6th ICM Theory and Computation Workshop Copenhagen, August 15-19, 2022

# Effects of supermassive black hole feedback on galactic hot atmospheres

# Nhut Truong Max Planck Institute for Astronomy

<u>Collaborators:</u> Annalisa Pillepich (MPIA, Heidelberg) Dylan Nelson (ITA, Heidelberg) Norbert Werner (Masaryk University, Brno) Lars Hernquist (CfA, Harvard)



# Supermassive black hole vs Hot Atmospheres

**ISM**= interstellar medium

**CGM**= circumgalactic medidum

**IGrM**= intra-group medidum

**ICM**= intra-cluster medidum

**Rvir**= virial radium of the halo

**Re**= stellar half-light radius



# Supermassive black hole vs Hot Atmospheres

**ISM**= interstellar medium

**CGM**= circumgalactic medidum

**IGrM**= intra-group medidum

ICM= intra-cluster medidum

**Rvir**= virial radium of the halo

**Re**= stellar half-light radius



The hot atmospheres encrypt important information about SMBH feedback activity

# Outline

- Main points to be addressed:
  - 1) X-ray signatures of SMBH feedback as quenching mechanism

Truong, Pillepich, Werner, et al. 2020

2) Effect of SMBH feedback on the spatial distribution of the CGM

Truong, Pillepich, Nelson, Werner, Hernquist, 2021b

3) Effect of SMBH feedback on the gas fluctuations in the IGrM/ICM

Truong, Pillepich et al., in prep

- Tools: + IllustrisTNG & other simulations + forward modelling
  - + X-ray observations







Pillepich+2018a,b, Pillepich+2019, Weinberger+2017, Springel+2018, Nelson+2018, Nelson+2019a,b Naiman+2018, Marinacci+2018

Galaxy formation model:

- Gas radiative cooling/heating
- Star formation and stellar evolution, chemical enrichment
- SNe and SMBH feedback

|                                |                    | TNG50           | <b>TNG100</b>     | TNG300           |
|--------------------------------|--------------------|-----------------|-------------------|------------------|
| Volume                         | $[\mathrm{Mpc}^3]$ | $51.7^{3}$      | $110.7^{3}$       | $302.6^{3}$      |
| $L_{\rm box}$                  | $[\mathrm{Mpc}/h]$ | 35              | 75                | 205              |
| $N_{\rm GAS}$                  | -                  | $2160^{3}$      | $1820^{3}$        | $2500^{3}$       |
| $N_{\rm DM}$                   | -                  | $2160^{3}$      | $1820^{3}$        | $2500^{3}$       |
| $N_{\rm TR}$                   | -                  | $2160^{3}$      | $2 \times 1820^3$ | $2500^{3}$       |
| $m_{ m baryon}$                | $[{ m M}_\odot]$   | $8.5\times10^4$ | $1.4 	imes 10^6$  | $1.1 	imes 10^7$ |
| $m_{ m DM}$                    | $[{ m M}_\odot]$   | $4.5	imes10^5$  | $7.5	imes10^6$    | $5.9	imes10^7$   |
| $\epsilon_{\rm gas,min}$       | $[\mathrm{pc}]$    | 74              | 185               | 370              |
| $\epsilon_{\mathrm{DM},\star}$ | $[\mathrm{pc}]$    | 288             | 740               | 1480             |

#1: X-ray signatures of SMBH feedback as quenching mechanism

## Galaxy colour bimodality: TNG100

#### Nelson et al. 2018



#### SINDER KINETIC TEEODACK. EJECTIVE and preventative enects





**TNG100 SF-ing galaxies** 

**TNG100 Quiescent galaxies** 

The quenching in TNG is achieved mainly via gas expulsion driven by SMBH feedback + sustained via gas heating

—> Is this supported by observations?

# Forward modelling of simulation data: mock X-ray analysis

- Mock X-ray spectrum is produced for each galaxy assuming:
  - Emission model: APEC (XSPEC).
  - Exposure: 100 ks.
  - Galactic absorption nH=10^20 cm^-2.
  - Response: Chandra ACIS-S.



2

Energy (keV)

5

0.5

Truong, Pillepich, Werner et al. 2020





Lx dichotomy is manifestation of SMBH-driven quenching mechanism



Lx dichotomy is manifestation of SMBH-driven quenching mechanism



Lx dichotomy is manifestation of SMBH-driven quenching mechanism Quantitatively supported by Chandra observations

# Lx dichotomy at large distances: Prediction for soft-Xray line emission

**OVIII** surface brightness radial profile **TNG100** EAGLE **SIMBA** 1035 1035  $10^{35}$ TNG100: z=0 & Mstel~10.6 10.8 dex EAGLE: z=0 & Mstel~10.6 10.8 dex SIMBA: z=0 & Mstel~10.6 10.8 dex Quiescent Quiescent Quiescent Star-forming Star-forming Star-forming 10<sup>34</sup> 10<sup>34</sup> 10<sup>34</sup> OVIII [erg/s/kpc<sup>2</sup>] 10<sup>33</sup> OVIII [erg/s/kpc<sup>2</sup>] 10<sup>33</sup> OVIII [erg/s/kpc<sup>2</sup>] 10<sup>33</sup> Star-forming Quiescent 10<sup>31</sup> 1031 10<sup>31</sup> 10<sup>30</sup>  $10^{30}$ 1030  $10^{-1}$ 100  $10^{-1}$  $10^{\circ}$  $10^{-1}$ 10 R/R200c R/R200c R/R200c

Future X-ray missions with micro-calorimeter onboard and large FoV will be able to detect CGM emission of individual galaxies at large radii

see also Oppenheimer+20, Comparat+22, Chadayammuri+22 for stacking analysis

See talk by Maxim Markevitch on Wednesday!

Truong, Pillepich et al., in prep1

# #2: SMBH Feedback Effects on the CGM Spatial Distribution

# Outflows shaping the CGM: at the individual galaxy level

SMBH feedback in action, TNG50 (z=1), Nelson+2019 TNG50, SMBH feedback in action (Nelson, Pille

 SMBH-driven galactic outflows exhibit natural collimation despite isotropic launching.

the second of

Cold Stalaxy disk

In TNG50, ~10pc
 The outflows modulate the distribution of the gas thermodynamic properties above and below the disk



## X-ray bubbles in MW-like Galaxies

#### TNG50 bubbles



#### eROSITA bubbles



Predehl et al. 2020

A. Pillepich, D. Nelson, N. Truong, et al. 2021



N.Truong, A. Pillepich, D. Nelson, N. Werner, L. Hernquist, 2021b

## Outflows shaping the CGM: at the population level



N.Truong, A. Pillepich, D. Nelson, N. Werner, L. Hernquist, 2021b

SMBH-driven outflows cause the CGM to be anisotropic in its thermodynamics and chemical content.

## Anisotropic signals in the CGM: mass dependency

![](_page_19_Figure_1.jpeg)

## Anisotropic signals in the CGM: mass dependency

![](_page_20_Figure_1.jpeg)

![](_page_21_Figure_0.jpeg)

![](_page_22_Figure_0.jpeg)

## Anisotropic signals in the CGM: mass dependency

![](_page_23_Figure_1.jpeg)

N.Truong, A. Pillepich, D. Nelson, N. Werner, L. Hernquist, 2021b

## Anisotropic signals in the CGM: comparison between simulations

![](_page_24_Figure_1.jpeg)

N.Truong, A. Pillepich, D. Nelson, N. Werner, L. Hernquist, 2021b see also A. Nica, B. Oppenheimer et al. 2022

The signals amplitude and their mass dependency are sensitive to the underlying feedback model

### Anisotropic signals in the CGM: X-ray emission

![](_page_25_Figure_1.jpeg)

N.Truong, A. Pillepich, D. Nelson, N. Werner, L. Hernquist, 2021b

The signal in X-ray emission is complex and energy-dependent.

### Anisotropic signals in the CGM: X-ray hardness

![](_page_26_Figure_1.jpeg)

N.Truong, A. Pillepich, D. Nelson, N. Werner, L. Hernquist, 2021b

## Potential detection with future X-ray observations

![](_page_27_Picture_1.jpeg)

Future eROSITA all-sky surveys have the potential to detect signals down to the mass range of M200~10<sup>12.3</sup>  $M_{sol}$  via stacking.

Detection of X-ray extended emission in the CGM via stacking events from the eFEDS survey:

J. Comparat, N. Truong, A. Merloni, A. Pillepich, G. Ponti, et al. 2022

U. Chadayammuri, A. Bogdan, B. Oppenheimer, et al. 2022

![](_page_27_Figure_6.jpeg)

N.Truong, A. Pillepich, D. Nelson, N. Werner, L. Hernquist, 2021b

#3:Effect of SMBH feedback on gas fluctuations in the IGrM/ICM

![](_page_29_Figure_0.jpeg)

# Gas fluctuations in the IGrM/ICM

#### Truong, Pillepich et al., in prep2

2D projected maps of a  $10^{14.6}$ M $\odot$  halo from TNG100 (>3e5 K gas; 2R500c x 2R500c)

![](_page_30_Figure_3.jpeg)

2D characteristic amplitude of the gas fluctuations

As proposed by Churazov+12, Gaspari+13, Zhuravleva+13,+14

### Halo mass dependence of the fluctuations

#### Truong, Pillepich et al., in prep2

![](_page_31_Figure_2.jpeg)

# **Effects of SMBH kinetic feedback**

#### Truong, Pillepich et al., in prep2

Halos are subdivided into 2 subsamples based on their accumulated SMBH kinetic feedback energy (Ekin).

![](_page_32_Figure_3.jpeg)

Anti-correlation between the fluctuation amplitude and the amount of injected feedback energy

# Effects of SMBH kinetic feedback

#### Truong, Pillepich et al., in prep2

Comparison between 2 model variations in TNG simulations of ~37 Mpc/side box, similar resolution to TNG100

- Fiducial model
- No SMBH kinetic feedback model

Each sims produces ~10 halos with  $M_{200}$ >10<sup>13</sup>  $M_{sol}$ 

![](_page_33_Figure_6.jpeg)

 ${\rm C}_{
ho} = rac{\langle 
ho^2 
angle}{\langle 
ho 
angle^2} \,\, {as \, {\it proposed \, by} \ Mathiesen, \, Evrard, \ Mohr, \, 1999}$ 

 $C_{
ho} = rac{\langle 
ho^2 \rangle}{\langle 
ho 
angle^2} \, \, {as \, proposed \, by \ Mathiesen, \, Evrard, \ Mohr, \, 1999}$ 

With SMBH feedback (Fiducial)

![](_page_35_Picture_3.jpeg)

![](_page_35_Figure_4.jpeg)

Truong, Pillepich et al., in prep2

 ${\rm C}_{
ho} = rac{\langle 
ho^2 
angle}{\langle 
ho 
angle^2} \,\, {as \, proposed \, by \ Mathiesen, \, Evrard, \ Mohr, \, 1999}$ 

### With SMBH feedback (Fiducial)

![](_page_36_Picture_3.jpeg)

![](_page_36_Figure_4.jpeg)

#### Truong, Pillepich et al., in prep2

![](_page_36_Figure_6.jpeg)

![](_page_37_Figure_1.jpeg)

In TNG SMBH feedback helps to smooth out the density and thermal distribution see also Planelles+14, Rasia+14, Vazza+13, Nagai & Lau 11

# **Summary & Conclusion**

How does SMBH feedback affect the hot gaseous atmospheres (at the population level)?

Predictions from IllustrisTNG simulations:

1. Quenching mechanism:

SMBH ejective effect manifests in Lx dichotomy between Sf-ing vs quenched galaxies.

2. Anisotropy in the CGM:

SMBH-driven outflows cause the CGM anisotropic in its thermodynamics and chemical content.

3. Inhomogeneity in the IGrM/ICM:

SMBH feedback helps reduce gas fluctuations (preliminary!).