Steep Circumgalactic Entropy Profiles around Powerful Radio Sources 6th ICM Theory and Computation Workshop Copenhagen

Megan Donahue **Michigan State University** 18 August 2022

My Michigan State University Collaborators

Rachel Salmon Frisbie

Mark Voit

My Michigan State University Collaborators

Rachel Salmon Frisbie

Mark Voit

Gravity and entropy determine where the circumgalactic medium (CGM) is, in near hydrostatic equilibrium:

- pressure gradient
- the X-ray luminosity of the CGM)

1. Shape (gradients) of the gravitational potential determines

2. The distribution of specific entropy in the cluster atmosphere determines the equilibrium density of the gas (and therefore

Entropy profiles in gravitational potentials

Buoyancy in a gravitational potential causes low entropy gas to sink and high entropy gas to rise

Gas entropy increases inside out

"Cosmological accretion" establishes a characteristic entropy slope in an NFW gravitational potential (Voit+2005)

Entropy and Radiative Cooling

Entropy and radiative cooling time scales are related

Within 100 kpc, entropy and corresponding cooling times as a function of physical radius in groups, clusters and galaxies not so different, while gas pressures and halo masses differ by orders of magnitude 1000 -3cm-3 100 100 kpc kpc 0 10¹⁰ yr MIIKY Way 100 kpc 100 100 kpc 10⁹ yr kpc 10 kpc 10 kpc 10 10⁸ yr l kpc l kpc 10⁷ v 0.1 kpc 10⁶ vi 10² **10³ 10**⁵ **10⁶ 10**⁴ **10¹** P/k (K cm⁻³)

K (keV cm²)

What determines CGM gas entropy? Heating and Cooling of the CGM

- Cosmological accretion or shocks set the entropy to a long-lived (high) value if resulting t_{cool} is long compared to the age of the universe.
- Radiative cooling can lower hot gas entropy.
- Radiative cooling can change hot gas into non-X-ray emitting forms (cold gas, stars, planets...)
- Moving gas around (adiabatic expansion or compression) does not change gas entropy.

Physical Situation Observed

d In K/ d In r	Example Papers

Physical Situation	Observed	d in K/ d in r	Example Papers
cosmological accretion	clusters outside 0.1r500 (tc>> age)	1.1- 1.2	Voit+2005

Physical Situation	Observed	d In K/ d In r	Example Papers
cosmological accretion	clusters outside 0.1r500 (tc>> age)	1.1- 1.2	Voit+2005
"cooling flows"	central region of Phoenix cluster (tc << age)	1.2-1.3 ($d\sigma_v/dr > 0$) 1 ($d\sigma_v/dr = 0$)	McDonald+2019

Physical Situation	Observed	d ln K/ d ln r	Example Papers
cosmological accretion	clusters outside 0.1r500 (tc>> age)	1.1- 1.2	Voit+2005
"cooling flows"	central region of Phoenix cluster (tc << age)	1.2-1.3 ($d\sigma_v/dr > 0$) 1 ($d\sigma_v/dr = 0$)	McDonald+2019
strongly convective, merger-driven mixing	Coma cluster core	~0-0.2	Churazov+2021

Physical Situation	Observed	d in K/ d in r	Example Papers
cosmological accretion	clusters outside 0.1r500 (tc>> age)	1.1- 1.2	Voit+2005
"cooling flows"	central region of Phoenix cluster (tc << age)	1.2-1.3 ($d\sigma_v/dr > 0$) 1 ($d\sigma_v/dr = 0$)	McDonald+2019
strongly convective, merger-driven mixing	Coma cluster core	~0-0.2	Churazov+2021
central regions limited by precipitation	"cool-core" clusters	2/3	Babyk+2018

Physical Situation	Observed	d ln K/ d ln r	Example Papers
cosmological accretion	clusters outside 0.1r500 (tc>> age)	1.1- 1.2	Voit+2005
"cooling flows"	central region of Phoenix cluster (tc << age)	1.2-1.3 ($d\sigma_v/dr > 0$) 1 ($d\sigma_v/dr = 0$)	McDonald+2019
strongly convective, merger-driven mixing	Coma cluster core	~0-0.2	Churazov+2021
central regions limited by precipitation	"cool-core" clusters	2/3	Babyk+2018
winds, distributed, lifting CGM, occasional help from AGN	early type galaxies with extended emission line regions		Voit+2015

Physical Situation	Observed	d in K/ d in r	Example Papers
cosmological accretion	clusters outside 0.1r500 (tc>> age)	1.1- 1.2	Voit+2005
"cooling flows"	central region of Phoenix cluster (tc << age)	1.2-1.3 ($d\sigma_v/dr > 0$) 1 ($d\sigma_v/dr = 0$)	McDonald+2019
strongly convective, merger-driven mixing	Coma cluster core	~0-0.2	Churazov+2021
central regions limited by precipitation	"cool-core" clusters	2/3	Babyk+2018
winds, distributed, lifting CGM, occasional help from AGN	early type galaxies with extended emission line regions	1	Voit+2015
Coronae sources	NGC 4874 in Coma	central entropy "deficit" at r<4 kpc	Sun, M+2005, 2007, 2009

eRosita view of Coma (Churazov+2021)

Cluster Entropy Profiles of Cool Core Clusters McDonald+2019

(The [O II]-emitting gas in Phoenix sits where $t_{cool} < 100$ million years)

Cluster Entropy Profiles of Cool Core Clusters McDonald+2019

(The [O II]-emitting gas in Phoenix sits where $t_{cool} < 100$ million years)

Entropy profiles around early-type galaxies

wind model $K \propto r^1$

precipitation-limited $K \propto r^{2/3}$

Voit+2015

NGC4261: A steep entropy gradient around a powerful radio source

Jet power is 100x that of the others.

NGC4261's radio source is too powerful to be explained by Bondi accretion

NGC4261: A steep entropy gradient around a powerful radio source

Jet power is 100x that of the others.

NGC4261's radio source is too powerful to be explained by Bondi accretion

Frisbie, Donahue et al. 2020

Goal: seeking other NGC4261-type galaxies in the Chandra archive

Frisbie +2020

Grossova+2019

Found at least one more like NGC4261: IC 4296!

(BCG of Abell 3565)

It also is a very powerful radio source and has at least one very large X-ray cavity (Grossova+2019)

 $P_{mech} \sim 10^{44} \text{ erg s}^{-1}$

IC4296

~25'

Condon+2021, MeerKat 1.28 GHz radio image

Donahue, Grossova, Frisbie, Voit, Werner, in prep

IC4296 XMM + VLA-D

excess to the south-east of IC4296

South-eastern lobe less welldefined in X-rays

3.3

Donahue, Grossova, Frisbie, Voit, Werner, in prep

IC4296 XMM + VLA-D

Bright ridge associated with X-ray excess to the south-east of IC4296

Chandra HRC and archival ACIS observations of center of IC4296

The Chandra HRC has (?) the best soft X-ray sensitivity and angular resolution (<0.5") than any other X-ray instrument

The center of IC4296 is not dominated by a point source HRC

1.03

Chandra HRC and archival ACIS observations of center of IC4296

Surface Brightnes

Entropy (keV cm²)

IC4296 Entropy profile as steep or steeper than that of NGC4261

Frisbie +2020

But NGC4261 and IC4296 are not "broken" They may be in a temporary phase, though.

Cooling > Heating only in the very center of NGC4261

Voit+2020

(and also IC4296) Donahue+ in prep

Summary

- Steep entropy gradients around powerful radio sources indicate the radio source is dumping energy at large radii (not much locally)
- The AGN increase the entropy, decrease the pressure and the density of the CGM and change the outer pressure of the CGM atmosphere.
- The steepest entropy profiles around galaxies are associated with powerful radio sources depositing most of their energy at large radii, adjusting the outer boundary condition of the "black hole valve" (see Mark Voit's talk)
- Galaxy atmosphere with steep entropy gradients are regulated by black hole feedback and stellar winds: NGC4261 and IC 4296 are not examples of "runaway cooling"