et al 2019)

(b) protoplanetary disks

(c) Star forming epochs in GCs

Mor Rozner

GWs in 2nd gen. environments

June 2022 2 / 26

Dynamics in gaseous media is rich

GWs in 2nd gen. environments

June 2022 3 / 26

Globular clusters host multiple generations

Figure: Behavior of [Na/Fe] as a function of [O/Fe] for the AGB (filled blue circles, this work) and RGB stars of NGC 6752. From Lapenna et al. 2016.

GWs in 2nd gen. environments

June 2022 4 / 26

An example of gas from AGB stars – Bekki 2017

Second generation stars could form in disks

Figure: Projected isodensity contour, borrowed from Mastrobuono-Battisti& Perets 2013

Mor Rozner

GWs in 2nd gen. environments

June 2022 6 / 26

Gaseous media affect on the dynamics

- AGN disks (e.g. McKernan et al 2012, Stone et al 2017, Tagawa et al 2020)
- Protoplanetary disks (e.g. Murray Clay & Perets 2011, Grishin & Perets 2016)
- Mergers between galaxies (e.g. Lin 2008)

Figure: From Kim et al 2008

- Gas dynamical friction
- Three-body hardening
- Gravitational waves emission

$$\frac{da_{\rm bin}}{dt} = \frac{da_{\rm bin}}{dt} \bigg|_{\rm hard, \star} + \frac{da_{\rm bin}}{dt} \bigg|_{\rm GDF} + \frac{da_{\rm bin}}{dt} \bigg|_{\rm GW}$$

For large separations – gas dynamical friction

GWs in 2nd gen. environments

June 2022 9 / 26

You can think about a duck

Mor Rozner

GWs in 2nd gen. environments

June 2022 10 / 26

(日)

and then about a binary-duck!

GWs in 2nd gen. environments

June 2022 11 / 26

$$\left. \frac{da_{\rm bin}}{dt} \right|_{\rm GDF} = -\frac{8\pi G^{3/2} a_{\rm bin}^{3/2}}{\sqrt{m_1 + m_2}} \rho_g(t) \frac{m}{v_{\rm rel}^2} f\left(\frac{v_{\rm rel}}{c_s}\right)$$

 $a_{\rm bin}$ – binary separation $m=m_1=m_2$ – masses of the binary companions $\rho_g=\rho_{g,0}e^{-t/\tau_g}$, ρ_g – gas density, τ_g – gas density $v_{\rm rel}$ – relative velocity

Mor Rozner

GWs in 2nd gen. environments

June 2022 12 / 26

Intermediate separations – three-body hardening

$$\left. \frac{da_{\rm bin}}{dt} \right|_{3-body} = -\frac{2\pi G n_{\star} m_{\rm pert} (2m+m_{\rm pert}) a_{\rm bin}^2}{m v_{\infty}}$$

Finally – gravitational waves!

Mor Rozner

GWs in 2nd gen. environments

June 2022 14 / 26

Gas hardening is very efficient

Figure: $m_1 = m_2 = 10 \, M_{\odot}$ (Rozner & Perets 2022)

Mor Rozner

What happens in eccentric evolution?

For $v_g = 0$ relative to the center of mass of the binary

$$\begin{split} \mathbf{F}_{\rm drag} &= F_0 \mathbf{v}_{\rm rel} / v_{\rm rel}^3, \\ \\ \left. \frac{\overline{da}}{dt} \right|_{\rm GDF} &= \frac{4F_0 (1-e^2)^2}{\pi m_{\rm bin} \Omega^3 a^2} \int_0^{2\pi} \frac{df}{(1+e\cos f)^2 \sqrt{1+2e\cos f+e^2}}, \\ \\ \\ \left. \frac{\overline{de}}{dt} \right|_{\rm GDF} &= \frac{F_0 (1-e^2)^3}{\pi m_{\rm bin} \Omega^3 a^3} \int_0^{2\pi} \frac{(e+\cos f) df}{(1+e\cos f)^2 (1+2e\cos f+e^2)^{3/2}} \end{split}$$

Mor Rozner

The merger timescales shorten

Figure: $m_1 = m_2 = 10 \ M_{\odot}$, $a_0 = 1 \ \text{AU}$ orbit-averaged calculation. (Rozner & Perets 2022)

	eccentric $e_0 = 0.66$	circular $e_0 = 0$
timescales	rapid merger $< 1~{ m Gyr}$	slower merger $> 1~{ m Gyr}$
regimes of dominance	$gas\toGWs$	$gas \to 3\text{-}body \to GWs$
observed eccentricity	might be eccentric in LISA	circular

GWs in 2nd gen. environments

• • • • • • • • • • • •

 $N_{\rm merge} \sim f_{\rm disk} f_{\rm bin, surv} f_{\geq 20 M_{\odot}} f_{\rm ret} f_{\rm merge} N_{\star}$

 $\begin{array}{l} f_{\rm disk} - {\rm fraction \ of \ stars \ in \ the \ disk} \\ f_{\rm bin, surv} - {\rm survival \ fraction \ of \ binaries} \\ f_{20{\rm M}_{\odot}} - {\rm fraction \ of \ stars \ with \ mass} \geq 20 M_{\odot} \\ f_{\rm ret} - {\rm retention \ fraction} \\ f_{\rm merge} - {\rm merger \ fraction \ (from \ the \ binaries \ specified \ above)} \end{array}$

Now we can calculate the rate

Figure: The cumulative contribution to GWs rate (Rozner & Perets 2022)

Mor Rozner

GWs in 2nd gen. environments

June 2022 22 / 26

- Setting initial conditions for other GWs channels
- Pulsar retention fractions will change (Perets 2022)
- The distribution of binary separations will change
- Setting constraints on the gas amounts in GCs
- We can form short-lived binaries (Rozner, Generozov & Perets in prep.)

- GCs tend to host multiple generations
- Star forming environments are gas-rich
- Gas dissipation assists in hardening leads to a production of more GWs
- It also affects inderctly on other GWs channels by setting different initial conditions

Rozner & Perets 2022 https://arxiv.org/pdf/2203.01330.pdf