The Magneto-Thermal Instability in Galaxy Clusters⁺

Lorenzo M. Perrone, Henrik Latter

Department of Applied Mathematics and Theoretical Physics University of Cambridge, UK

> ⁺MNRAS, 513 (1 July 2022) 4605-24 MNRAS, 513 (1 July 2022) 4625-44

Introduction - Galaxy Clusters

- Largest bound systems in the Universe: typical size $~\sim {
 m Mpc}$
- Filled with hot and dilute plasma: Intra-cluster medium (ICM) $T \lesssim 10 {
 m keV}, n \sim 10^{-3} {
 m cm}^{-3}$
- Account for most of the baryonic matter in galaxy clusters

Perseus cluster: optical light (Blackbird Observatory) *Chandra:* X-rays

Lorenzo M. Perrone

Introduction - The Intra-Cluster Medium

• ICM is turbulent

. . .

accreting substructures/mergers, AGN feedback

 $\delta \rho / \rho \sim 5 - 10\%, \quad u_{rms} \sim \text{few } 100s \,\text{km/s}$

Lorenzo M. Perrone

Introduction - The Intra-Cluster Medium

20

0

-20

-40

Relative Decl. (arcsec)

- ICM is turbulent
- ICM is magnetized Typical magnetic field strength $1-10\mu {
 m G}$ Coherence length $\sim 10 {
 m kpc}$

High plasma beta $\beta \sim 100$

Lorenzo M. Perrone

Introduction - The Intra-Cluster Medium

- ICM is turbulent
- ICM is magnetized

amplitude (km s⁻¹)

velocity a

A1795 A2029 A2052 A2199 A85 Hydra A

PKS0745-191 Centaurus Perseus Virgo

 10^{-2}

• ICM is stratified

Core: temperature increases / remains flat Periphery: temperature decreases

 10^{-1}

Wavenumber times Kolmogorov microscale

[Zhuravleva+2019]

10⁰

ICM Workshop - Copenhagen, 15-19 August 2022

Physics of ICM

• Heat conduction and viscosity are anisotropic with respect to local direction of **B**:

$$egin{aligned} m{q}_e &\simeq -\kappa_{\parallel} m{b} \cdot
abla T_e + ext{h.o.t.} & \kappa_{\parallel} &\simeq n_e v_{th,e} \lambda_{ ext{mfp},e} \ & \text{Spitzer conductivity} \ & \Pi_i &\simeq -3 rac{p_i}{
u_{ii}} \left(m{b} m{b} - rac{m{I}}{3}
ight) \left(m{b} m{b} - rac{m{I}}{3}
ight) :
abla m{u} + ext{h.o.t.} &
ext{Spitzer conductivity} \end{aligned}$$

$$-3\frac{1}{\nu_{ii}}\left(00-\frac{1}{3}\right)\left(00-\frac{1}{3}\right) \cdot \sqrt{u} + 1.0.0.$$

Lorenzo M. Perrone

The Magneto-Thermal Instability

• Large-scale equilibrium affected by anisotropic heat conduction

• Interesting parallel with Rayleigh criterion and MRI:

 $\partial l/\partial R < 0 \rightarrow \partial \Omega/\partial R < 0$

The Magneto-Thermal Instability

• Maximum growth rate of MTI:

$$\omega_T \doteq \sqrt{-g \frac{\mathrm{d} \ln T}{\mathrm{d} R}}$$

independent of conductivity!

т т

• Efficient heat conduction necessary for isothermality

$$t_{\rm cond} \doteq 1/(\chi k^2)$$

• Competition between different processes: buoyancy, magnetic tension, viscosity/resistivity...

$$t_{\text{cond}} \ll \min\left\{N^{-1}, \omega_T^{-1}\right\} \ll (kv_A)^{-1} \qquad N = \sqrt{\frac{g}{\gamma}} \frac{\mathrm{d}\ln p\rho^{-\gamma}}{\mathrm{d}R}$$

lengthscales:

timescales:

$$\frac{v_A}{\omega_T} \ll k^{-1} \ll \min\left\{\sqrt{\frac{\chi}{\omega_T}}, \sqrt{\frac{\chi}{N}}\right\}$$

conduction length
$$l_\chi = \sqrt{\chi/\omega_T}$$

ICM Workshop - Copenhagen, 15-19 August 2022

Linear Evolution

ICM Workshop - Copenhagen, 15-19 August 2022

Aim of this work

- •Perform extensive parameter study and look at saturation of the MTI: how do saturated properties depend on physical parameters?
- Use a Boussinesq model to study subsonic and small scale dynamics of ICM

$$u/c_s \sim \delta \rho/\rho_0 \sim \lambda/H \sim \epsilon \qquad \qquad \delta p/p_0 \sim \epsilon^2$$

- •Model a plasma vertically stratified in temperature and entropy
- Compare our results with real cluster observations
- •Physics not included: anisotropic viscosity (no micro-scale instabilities)
 - we focus on essential features of the MTI
 - anisotropic viscosity does not significantly alter MTI properties*

[Kunz+2012, Parrish+2012]

ICM Workshop - Copenhagen, 15-19 August 2022

Boussinesq Equations

Lorenzo M. Perrone

$$\nabla \cdot \boldsymbol{u} = \nabla \cdot \boldsymbol{B} = 0$$

$$(\partial_t + \boldsymbol{u} \cdot \nabla) \, \boldsymbol{u} = -\frac{\nabla p_{tot}}{\rho_0} - \theta \boldsymbol{e}_z + (\boldsymbol{B} \cdot \nabla) \, \boldsymbol{B} + \nu \nabla^2 \boldsymbol{u}$$

$$(\partial_t + \boldsymbol{u} \cdot \nabla) \, \boldsymbol{B} = (\boldsymbol{B} \cdot \nabla) \, \boldsymbol{u} + \eta \nabla^2 \boldsymbol{B}$$

$$(\partial_t + \boldsymbol{u} \cdot \nabla) \, \theta = N^2 u_z + \chi \nabla \cdot [\boldsymbol{b} \, (\boldsymbol{b} \cdot \nabla) \, \theta] + \chi \omega_T^2 \nabla \cdot (\boldsymbol{b} b_z)$$

Lorenzo M. Perrone

Numerical Methods

- Use pseudo-spectral code SNOOPY (Lesur2015) and implement anisotropic thermal conduction
- Look at regime of moderate conduction, weak/strong stable stratification

$$Pe = L^2 \omega_T / \chi \gg 1, \quad \tilde{N}^2 = N^2 / \omega_T^2 = 10^{-2} - 1,$$
$$Pr = \nu / \chi \lesssim 1, \quad Pm = \nu / \eta \gtrsim 1$$

- ICM is likely* in regime of $\ Pr\simeq 0.02, \ Pm\gg 1$
- Need to resolve: $L\gtrsim l_\chi\gtrsim l_\nu\gtrsim l_\eta$ computationally hard!
- Implement a super-time stepping algorithm
- Test the code and compute linear growth rates
- Run 2D/3D simulations of MTI, with triply-periodic BC and variety of **B** geometries

• After initial growth phase, state of sustained turbulence

ICM Workshop - Copenhagen, 15-19 August 2022

• After initial growth phase, state of sustained turbulence

 Magnetic field encapsulates the plumes: strong temperature gradients across field lines

ICM Workshop - Copenhagen, 15-19 August 2022

• After initial growth phase, state of sustained turbulence

- Magnetic field encapsulates the plumes: strong temperature gradients across field lines
- Convective-like behaviour: hot (lighter) plumes rise while cold (heavier) ones sink

• After initial growth phase, state of sustained turbulence

- Magnetic field encapsulates the plumes: strong temperature gradients across field lines
- Convective-like behaviour: hot (lighter) plumes rise while cold (heavier) ones sink
- Effective transport of heat due to both advection and conduction

ICM Workshop - Copenhagen, 15-19 August 2022

Effect of entropy stratification and thermal diffusivity

- In 2D/3D N and χ set the integral scale (~ "buoyancy scale") and the strength of turbulence
- Strong stratification / lower diffusivity —— integral scale becomes shorter turbulence is less vigorous
- No formation of structures at the box size that dominate dynamics (contrary to MRI, RB convection)

Lorenzo M. Perrone

MTI Turbulence - Theoretical Scalings

• Energy budget of the MTI:

$$\frac{d}{dt}E_{tot} = -\nu\langle|\nabla \boldsymbol{u}|^2\rangle - \eta\langle|\nabla \boldsymbol{B}|^2\rangle - \frac{\chi}{N^2}\langle|\boldsymbol{b}\cdot\nabla\theta|^2\rangle - \frac{\chi\omega_T^2}{N^2}\langle b_z\boldsymbol{b}\cdot\nabla\theta\rangle$$
viscous resistive dissipation thermal dissipation energy injection rate ϵ_I

• In $Pr \lesssim 1, Pm \gtrsim 1$ regime last two terms dominate. Balancing:

not just in volume averaged sense but also scale-by-scale*

• Differences between 2D and 3D:

2D: inverse cascade

3D: local dissipation of energy

ICM Workshop - Copenhagen, 15-19 August 2022

MTI Turbulence - 3D

- In 3D injection and dissipation are local processes in spectral space
- Buoyancy force is one-directional: transfer energy from density to kinetic

• Nonlinear advection terms subdominant

Buoyancy-driven flow

• Turbulence is anisotropic with elongated eddies in z direction and $u_z \gg u_x, u_y$

ICM Workshop - Copenhagen, 15-19 August 2022

MTI Turbulence - Balancing the Intermediate Scales

• Look at the detailed thermal energy balance

• very different saturation mechanism, but same scalings as 2D!

• MTI forcing and buoyancy force balance each other at large scales

Lorenzo M. Perrone

Strongly stratified MTI

- Effect of strong entropy stratification evident from directional spectra
- Divide the spherical shell of radius *k* in latitudinal bands
 - m=1 near equatorial: "vertical pancakes"
 - m=6 near polar: "horizontal pancakes"
- small scales largely unaffected by increased $\,N$
- large scales tend to get isotropized near the Ozmidov scale

 $k_{Oz} = (N^3/\epsilon_{\nu})^{1/2}$

ICM Workshop - Copenhagen, 15-19 August 2022

MTI-driven dynamo

- MTI turbulence can sustain a fluctuation dynamo
- The dynamo acts back on the turbulent flow

 > becomes more biased in vertical direction
 -> increase in potential energy

 parallel correlation of density fluctuations increases: potential energy increases

ICM Workshop - Copenhagen, 15-19 August 2022

Criterion for small-scale dynamo

• Perform large suite of simulations with no-net flux

- Growth is possible if $\ Rm > Rm^c pprox 35$
- At fixed Pm criterion for small-scale dynamo: $l_i>l_
 u$

ICM Workshop - Copenhagen, 15-19 August 2022

Application of MTI to Galaxy Clusters

- Main source of uncertainty is limited understanding of the ICM's microphysics
 - kinetic micro-instabilities can modify viscosity and thermal conductivity

introduce a suppression factor: $\chi=f\chi_{
m S}$

• Use MTI scaling laws to obtain:

$$u_{rms} \approx 400 f^{1/2} \mathrm{km \, s^{-1}}, \quad \beta \approx 10 - 20 f^{-1}$$

- Key MTI scales: $l_\chi \sim 100 \, f^{1/2} {
 m kpc}$ $l_{Oz} \gtrsim l_\chi$ $l_\nu \sim 10 \, f^{1/2} {
 m kpc}$
 - Observational estimates:

Lorenzo M. Perrone

$$u_{rms} \sim 100 - 500 \mathrm{km \, s^{-1}}$$

MTI levels consistent with $~f\simeq 0.1$

MTI in Galaxy Clusters - Challenges

- Large-scale challenges:
 - MTI only one of several competing sources of turbulence
 - these can actively suppress the action of the MTI: unlikely to happen at all scales!
 - not much evidence of MTI in the outskirts of galaxy clusters from cosmological simulations with anisotropic conduction
 - are key MTI scales resolved?
 - numerical diffusion is not well quantified
 - the usual diagnostics (i.e. radial bias etc) not appropriate on large scales

MTI in Galaxy Clusters - Challenges

- Large-scale challenges:
 - MTI only one of several competing sources of turbulence
 - these can actively suppress the action of the MTI: unlikely to happen at all scales!
 - not much evidence of MTI in the outskirts of galaxy clusters from cosmological simulations with anisotropic conduction
 - are key MTI scales resolved?
 - numerical diffusion is not well quantified
 - the usual diagnostics (i.e. radial bias etc) not appropriate on large scales
- Small-scale challenges:
 - In the ICM thermal conduction may be partially suppressed
 - tangled magnetic fields
 - kinetic micro-instabilities, e.g. mirror, firehose, whistler, gyrothermal, eMTI?

Summary and Future Work

- MTI interesting convective/diffusive instability!
 - Scale and strength of turbulence set by $\,N,\chi$
 - MTI can be a player to explain turbulence in ICM
 - MTI effective at transporting heat: efficiency $\gtrsim 1/3~$ of Spitzer flux
- To study impact of microinstabilities on MTI we need more sophisticated models
 - inclusion of anisotropic viscosity
 - suppression of heat conduction by whistler
 - other kinetic closures, FLR-Landau?
- With Boussinesq approximation cannot capture dynamics on scales $\, \sim H \,$
 - need global simulations in spherical geometry with anelastic or fully compressible

Summary and Future Work

- MTI interesting convective/diffusive instability!
 - Scale and strength of turbulence set by $\,N,\chi$
 - MTI can be a player to explain turbulence in ICM
 - MTI effective at transporting heat: efficiency $\gtrsim 1/3~$ of Spitzer flux
- To study impact of microinstabilities on MTI we need more sophisticated models
 - inclusion of anisotropic viscosity
 - suppression of heat conduction by whistler
 - other kinetic closures, FLR-Landau?
- ullet With Boussinesq approximation cannot capture dynamics on scales $\,\sim H$
 - need global simulations in spherical geometry with anelastic or fully compressible

Thank you for your attention!

Lorenzo M. Perrone

Linear Theory

•Instability criterion:

$$\frac{k^2}{k_x^2} \frac{\eta}{\chi} N^2 + v_A^2 k^2 + \frac{k^2}{k_x^2} \eta \nu k^4 < \omega_T^2$$

- Fast growth over wide range of k
- Oscillatory solutions at large scales (hybrid g-modes)

• In the limit of $\ Pr \sim q \sim \Lambda \ll 1$ asymptotic solution:

$$\frac{\sigma_{max}}{\omega_T} = 1 - \left[(1 + \tilde{N}^2) (Pr + q + \Lambda) \right]^{1/2}$$
$$l_{\chi} k_{max} = \left[\frac{(1 + \tilde{N}^2)}{(Pr + q + \Lambda)} \right]^{1/4}$$

$$l_{\chi} = \sqrt{\chi/\omega_T}$$
$$\tilde{N}^2 = N^2/\omega_T^2$$
$$Pr = \nu/\chi$$
$$q = \eta/\chi$$
$$\Lambda = v_A^2/(\chi\omega_T)$$

ICM Workshop - Copenhagen, 15-19 August 2022

MTI Turbulence - Theoretical Scalings 2D

- 2D dynamics characterized by inverse cascade:
 - MTI injects energy at small scales, then carried to large scales

• At large scales, g-modes are excited and act as a sink of kinetic energy

Flux-loop mechanism

ICM Workshop - Copenhagen, 15-19 August 2022

MTI Turbulence - Theoretical Scalings 2D

- Model energy removal at large scales via "Epstein drag" on timescale of $~\sim 1/\omega_T$
- If we do so, we obtain:

$$l_B \sim (\chi \omega_T)^{1/2} / N, \quad u_{rms}^2 \sim \chi \omega_T^3 / N^2$$

Lorenzo M. Perrone

MTI Turbulence - Theoretical Scalings 2D

- Model energy removal at large scales via "Epstein drag" on timescale of $~\sim 1/\omega_T$
- If we do so, we obtain:

$$l_B \sim (\chi \omega_T)^{1/2} / N, \quad u_{rms}^2 \sim \chi \omega_T^3 / N^2$$

Flux-loop

mechanism

In 2D $l_B \sim \chi^{0.37}/N^{1.08}$ klχ 10^{0} $1e-7 \ 10^{-1}$ 10^{1} 10^{2} $\chi \omega_T^2 \hat{\mathcal{F}}$ injection $-\chi \hat{D}_{\chi}$ $N^2 \hat{\Theta}$ balance -1 -2dissipation--3 10^{3} 10 10^{2} kL

Lorenzo M. Perrone

MTI Turbulence - g-modes excitation

- g-modes impact on 2D turbulence in a fundamental way
 - They arrest the inverse cascade of energy to large scales
 - The excitation of g-modes isotropizes turbulence between vertical and horizontal directions

ICM Workshop - Copenhagen, 15-19 August 2022

MTI Turbulence - Balancing the Small Scales

• Look at the detailed thermal energy balance

- gradient of temperature fluctuations arranges itself to counterbalance background gradient
- isothermality at small scales

MTI forcing and anisotropic dissipation balance each other at small scales:

$$\nabla_{\parallel}\theta\approx-\omega_T^2b_z$$

Scatter plot of $~
abla_{\parallel} heta$ and $\omega_{T}^{2}b_{z}$

ICM Workshop - Copenhagen, 15-19 August 2022

Strongly stratified MTI

- Effect of strong entropy stratification evident from directional spectra
- Divide the spherical shell of radius k in latitudinal bands
 - m=1 near equatorial: "vertical pancakes"
 - m=6 near polar: "horizontal pancakes"
- small scales largely unaffected by increased $\,N$
- large scales tend to get isotropized near the Ozmidov scale

Directional Kinetic Energy Spectra 2D

 $k_{Oz} = (N^3/\epsilon_{\nu})^{1/2}$

ICM Workshop - Copenhagen, 15-19 August 2022