Self-regulated AGN feedback of light jets in cool-core galaxy clusters

Christoph Pfrommer¹

in collaboration with

K. Ehlert¹, R. Weinberger², L. Jlassi¹, R. Pakmor³, V. Springel³ ¹AIP, ²CITA, ³MPA

Physics of the ICM: Theory and Computation, Copenhagen, 2022

< 🗆 🕨

 $\mathcal{A}\mathcal{C}$

Outline

Observational clues and modeling

- Basic facts
- SZ effect of AGN bubbles
- Modeling accretion and AGN jet

2 Simulating AGN jet feedback

- Time evolution of global quantities
- Morphology of AGN bubbles and cold gas
- Conclusions

Basic facts SZ effect of AGN bubbles Modeling accretion and AGN jet

Feedback by AGN jets

Paradigm: accreting AGNs at the centers of cool core clusters launch relativistic jets, which self-regulate the cooling ICM \Rightarrow **but how?**

 energy source: release of non-gravitational energy due to accretion on a black hole and its spin

Basic facts SZ effect of AGN bubbles Modeling accretion and AGN jet

Feedback by AGN jets

Paradigm: accreting AGNs at the centers of cool core clusters launch relativistic jets, which self-regulate the cooling ICM \Rightarrow **but how?**

- energy source: release of non-gravitational energy due to accretion on a black hole and its spin
- correlation of AGN cavity power P_{cav} and X-ray luminosity L_{ICM}(< r_{cool})

Feedback by AGN jets

Paradigm: accreting AGNs at the centers of cool core clusters launch relativistic jets, which self-regulate the cooling ICM \Rightarrow **but how?**

Basic facts

Modeling accretion and AGN jet

- energy source: release of non-gravitational energy due to accretion on a black hole and its spin
- correlation of AGN cavity power P_{cav} and X-ray luminosity L_{ICM}(< r_{cool})
- AGN feedback heats slowly and does not transform a CC to a NCC: weak correlation of P_{cav} and entropy K₀

Feedback by AGN jets

Paradigm: accreting AGNs at the centers of cool core clusters launch relativistic jets, which self-regulate the cooling ICM \Rightarrow **but how?**

Basic facts

- energy source: release of non-gravitational energy due to accretion on a black hole and its spin
- correlation of AGN cavity power P_{cav} and X-ray luminosity L_{ICM}(< r_{cool})
- AGN feedback heats slowly and does not transform a CC to a NCC: weak correlation of P_{cav} and entropy K₀
- elongated Hα filament morphology, rich velocity structure across the entire nebula without clear rotation

Simulating AGN jet feedback

Basic facts SZ effect of AGN bubbles Modeling accretion and AGN jet

Are AGN jets heavy or light?

Christoph Pfrommer

Self-regulated AGN feedback

AIP

Basic facts SZ effect of AGN bubbles Modeling accretion and AGN jet

SPT observation of the major outburst in MS 0735

- *left:* point source-removed image of the total SZ signal
- center: the point sources and double-β model are removed: detection of the cavities
- right: residual image after removing point sources, double-β model and cavities: model accounts for nearly all of the observed signal

Simulating AGN jet feedback

Basic facts SZ effect of AGN bubbles Modeling accretion and AGN jet

Probing AGN jet composition with the SZ effect

Ehlert, CP, Weinberger+ (2019)

▶ < ∃ >

Simulating AGN jet feedback

Basic facts SZ effect of AGN bubbles Modeling accretion and AGN jet

Probing AGN jet composition with the SZ effect

▶ < ∃ >

Simulating AGN jet feedback

Basic facts SZ effect of AGN bubbles Modeling accretion and AGN jet

Probing AGN jet composition with the SZ effect

- bubble filling must be relativistic: $T_{\text{bubble}} \gtrsim 100 T_{\text{ICM}}$
- in pressure equilibrium:
- AGN jets must be light: (allowing for ICM entrainment)

$$n_{
m bubble} \lesssim n_{
m ICM}/100$$

 $n_{
m iet} < n_{
m ICM}/1000$

Basic facts SZ effect of AGN bubbles Modeling accretion and AGN jet

MHD jet simulations of Perseus-like cluster

AREPO: unstructured-mesh

- MHD moving-mesh code AREPO
- NFW cluster potential and isothermal central galaxy

Basic facts SZ effect of AGN bubbles Modeling accretion and AGN jet

MHD jet simulations of Perseus-like cluster

initial magnetic field

- MHD moving-mesh code AREPO
- NFW cluster potential and isothermal central galaxy
- external turbulent magnetic and velocity fields (Kolmogorov)

Basic facts SZ effect of AGN bubbles Modeling accretion and AGN jet

MHD jet simulations of Perseus-like cluster

AREPO: jet injection region

(Weinberger+ 2017)

- MHD moving-mesh code AREPO
- NFW cluster potential and isothermal central galaxy
- external turbulent magnetic and velocity fields (Kolmogorov)
- jet module
 - prepare low-density state in pressure equilibrium
 - inject kinetic energy and **B**
 - refine to sustain density contrast

Basic facts SZ effect of AGN bubbles Modeling accretion and AGN jet

Modelling accretion onto the AGN

Bondi accretion model:

$$\dot{M}_{
m bondi} = rac{4\pi G^2 M^2
ho}{c_{
m s}^3}$$

AIP

Basic facts SZ effect of AGN bubbles Modeling accretion and AGN jet

Modelling accretion onto the AGN

Bondi accretion model:

$$\dot{M}_{
m bondi} = rac{4\pi G^2 M^2
ho}{c_{
m s}^3}$$

• cold accretion model (Fiducial):

$$\dot{M}_{\text{cold}} = \epsilon \frac{M_{\text{cold}}}{t_{\text{ff}}}$$

Basic facts SZ effect of AGN bubbles Modeling accretion and AGN jet

Modelling accretion onto the AGN

Bondi accretion model:

$$\dot{M}_{
m bondi} = rac{4\pi G^2 M^2
ho}{c_{
m s}^3}$$

• cold accretion model (Fiducial):

$$\dot{M}_{cold} = \epsilon \frac{M_{cold}}{t_{ff}}$$

jet power:

$$L_{\rm jet} = \eta \dot{M} c^2$$

Cold accretion powering low momentum-density jets Jet simulation: gas density, entropy, cold gas ($t_{cool} < 30$ Myr), X-ray surface brightness

Time evolution of global quantities Morphology of AGN bubbles and cold gas Conclusions

Jet models all self-regulate ICM in a cool core state

AIP

Cooling times and cold gas distribution (*t*_{cool} < 100 Myr)

Time evolution of global quantities Morphology of AGN bubbles and cold gas Conclusions

Cold gas mass and star formation rates

Time evolution of global quantities Morphology of AGN bubbles and cold gas Conclusions

Jet luminosity and black hole growth

Time evolution of global quantities Morphology of AGN bubbles and cold gas Conclusions

X-ray emissivity, jet material and bubble morphologies

Distributions of jet, cavity, and ICM cooling power

Correlating jet, cavity, and ICM cooling power

Ehlert, Weinberger, CP+ (2022)

Correlating jet, cavity, and ICM cooling power

Ehlert, Weinberger, CP+ (2022)

- jet powers do not always match the current cooling luminosity
 ⇒ self-regulation is achieved on average on longer timescales
- the hydrodynamical run (HD) shows a phase of stronger cooling, which corresponds to a forming disk

Correlating jet, cavity, and ICM cooling power

Ehlert, Weinberger, CP+ (2022)

- jet powers do not always match the current cooling luminosity
 ⇒ self-regulation is achieved on average on longer timescales
- the hydrodynamical run (HD) shows a phase of stronger cooling, which corresponds to a forming disk
- observationally we can only recover two orders of magnitude of cavity powers while jet powers span four orders of magnitude

Velocity distributions: magnitude and dispersion

Ehlert, Weinberger, CP+ (2022)

AIP

 Iow-density jets are isotropizing ICM velocities, high-density jets cause bimodal outflows

Time evolution of global quantities Morphology of AGN bubbles and cold gas Conclusions

Magnetic fields

Ehlert, Weinberger, CP+ (2022)

 converging flows in bubble wake amplify magnetic fields so that the magnetic-to-thermal pressure ratio X_B approaches unity

Time evolution of global quantities Morphology of AGN bubbles and cold gas Conclusions

Shocks and Faraday rotation measure (RM)

Ehlert, Weinberger, CP+ (2022)

• AGN jets drive shocks into the ICM, high-resolution necessary to generate small-scale RM structure

Time evolution of global quantities Morphology of AGN bubbles and cold gas Conclusions

Angular momentum distribution of cold gas

- columns show different models, rows different times
- magnetic fields cause elongated cold gaseous filaments

Time evolution of global quantities Morphology of AGN bubbles and cold gas Conclusions

Angular momentum distribution of cold gas

- columns show different models, rows different times
- magnetic fields cause elongated cold gaseous filaments
- HD and Dense models have rotationally supported cold gas, i.e., large alignment of the total angular momentum with that of computational cells

Conclusions

AGN jet simulations of idealized Perseus cluster:

SZ observation of AGN outburst suggests light jet composition
 → cold filaments easily deflect jets → isotropic bubble
 distributions and more efficient ICM heating

Conclusions

AGN jet simulations of idealized Perseus cluster:

- SZ observation of AGN outburst suggests light jet composition
 → cold filaments easily deflect jets → isotropic bubble
 distributions and more efficient ICM heating
- weak ICM magnetic fields are amplified via magnetic draping and converging flows → angular momentum transport suppresses continued growth of cold-gas disc in HD model

Conclusions

AGN jet simulations of idealized Perseus cluster:

- SZ observation of AGN outburst suggests light jet composition
 → cold filaments easily deflect jets → isotropic bubble
 distributions and more efficient ICM heating
- weak ICM magnetic fields are amplified via magnetic draping and converging flows → angular momentum transport suppresses continued growth of cold-gas disc in HD model
- cluster core self-regulates with central entropies and cooling times consistent with observations independent of the probed accretion model, accretion efficiency, jet density and resolution

< 🗇 ▶

Conclusions

AGN jet simulations of idealized Perseus cluster:

- SZ observation of AGN outburst suggests light jet composition
 → cold filaments easily deflect jets → isotropic bubble
 distributions and more efficient ICM heating
- weak ICM magnetic fields are amplified via magnetic draping and converging flows → angular momentum transport suppresses continued growth of cold-gas disc in HD model
- cluster core self-regulates with central entropies and cooling times consistent with observations independent of the probed accretion model, accretion efficiency, jet density and resolution
- simulated cavity luminosities reflect ICM cooling luminosities and averaged jet powers; insensitive to short periods of low-luminosity jet injection

Literature for the talk

AGN jet feedback in galaxy clusters:

- Ehlert, Weinberger, Pfrommer, Pakmor, Springel, *Self-regulated AGN feedback of light jets in cool-core galaxy clusters*, 2022, subm.
- Weinberger, Su, Ehlert, Pfrommer, Hernquist, Bryan, Springel, Li, Burkhart, Choi *Active galactic nucleus jet feedback in hydrostatic halos,* in prep.
- Ehlert, Pfrommer, Weinberger, Pakmor, Springel, *The Sunyaev-Zel'dovich effect of simulated jet-inflated bubbles in clusters,* 2019, ApJL, 872, L8.

PICOGAL: From Flasma Kinetics to COsmological GALaxy Formation

AIP

Christoph Pfrommer

Self-regulated AGN feedback