Copenhagen August 18, 2022

On the Acceleration Efficiency of Low-Mach Number Shocks

Damiano Caprioli University of Chicago

WHEN/WHERE: From Helio to Cosmological Scales

Transient

Novae

Long-lived

Earth's bow shock

Insitu

HELIOSPHERIC

Solar flares and helio shocks

Transient

EXTRA-GALACTIC

GALACTIC

Long-lived

AGN Winds

Pulsars and PWNe

Flaring

Supernova remnants

Long-lived

Galaxy clusters

A universal acceleration mechanism

Fermi mechanism (Fermi, 1949): random elastic collisions lead to energy gain

PHYSICAL REVIEW

VOLUME 75, NUMBER 8

On the Origin of the Cosmic Radiation

ENRICO FERMI Institute for Nuclear Studies, University of Chicago, Chicago, Illinois (Received January 3, 1949)

A theory of the origin of cosmic radiation is proposed according to which cosmic rays are originated and accelerated primarily in the interstellar space of the galaxy by collisions against moving magmetic fields. One of the features of the theory is that it yields naturally an inverse power law for the spectral distribution of the cosmic rays. The chief difficulty is that it fails to explain in a straightforward way the heavy nuclei observed in the primary radiation.

 $4M_s^2$

For strong shocks (Mach number $M_s = V_{sh}/c_s \gg 1$): R = 4 and $\alpha = 4$

APRIL 15, 1949

rd+78)

DSA produces power-laws $N(p) \propto 4\pi p^2 p^{-\alpha}$, depending on the compression ratio $R = \rho_d / \rho_u$ only. 3R $M_{s}^{2} + 3$ \sim R-1

A Universal Acceleration Mechanism

Solution Bell 1978: Let's start with N_0 particles with energy E_0 , and a process where at each iteration \odot G is the energy gain and P is the probability of remaining in the accelerator • After k steps: we have $N_k = P^k N_0$ particles with energy $E_k = G^k E_0$, i.e.,: • DSA returns energy power-law $f(E) \propto E^{-q_E}$, function of the compression ratio R only. In momentum (relativistically covariant), $f(p) \propto 4\pi p^2 p^{-q}$, with $q = \frac{3R}{R-1}$ • For any strong shock: Mach number $M = \frac{v_{sh}}{m} \gg 1 \rightarrow R = 4$ and spectra are $f(p) \propto p^{-4}$ or C_{S} $f(E) \propto E^{-2}$ (for relativistic particles)

Astroplasmas from first principles

Full-PIC approach
 Define electromagnetic fields on a grid
 Move particles via Lorentz force
 Evolve fields via Maxwell equations
 Computationally very challenging!

Hybrid approach: Fluid electrons - Kinetic protons
 (Winske & Omidi; Burgess et al., Lipatov 2002; Giacalone et al.
 1993,1997,2004-2013; DC & Spitkovsky 2013-2015, Haggerty & DC 2019-2022)

massless electrons for more macroscopical time/length scales

Hybrid Simulations of Collisionless Shocks

dHybrid code (Gargaté+07; Caprioli-Spitkovsky13-18), now dHybridR (+relativity; Haggerty & Caprioli 2019)

CR-driven Magnetic-Field Amplification

Initial B field M_s=M_A=30

DC & Spitkovsky, 2013

 $x[c/\omega_p]$

Acceleration depends on the shock inclination

B₀

 ϑ

Vsh

B amplification and ion acceleration where the shock is parallel

DSA Efficiency

X-ray emission: red=thermal white=synchrotron

Caprioli-Spitkovsky14a,b,c

Ion DSA at the Earth Bow Shock

MMS confirms that DSA is efficient at quasi-parallel shocks (Johlander+21)

Magnetospheric Multiscale Mission

Theory vs Observations

Sefficient DSA (Drury 1983, Jones & Ellison 1991, Malkov & Drury 2001,...) should return: Compression ratios R > 4; \sim CR spectra flatter than p^{-4} (flatter than E^{-2} for relativistic particles) Observations, instead, point to significantly steeper spectra: • Hadronic γ -rays from historical and middle-age SNRs: $q \sim 4.3 - 4.7$ (e.g., Caprioli11,12; Aharonian+19); Synchrotron emission from radio SNe: $q \sim 5$ (e.g., Chevalier & Fransson06, Bell+11, Margutti+18, ...); Propagation of Galactic CRs suggests source spectra with $q \sim 4.3 - 4.4$ (e.g., Blasi-Amato11a,b; Evoli+19).

CR-modified Shocks: Enhanced compression!

Hybrid simulations (Haggerty & Caprioli20) Opar shocks: ion acceleration efficient R increases with time, up to ~ 6 In SN1006: $R \sim 4 - 7$, modulated with the azimuth/shock inclination (Giuffrida+22, NatCom) However,

 \odot if $R \simeq 7 \rightarrow q_{\text{expected}} \simeq 3.5$

From radio to γ -ray observations: 0 $q_{\rm inferred} \simeq 4.3$

A challenge to DSA theory!

The Role of Amplified Magnetic Fields

 \oslash Upstream: $w_1 \simeq -v_{A,1}(\delta B_1) \ll u_1$

 B fields (and hence CRs) drift downstream with respect to the thermal gas
 First evidence of the formation of a postcursor CRs feel a compression ratio smaller than the gas

 $R_{cr} \simeq \frac{u_1}{u_2(1+\alpha)} < R_{gas}$

A Revised Theory of Diffusive Shock Acceleration

Caprioli, Haggerty & Blasi 2020

2_{ci}^{-1})	
	Vith the effective compression
- 1600	by CRs
- 1400	$q = \frac{3R_{cr}}{R_{cr} - 1} = \frac{3R_{gas}}{R_{cr} - 1 - \alpha} > q_{DSA}$
- 1200	crgas - or
- 1000	\odot CRs feel $R_{cr} < R_{gas}$: the power-la
	index is not universal, but depe
- 800	on the (CR-produced) B field
- 600	
100	Ab-initio explanation for the ste
- 400	spectra observed in SNRs
- 200	Works also for SN1006!

More towards CM shocks

ENTRE STARTING TO SAN ROAME TO BELOWING THE START STARTE SAN SOM ROAME TO BELOWING STARTE START START OF BELOW

We deter the second to the terror of the terror of the terror of the second the terror of the second to the second

and in the second to second a second in the second of the Second Restered

Shocks in high- β plasmas

The sonic Mach # M_s controls shock dynamics (R) and CR spectrum

The Alfvènic Mach # M_A controls magnetic field amplification

Magnetic fields are amplified also in high-ß plasmas!

0.8 0.7 0.6 0.5 0.4 0.2 0.4 0.2 0.2 0.1 Shocks with low M and high β (with UChicago undergrad Mayur Sharma)
 Efficiency still ~ 10 % for q-par M = 5, independent of β ≤ 100

in prog.

NLDSA in high- β shocks

Measured

64

25

9

Q-par shocks with M = 5 and different β

RH cond

R

While R always increases, slope remains closer to DSA prediction Enhanced compression makes spectra *flatter*, while postcursor makes spectra steeper 0 Modification correlates with B amplification: Larger β (smaller M_A) means larger B, until β is so large that B damping kicks in 0

What if there are already energetic particles (seeds)?

CARE A CARACTER CONTRACTOR AND A CARACTER CONTRACTOR AND A CARACTER AND A CARACTER AND A CARACTER AND A CARACTER

Sine Ochestor

DSRA & DSA Efficiencies

80

75

30

 $\begin{array}{c} \text{(deg)} \\ \end{array} \\ \end{array} \\ \end{array} \\ \left(\begin{array}{c} \text{deg} \\ \text$

Caprioli+18

Seed DSRA independent of ϑ , about 4x the initial CR energy density Absolute efficiency depends on seed energy density Also electrons can be reaccelerated!

A (8<45°): Same proton efficiency</p> \oslash B (45°< ϑ <70°): Boosted to few % $OC(\vartheta > 70^{\circ})$: No proton DSA

Quasi-Perpendicular SEEDED Shocks

 $\otimes \sqrt[9]{=80^{\circ}}$ quasi-perp shock with seeds $E_{CR}=3E_{sh}$

- Seeds diffuse but their spectrum is steeper than DSA
- Non-thermal protons only downstream

TAKE-AWAY MESSAGES

Ion DSA is efficient at quasi-parallel shocks Ion DSA efficiency almost independent of $\beta_{1} \sim 10\%$ for $M_{s} \gtrsim 3$ Reacceleration (DSRA) can be important at oblique shocks Non-DSA acceleration at quasi-perpendicular shocks

Shocks with $M_s \leq 3$

 \circ Electron injection and DSA; it may exhibit different trends with ϑ, β, M_s (Guo+14, Park+15, Xu+20, Shalaby+20, Bohdan+20-22, Morris+22, Gupta & Caprioli in prog...)

- Non-linear DSA is important; spectra are non-universal and depend on B

TO DO LIST

3D simulations of a parallel shock

z-axis

100

DC & Spitkovsky, 2014a

- 5.0 - 2.0 - 1.1 - 0.58 - 0.20

Q

50

Initial B field M=6

Magnetic field spectrum

Magnetic energy density per unit logarithmic bandwidth, F(k)

$$\frac{B_{\perp}^2}{8\pi} = \frac{B_0^2}{8\pi} \int_{k_{min}}^{k_{max}} \frac{dk}{k} \mathcal{F}(k)$$

F(k)∝k⁻¹ for ω_c / V_{max} <k< ω_c /V_{sh}
Turbulence selfgenerated by a spectrum ∝p⁻⁴

DC & Spitkovsky, 2014b

Magnetic field spectrum, high M_A

Bell modes (shortwavelength, righthanded) grow faster than resonant

Far upstream: escaping CRs at ~p_{max} (Bell)

For large $b = \delta B/B_0$ $k_{max}(b) \sim k_{max,0}/b^2$

There exist a b* such that k_{max}(b*)r_L(p_{esc})~1

Free escape boundary

Precursor: diffusion + resonant

DC & Spitkovsky, 2014b

CR-induced precursor

Upstream Ø fluid is slowed down & heated up

Magnetic and 0 thermal pressure remain in equipartition

Non-adiabatic 0 heating

Diffusion coefficient

Э

Directly measured in simulations

$$D(E) \equiv \lim_{t \to \infty} D(E, t) = \lim_{t \to \infty} \sum_{n=1}^{N} \frac{|x_n(t) - x_n(0)|^2}{2tN}.$$

Bohm diffusion in the amplified B

D enhancement larger near the shock Solution below Emax Suppression depends on M (B amplification)

Time evolution of E_{max}

Evolution of E_{max}(t) according to DSA (Drury 1983, Blasi et al. 2007)

$$T_{acc}(E) = \frac{3}{u_1 - u_2} \left[\frac{D_1(E)}{u_1} + \frac{D_2(E)}{u_2} \right] \simeq \frac{3r^3}{r^2 - 1} \frac{D(E)}{v_{sh}^2}.$$

DC & Spitkovsky, 2014c

lasmas $M_s = 5; M_A = 5$ $M_s = 5; M_A = 30$ $M_s = 30; M_A = 30$ 6 2

2000

 $x[c/\omega_p]$

Magnetic fields are amplified also in high-ß plasmas!

2500

3000

CR spectra agree with DSA prediction (steeper than p⁻⁴ for r<4)

1000

What if there are already energetic particles (seeds)?

CARE A CARACTER CONTRACTOR AND A CARACTER CONTRACTOR AND A CARACTER AND A CARACTER AND A CARACTER AND A CARACTER

Sine Ochestor

Efficiency

80

75

 $\begin{array}{c} \text{(deg)} \\ \text{(deg)} \end{array}$

45 ू^Hə

30

•15

Seed DSRA independent of 8, about 4x the initial CR energy density Absolute efficiency depends on seed energy density Also electrons can be reaccelerated!

A (8<45°): Same proton efficiency</p> \oslash B (45°< ϑ <70°): Boosted to few % $OC(\vartheta > 70^{\circ})$: No proton DSA

Quasi-Perpendicular SEEDED Shocks

 $\otimes \sqrt[9]{=80^{\circ}}$ quasi-perp shock with seeds $E_{CR}=3E_{sh}$

- Seeds diffuse but their spectrum is steeper than DSA
- Non-thermal protons only downstream

The Current in Reflected CRs

\circ Depends on the fraction of reflected seeds, n, and their speed, v_r

A Universal Current in Reflected CRs

 $\circ \eta$ and v_r "magically" balance their dependence on ϑ and M exactly: $J_{CR} = en_{CR}V_{sh}$ Easy explanation: CRs tend to become isotropic at the shock, in the shock frame: they become anisotropic in the upstream frame For SNRs and Galactic CRs: T_{stream inst}~10yr

Minimum level of B-amplification for shocks in the ISM

Particle Injection - Simulations

x-p_x Phase Space

DC, Pop & Spitkovsky, 2015

Encounter with the shock barrier

Low barrier (reformation)

average $|e \Delta \Phi|$

lons advected downstream, and thermalized

To overrun the shock, ions need a minimum Eini, increasing with 8 (DC, Pop & Spitkovsky 15) Ion fate determined by barrier duty cycle (~25%) and shock inclination

• After N SDA cycles, only a fraction $\eta \sim 0.25^{N}$ has not been advected

Solve For $\vartheta = 45^\circ$, $E_{ini} \sim 10E_0$, which requires N~3 -> $\eta \sim 1\%$

Solve For $\vartheta > 45^\circ$, $E_{ini} > 10E_0$, hence N>3 and $\eta < <1\%$

High barrier (overshoot) 3

$|e\Delta\Phi| > mV_x^2/2$

lons reflected upstream, and energized via Shock Drift Acceleration

Minimal Model for Ion Injection

Time-varying potential barrier High state (duty cycle ~25%) Reflection + SDA \oslash Low-state (~75%) Thermalization

Spectrum à la Bell (1978)

$$f(E) \propto E^{-1-\gamma}; \quad \gamma \equiv -\frac{\ln(1-\mathcal{P})}{\ln(1+\mathcal{E})}$$

P=probability of being advected 0

 $\circ \epsilon$ =fractional energy gain/cycle

Ion Injection - Theory

Ion fate determined by Solution barrier duty-cycle (~25%) o pre-reflection V shock inclination

If $\vartheta < \vartheta_{loss}$, ions escape upstream, and are injected into DSA

Otherwise, they experience SDA, return to the shock (with larger V), and may be either reflected or advected

• After N SDA cycles, only a fraction $\eta \sim 0.25^{N}$ survives

• For $\vartheta_{eff} \sim 45^{\circ}$, N~3 -> η ~1%

Hybrid Simulations

M=10, parallel shock, with singly-ionized nuclei (DC, Yi, Spitkovsky 2017)

Hybrid Simulations with Heavy lons

Helium is not test-particle!

With cosmological He abundance ~10% (DC & Roussi, in prog) He acceleration efficiency ~15% (as H) Total efficiency ~30% Increases shock modification He can drive waves as much as H Emax 2x larger for both species Hadronic gamma-ray emission can be boosted by a factor ~5 (DC et al, 2011)

Ion vs Electron Injection

Ions injected by specular reflection Their magnetic moment $W_{\perp}=p_{\perp}^{2}/B$ is not conserved: the shock is evolving on their gyro-time! Electrons cannot be reflected by the shock potential barrier, but conserve their W₁ \oslash VB-drift + shock drift acceleration $rac{W_{\perp}}{qB}rac{{f B} imes
abla B^2}{B^2}$ $\mathbf{E} = -\mathbf{V}_1/c \times \mathbf{B}$ $\mathbf{V}\nabla B$ Electron injection requires oblique shocks! How can we have simultaneous acceleration of ions and electrons?

Electron Acceleration

• Full PIC simulations (Tristan-MP code) M=20, V_{sh} =0.1c, quasi-parallel (ϑ =30°) 1D shock

Meso-scales: Super-Hybrid

MHD (Athena) + kinetic ions Prescription for injection (DC, Pop & Spitkovsky, 2015) Allows to go to larger Mach numbers and scales 0

$$rac{\partial
ho}{\partial t} +
abla \cdot (
ho oldsymbol{v}_g) = 0 \; ,$$

$$= -(1-R)(n_{\rm CR}\boldsymbol{\mathcal{E}}_0 + \boldsymbol{J}_{\rm CR} \times \boldsymbol{B}/c) = -\boldsymbol{F}_{\rm CR} ,$$

$$\frac{\partial E}{\partial t} + \nabla \cdot \left[(E+P^*)\boldsymbol{v}_g - \frac{(\boldsymbol{B} \cdot \boldsymbol{v}_g)\boldsymbol{B}}{4\pi} + \frac{c}{4\pi}(\boldsymbol{\mathcal{E}} - \boldsymbol{\mathcal{E}}_0) \right]$$
$$= -(1-R)\boldsymbol{J}_{\rm CR} \cdot \boldsymbol{\mathcal{E}}_0 = -\boldsymbol{u}_{\rm CR} \cdot \boldsymbol{F}_{\rm CR} ,$$

 $n_{\rm CR}$

Long-Term Evolution

Bai, DC, Sironi, Spitkovsky 2015

Nonrelativistic - relativistic transition

PHENON.

SN 1006: a parallel acce

X-ray emission: red=thermal white=synchrotron

B amplification and ion acceleration where the shock is parallel

DC & Spitkovsky, 2014a

Below ~10 GeV: solar modulation observed via neutron monitors Below ~1 PeV: satellites and balloons Solution Above: ground-based arrays, fluorescence telescopes for extensive air showers

Tycho: the smoking gun for hadron acceleration

Type la SN Age=444yr Distance~3kpc

Only two free parameters: electron/proton ratio and injection (now constrained with PIC!)

Spectra from semi-analytical CRAFT
 Acceleration efficiency. ~10%
 Protons up to ~0.5 PeV

X-ray observations of young SNRs

SNR RX J1713.7-3946

Uchiyama+ 2007

06

64°04

Second Residual Residuation Residual Residuation Residual Residuation Residuatio Resid Radial filaments with ~ gyroradius spacing

Direct evidence: γ-rays from SNRs

HADRONIC (π_0 decay)

γ -ray spectrum parallel to the proton one (~E⁻²)

Spectral variety is (typically) environmental!

γ -ray spectrum flatter than the proton (electron) one (~E^{-1.5})

Location: gas-/photon-rich environments -> hadronic/leptonic emission

Hadronic emission from molecular clouds

Overabundance of "bullets"? SNR, or diffuse CRs? Very steep spectra (E-3)!! 0 The Physics of shock propagating in partially-neutral plasmas is nontrivial!

Overabundance of "targets"

A Bridge with Heliophysics

Evolving Heliophysics System Observatory

In-situ measurements with spacecraft

Electron vs lon acceleration

 Planetary bow shocks
 Earth, Venus, Saturn,...
 In situ measurements: Geotail, Polar, SoHO, WIND, Cassini, THEMIS, Cluster, STEREO, ACE,...

 Radio relics in galaxy clusters
 Extended polarized structures
 Fermi-LAT limits on γ-ray emission: constraint on e/p ratio

CIZA J2242.8+5301

200 kpc

The spectral index depends only on the compression ratio

$$q = \frac{R+2}{R-1}; \quad R = \frac{\gamma+1}{\gamma-1};$$

The CR pressure makes the adiabatic index smaller (R becomes larger)

Particles "feel" different compression ratios: spectra become concave

If acceleration is efficient, at energies >1 GeV: q < 2 (flat spectra!)

Non-Linear Diffusive Shock Acceleration

With Fermi, HESS, VERITA

Evidence of ion acceleration: spectra too steep to be leptonic... 0 …and to be consistent with non-linear DSA theory: Efficient acceleration implies spectra flatter than E⁻² (Jones & Ellison 1991, Malkov & Drury 2001) 0

DC 2011

The challenge of producing steep spectra

Slope

Shocks in partially-neutral media (Blasi et al. 2012; Morlino et al. 2013; Ohira 2014)

- Charge-exchange may induce a neutral return flux that makes the shock weaker
- Balmer lines provide unique test of CR acceleration efficiency (Helder et al. 2009; Raymond et al 2010; Morlino et al. 2014)

Magnetic feedback (Bell 1978; Zirakashvili & Ptuskin 2008; DC et al. 2009; DC 2012,...) 0

 Large velocity of scattering centers
 $(v_A \sim \delta B)$ leads to an effective R<4, which in turns implies q>2

Oblique shocks/modified diffusion (Kirk et al. 1996; Morlino et al. 2007; Bell et al. 2011, ...) 0

Acceleration Efficiency

SNR spectra

The velocity of the scattering centers $in\delta B/B \gg 1$ leads to steep spectra

Relevant for gamma-ray emission

The total CR spectrum injected by a SNR has roughly the slope of the instantaneous spectrum at the beginning of the Sedov stage

Relevant for the GCR spectrum

Acceleration of CR nuclei in SNRs

- the observed ones (Blümer et al. 2009)

$$\phi_{Earth}(E) = \frac{\eta_{SN} N_{SNR}(E) \tau_{esc}(E)}{4\pi R_{Gal}^2}$$

$$\tau_{esc}(E) = 15 Myr \left(\frac{1}{Z} \frac{E}{10 GeV}\right)^{-0.55}; \quad \eta_{SN} = \frac{3}{100}$$

From accelerated particles to CRs

Sector Ejecta dominated stage: Magnetic turbulence and E_{max} increase with time Sedov-Taylor stage (around 500-1000yr): \circ The shock velocity an the δB decrease

 $d\varepsilon(t) = F_{esc}(t) \frac{1}{2} \rho V_{sh}^3(t) 4\pi R_{sh}^2 dt \qquad N_{esc}(E) \propto E^{-2} t^{5\nu-2} F_{esc}(t) \qquad N_{esc} \propto E^{-2} d\varepsilon(E) = N_{esc}(E) E dE \qquad N_{esc} \propto E^{-2} R_{sh}(t) \propto t^{\nu}$

The released spectrum is the convolution over time of 2 contributions: Escape from upstream + Relic advected CRs

- \circ particles with E_{max}(t) cannot be confined any longer and escape the system
- ∞ Let F_{esc} be the escaping fraction. During the adiabatic Sedov stage R_{sh} -t^{2/5}

Caprioli, Amato & Blasi 2010a

Escape from PeVatrons

The released spectrum is likely a convolution over instantaneous (monochromatic) spectral (Ptuskin & Zirakashvili 2005; DC et al. 2009, 2010; Bell et al. 2013; Cardillo et al. 2015) The CR power-law may reflect the self-similar SNR evolution, rather than acceleration! Second CRs illuminate molecular clouds (e.g., Gabici et al. 2007,2009; Castro & Slane 2010,...) Acceleration rate depends on B amplification (via Bell's instability) multi-PeV achieved for T_{SNR}<100 yr in type-II SNe (Bell et al. 2013; Schure & Bell 2013; Cardillo et al. 2015)</p>

The challenge of producing steep spectra

Shocks in partially-neutral media (Blasi et al. 2012; Morlino et al. 2013; Ohira 2014)

- Charge-exchange may induce a neutral return flux that makes the shock weaker
- Balmer lines provide unique test of CR acceleration efficiency (Helder et al. 2009; Raymond et al 2010; Morlino et al. 2014)

Magnetic feedback (Bell 1978; Zirakashvili & Ptuskin 2008; DC et al. 2009; DC 2012,...)

 Large velocity of scattering centers
 $(v_A \sim \delta B)$ leads to an effective R<4, which in turns implies q>2

Oblique shocks/modified diffusion (Kirk et al. 1996; Morlino et al. 2007; Bell et al. 2011, …)

Slope

Steep spectra preferred by propagation, too

Also in this case, an injection slope of $\gamma = 2.7 - 0.33 \sim 2.35$ is required

 δ =0.33 is preferred since it returns:

more universal CR spectra

Jess anisotropy

Shocks into partially ionized media

Charge-exchange
 between neutrals and ions
 can transfer energy from
 downstream to upstream!
 Efficient heating implies
 smaller Mach numbers

Acceleration at Balmer shocks

ratio smaller than 4 (Blasi et al. 2012, Morlino et al. 2012, 2013,...)

Steep spectra, up to what energy?

Charge-exchange scale vs CR diffusion scale

• For V_{sh} > 3000km/s ionization dominates over CE

- A neutral-induced precursor makes the effective compression

Multi-Scale Approach to Shock Acceleration

Micro Meso Space-Physics

Astro

PIC Simulations electron + ion dynamics

Hybrid: ion dynamics, magnetic field amplification

Super-Hybrid (MHD+hybrid) Large/long scales High-Mach numbers (Bai et al. 2015)

> **Semi-Analytical** CRAFT = Cosmic Ray Analytical Fast Tool (DC et al, in prog.)

From kinetic to fluid scales

Towards real shocks: going bigger up to space/ astrophysical scales Second Embedding microphysics in hydro/MHD simulations Super-Hybrid: MHD+hybrid (Bai, DC, Sironi, Spitkovsky 2015) CRAFT: CR Analytic Fast Tool (DC et al., in prep)

A Stairway to New Discoveries...

First-principles kinetic plasma simulations
 Ion/electron dynamics, particle-wave coupling
 Multi-scale approach beyond PIC/hybrid

Variety of problems in laboratory, heliophysics, astrophysics:
 Magnetic reconnection, turbulence, instabilities

Active role of non-thermal particles in galactic dynamics
 2/3 of the ISM energy in CRs and B fields!
 Generation of B fields, ionization, CR-driven winds,...

Acceleration of ultra-high-energy CRs via the "espresso" mechanism

Multi-scale Approach Particle Acceleration

Hybrid: ion injection and acceleration, B amplification

Über-Hybrid (MHD+hybrid) Large scales High-Mach numbers Long-term evolution

Micro

Meso

Space

Astro

PIC Simulations electron dynamics

Large-scale kinetic approaches to non-linear DSA

Solve CR transport and shock hydrodynamics self-consistently

1D Diffusion-convection (Parker) equation

FULLY NUMERICAL: time-dependent \odot MONTE CARLO: account for anisotropic distributions f(p_x, p_y, p_z) Jones & Ellison 1991; Ellison et al. 1990;1995; Vladimirov, Ellison, & Bykov 2006; ... SEMI-ANALYTICAL: versatile, computationally extremely fast Malkov 1997; Blasi 2002; Amato & Blasi 2006, DC et al. 2009; 2010; DC 2012, ... Require an a priori description of

Magnetic field generation, Particle scattering, CR injection

$\frac{\partial f(t, x, p)}{\partial t} + \tilde{u}(x)\frac{\partial f(t, x, p)}{\partial x} = \frac{\partial}{\partial x} \left[D(x, p)\frac{\partial f(t, x, p)}{\partial x} \right] + \frac{p}{3}\frac{\partial f(t, x, p)}{\partial p}\frac{d\tilde{u}(x)}{dx}$

This information can be provided only by kinetic simulations

CRAFT: a Cosmic-Ray Fast Analytic Tool

$$\tilde{u}(x)\frac{\partial f(x,p)}{\partial x} = \frac{\partial}{\partial x}\left[D(x,p)\frac{\partial f(x,p)}{\partial x}\right]$$

Advection

Diffusion

Very fast: a few seconds on a laptop (vs days on clusters: DC et al. 2010) Can embed microphysics from kinetic simulations into (M)HD

U

$$f(x,p) = f_2(p) \exp\left[-\int_x^0 dx' \frac{\tilde{u}(x')}{D(x',p)}\right] \left[1 - \frac{W(x,p)}{W_0(p)}\right] \Phi_{esc}(p) = -D(x_0,p) \left.\frac{\partial f}{\partial x}\right|_{x_0} = -\frac{u_0 f_2(p)}{W_0(p)};$$

$$W(x,p) = \int_x^0 dx' \frac{u_0}{D(x',p)} \exp\left[\int_{x'}^0 dx'' \frac{\tilde{u}(x'')}{D(x'',p)}\right].$$

$$f_2(p) = \frac{\eta n_0 q_p(p)}{4\pi p_{inj}^3} \exp\left\{-\int_{p_{inj}}^p \frac{dp'}{p'} q_p(p') \left[U_p(p') + \frac{1}{W_0(p')}\right]\right].$$

$$U_p(p) = \frac{\tilde{u}_1}{u_0} - \int_{x_0}^0 \frac{dx}{u_0} \left\{\frac{\partial \tilde{u}(x)}{\partial x} \exp\left[-\int_x^0 dx' \frac{\tilde{u}(x')}{D(x',p)}\right] \left[1 - \frac{W(x,p)}{W_0(p)}\right]\right].$$
CR distribution function

(Caprioli et al. 2009-2015, to be publicly released soon)

Iterative analytical solution of the 1D stationary CR transport equation:

 $\left[\frac{dx}{\partial x}\right] + rac{p}{3} rac{\mathrm{d} ilde{u}(x)}{\mathrm{d}x} rac{\partial f(x,p)}{\partial p} + Q(x,p).$

Energy change Injection

Mass+momentum conservation eqs.

 $\rho(x)^{\gamma}$

 $\rho(x)u(x) = \rho_0 u_0$ $\rho(x)u(x)^{2} + p(x) + p_{cr}(x) + p_{B}(x) = \rho_{0}u_{0}^{2} + p_{g,0} + p_{B,0}$

$$P_{B} + P_{cr}$$

$$p_{B}(x) \qquad dp_{cr}(x) \qquad (x)$$

$$ilde{u}(x)rac{dp_B(x)}{dx} = v_A(x)rac{dp_{cr}(x)}{dx} - 3p_B(x)rac{d ilde{u}(x)}{dx}$$

Magnetic turbulence transport eq.

What is the feedback of CRs on SNR evolution? (and eventually in galaxy formation?)

SNR Evolution in a Thin-Shell

Ejecta-dominated stage: R_{SNR}~V_{SNR} t
 Sedov-Taylor (adiabatic) stage: R_{SNR}~t ^{2/5}
 Radiative stage (T_{sh}<~10⁶K)
 Pressure-driven snowplow (P_{hot}>P₀)
 Momentum-driven snowplow (P_{hot}~P₀)

SNRs deposit energy and momentum in the ISM Crucial for feedback that can suppress star formation

R_{SNR} M_{sh} Phot P_0 $\frac{d(M_{\rm sh}v_{\rm SNR})}{4\pi r_{\rm SNR}^2} = 4\pi r_{\rm SNR}^2 (P_{\rm hot} - P_0),$

And now for something completely different...

at is in Samilar entrance in the set

WE SUR ELE WAR ROAND BREED IN PREPISING STREED SON ROAND BREED SING STREED SON TO BE PORTE STREED SON ROAND STREED SON TO BE PORTE STREED SON TO STREED SON TO STREED SON TO STREED STREED SON TO STREED STRE

and the contract product the way and the product and the contract product the product and the contract product

Extra-galactic Cosmic Rays

Magnetic Field Strength $B(\mu G)L(pc) > 2\frac{E(10^{15}eV)}{Z\beta}$ 10¹²G Neutron Stars 10 G TEVATRON SPPS White Dwarts GRBs AGNS Sunspots 1000 04 91 B × 7 1G 10 00 0 Radio Galaxy SNRs 10 G Interplanetary space Galactic Cluster Galactic Halo 10⁶km 1Mpc 1Gpc 1km 1pc 1kpc 1AU Size

Sources typically involve relativistic flows

Acceleration at Relativistic Shocks

 μ_{f}

Γ

 $_{i} = -\cos \vartheta_{i}$

Encounter with the shock: $\mathbf{p}_i \simeq E_i(\mu_i, \sqrt{1-\mu_i^2}, 0)$, in the *downstream* frame: $E_{\mathrm{i}}' = \Gamma(E_{\mathrm{i}} - \beta p_{\mathrm{i},x}) = \Gamma E_{\mathrm{i}}(1 - \beta \mu_{\mathrm{i}}),$ $p_{\mathrm{f},x}^\prime \equiv \mu_{\mathrm{f}}^\prime E_{\mathrm{f}}^\prime
onumber \ \mu_{\mathrm{f}} = rac{\mu_{\mathrm{f}}^\prime + eta}{1 + eta \mu_{\mathrm{f}}^\prime},$ Elastic scattering (e.g., gyration): Back in the upstream:

 $E_{\mathrm{f}} = \Gamma(E_{\mathrm{f}}' + \beta p_{\mathrm{f},x}') = \Gamma^2 E_{\mathrm{i}}(1 - \beta \mu_{\mathrm{i}})(1 + \beta \mu_{\mathrm{f}}'),$

Solution Energy gain depends on $\mu_f - \mu_i$

First cycle: $E_f \sim \Gamma^2 E_i$ (~Compton scattering)

Upstream

 \odot Following cycles: $E_f \sim 2 E_i$

CAVEAT: return not guaranteed!

Acceleration in Relativistic FLOWS

Requirement: interface thickness << gyroradius << typical flow size</p>

Laboratory (Downstream)

Flow (Upstream)

Most trajectories lead to a $\sim \Gamma^2$ energy gain!

Espresso Acceleration of UHECRs

SEEDS: galactic CRs with energies up to ~3Z PeV **STEAM:** AGN jets with Γ up to 20-30

galactic-CR halo

Hercules A

ONE-SHOT reacceleration can

produce UHECRs up to $E_{max} \sim 2\Gamma^2 3Z PeV$ $E_{max} \sim 5Z \times 10^9 \, GeV$

UHECRs from AGN jets: constraints

Confinement (Hillas Criterion): $B_{\mu G} D_{kpc} \gtrsim \frac{4}{Z_{26}} \frac{E_{max}}{10^{20} eV}$ © Energetics: Q_{UHECR}(E≈10¹⁸eV)≈5x10⁴⁵erg/Mpc³/yr $L_{bol} \approx 10^{43} - 10^{45} \text{erg/s}; N_{AGN} \approx 10^{-4} / Mpc^{3}$ $Q_{AGN} \approx a \text{ few } 10^{46} - 10^{48} \text{ erg/Mpc}^3/\text{yr} >> Q_{UHECR}$ Sefficiency depends on: \sim Reacceleration efficiency (ϵ >~10-4) Solution (angle of a few degrees: $\varepsilon \sim 10^{-1}$ -10⁻²) Contributing AGNs Likely radio-loud quasars, blazars, FR-I,...

Testing Espresso Acceleration

Propagation in synthetic jets and in 3D MHD sims (DC 2016; DC & Mbarek, in prog)

A Summary

Origin	Source	Mechanism	E _{max}	Spectrum	Evidence
Galactic	SNRs	Diffusive Acceleration at non-rel shocks	3Zx10 ⁶ GeV	Universal ~ E-2	gamma rays e.g., Tycho
Extragal	AGNs	Espresso in rel flows?	5Zx10 ⁹ GeV	Galactic, boosted	Anisotropy? Neutrinos?
AGASA A Akeno 1 km ² A Akeno 1 km ²					

The Astroplasmas Group

Damiano Caprioli

Grads Post-docs Undergrads

Emily Simon

Rebecca Diesing Georgios Zacharekgas

Rostom Mbarek

Siddhartha Gupta

Claire Guepin

Benedikt Schroer

Emily Lichko

Thomas Fitzpatrick

Nick Corso

Naixin Liang

Mayur Sharma

WHO: The Astroplasmas Group at UChicago

Emily Simon

Rebecca Diesing

Georgios Zacharekgas

Thomas Fitzpatrick

Nick Corso

Naixin Liang

Damiano Caprioli

Rostom Mbarek

Christine Simpson (EFI)

Siddhartha Gupta

Benedikt Schroer

Emily Lichko