New SITELLE Observations of the Filaments in NGC 1275

Julie Hlavacek-Larrondo

Université de Montréal, Canada Research Chair

SITELLE view of the Perseus cluster of galaxies. Credit: MLGM/JHL/NASA/SDSS.

AGN Feedback in High-z Clusters of Galaxies

→ Black hole feedback has been operating in clusters of galaxies for > 8 Gyrs, i.e. over half of the age of the Universe (based on work with the clusters discovered by the South Pole Telescope).

Hlavacek-Larrondo et al. 2012, Hlavacek-Larrondo et al. 2015 and references therein.

AGN Feedback in the Phoenix Cluster (z=0.6)

SFR=500-800 M_☉/yr ′ (McDonald et al. 2012 and references therein)

Hubble, JVLA, Chandra view of the Phoenix cluster of galaxies (z=0.6); credit:NASA/StSci/Chandra/VLA/Mcdonald.

SpARCS104922.6+564032.5 (z=1.7; $\approx 3.5 \times 10^{14} M_{\odot}$)

→ A massive starburst (SFR = 900 M_☉ / year; CO ≈ 10¹¹ M_☉). The stars are forming offset (25 kpc) from the central galaxy (BCG) and extended (Webb et al. 2015a, 2015b, 2018).
Hlavacek-Larrondo, Rhea et al. 2020; arXiv 2007.15660

SpARCS104922.6+564032.5 (z=1.7; \approx 3.5×10¹⁴ M_{\odot})

- \rightarrow Strong cool core, offset from BCG.
- \rightarrow NO AGN feedback (Trudeau+2019)– starburst is from a pure cooling flow.
- \rightarrow New way to form intracluster stars (build Milky way in 10^8 years).

Hlavacek-Larrondo, Rhea et al. 2020; arXiv 2007.15660

X-rays (Chandra)

Radio 230-470 MHz (JVLA)

Flamboyant Galaxy. Winner of the 2017 La preuve par l'image competition. JHL/MLGM/MPL.

Hα emission at the redshift of NGC 1275

100 kpc

Perseus cluster of galaxies; Credit: SDSS, CXC/IoA/ACFabian, CFHT/Gendron-M.

Cavagnolo et al. 2008.

Crawford et al. 1999.

The "Problem" with the filaments in NGC 1275

NGC 1275 (Hα continuum)

Conselice et al. 2001, see also Salomé's work on CO observations of NGC 1275.

SITELLE at the CFHT

Science verification observations (2018): NGC 1275 observed for 2.1 hours with the 647-685 nm filter (SN3) and R = 1800 (covering H α , NII, SII, OI).

Credit: JHL/MLGM/ML.

NGC 1275 (Hα continuum)

Conselice et al. 2001.

Gendron-Marsolais, Hlavacek-L. et al. 2018

Black Hole-driven Turbulence in Clusters

 \rightarrow Li et al. 2020 show that for Perseus, Virgo and A2597:

- 1) Motions of filaments are turbulent
- 2) Features in the VSF correlate directly with AGN jet features
- 3) Motions of filaments (10,000K) = motions of X-ray gas (10,000,000K).

→ Evidence that central AGN (BCG) drives turbulence in cluster cores.

Li et al. 2020, ApJ Letters

2018

- 2.1 hours
- SN3 (647-685 nm): Hα, NII, SII, OI.
- $R = \lambda / \Delta \lambda = 1800$
- R = 3.7Å (~80 km/s)
- Gendron-Marsolais et al. 2018

M.-L. Gendron-M. (ESO fellow)

2022

- 4 hours
- SN3 (647-685 nm: Hα, NII, SII, OI.
- $\mathbf{R} = \lambda / \Delta \lambda = 7000$
- R = 0.9 Å (~15 km/s)
- Vigneron et al. in prep

Benjamin Vigneron, M. Sc.

2022

- 3 hours each filter
- SN1 (365-385 nm): OII
- SN2 (480-520 nm): Hβ
- $R = \lambda / \Delta \lambda = 1800$
- R = 2.1/2.7 Å (~80 km/s)
- Thilloy et al. in prep

Auriane Thilloy, B. Sc.

Carter Rhea. (Ph. D. IVADO scholar) See https://github.com/crhea93/LUCI

NGC 1275 (Hα continuum)

Conselice et al. 2001.

NGC 1275 (R=1800; Hα velocity)

Gendron-Marsolais, Hlavacek-L. et al. 2018

NGC 1275 (Hα continuum)

Vigneron, Hlavacek-L. et al. 2022, in prep

Conselice et al. 2001.

NGC 1275 (Hα continuum)

Conselice et al. 2001.

Gendron-Marsolais, Hlavacek-L. et al. 2018

NGC 1275 (Hα continuum)

Conselice et al. 2001.

NGC 1275 (Hα continuum)

Conselice et al. 2001.

Disk-like Structure

- 25 kpc by 10 kpc
- High flux at Hα, NII, SII
- $\sigma \cong$ 160 km/s
- No rotation

Extended Filaments

- 90 kpc by 60 kpc
- Low flux (10 times fainter) at Hα, NII, SII – that is remarkably uniform.

*Also 10 times fainter in CO (Salome+2011).

- $\sigma \cong$ 50 km/s that is remarkably uniform.
- Chaotic velocity structure

CO(2-1) at 1,3 mm (Lim et al., 2008)

Radio 230 - 470 MHz (Gendron-Marsolais+2020)

SITELLE Hα Filaments (Vigneron+in prep)

CO (2-1) (Lim+2008)

Chandra 0.5-2.0 keV image of the Perseus cluster of galaxies

1' = 21.2 kpc

Implications: 2 mechanisms form filaments

Take Home Point

→ Reg 0: $\sigma_{v,Hitomi} = 189^{+19}_{-18}$ km/s $\sigma_{v,H\alpha} = 184$ km/s

- → Reg 3: $\sigma_{v,Hitomi} = 106^{+20}_{-20}$ km/s $\sigma_{v,H\alpha} = 82$ km/s
- Velocity dispersion of the 10,000 K gas similar to the hot X-ray gas (Hitomi collab 2017), i.e. they might be subject to the same turbulence/mouvements.

Gendron-Marsolais, JHL et al. 2018; Vigneron, Hlavacek-Larrondo et al. in prep.

SITELLE (Hα, 10,000K)

Velocity (km/s)

Vigneron, Hlavacek-Larrondo et al. in prep.

Mittal et al. 2012

Take Home Point

- Warm (10,000 K) and cold gas (< 100 K) are co-spatial AND have SAME kinematics in NGC 1275.
- However....cold gas is more chaotic/turbulent...agrees with idea that hot particles can excite/heat cold gas and prevent it from forming stars (e.g. Canning et al. 2016).

right panel of Fig. 5).

Mittal et al. 2012

600

contours the upper

Vigneron, Hlavacek-Larrondo et al. in prep.

Thilloy, Hlavacek-Larrondo et al. in prep.

Take Home Points

→ New SITELLE Observations of the filaments in the Perseus cluster at high-spectral resolution (R=7000).

 \rightarrow Two mechanisms that lead to filaments:

- 1) Turbulence generated in the wake of bubbles leads to brighter, more turbulent filaments (high σ).
- 2) Largely spread turbulence that leads to a uniform web of filaments that are faint and quiescent (lower σ).

See Vingeron, Hlavacek-Larrondo et al. in prep

Future with SITELLE

NGC1275: Hβ and [OII] (Thilloy+in prep).
 M87: Hα, [NII], [SII], Hβ and [OII] (Guité+in prep)
 NGC 5813: Hα, [NII], [SII], Hβ and [OII] (PI Hlavacek-L.).

•••	Canada Re Chairs	esearch	Fonds de recherche Nature et technologies Québec 🐼 😒
	τ	Université de Montréal	NSERC CRSNG
			XTRA
			• • •

Julie Hlavacek-Larrondo j.larrondo@umontreal.ca Université de Montréal, Canada Research Chair *Flamboyant Galaxy.* Winner of the 2017 *La preuve par l'image* competition. JHL/MLGM/MPL.