Recent progress in plasma turbulence, heating, and related processes, from solar wind observations

Christopher Chen Queen Mary University of London

Outline

- 1. Introduction to the solar wind
- 2. Solar wind turbulence and dissipation
- 3. Pressure anisotropy instabilities
- 4. Effective collisionality
- 5. Possible links to ICM

1. Introduction to the Solar Wind

Discovery of the Solar Wind

- Existence not known until ~60 years ago (previously only hints of connection)
 - predicted by Eugene Parker in 1958
 - observed by Luna & Mariner spacecraft in 1960s
- Steady-state hydro + isothermal + radial symmetry \rightarrow supersonic wind

The Solar Wind Imaged Now

- Full extent of the solar wind <1AU now imaged by STEREO
- Complex, structured on all measured scales, contains any plasma process imaginable (well, maybe not, but almost!)

In Situ Measurements

- Large number of spacecraft making in situ measurements
- Everything you need to characterize a plasma

Magnetic and Electric Field (MMS) (Lu) × 10 B (Lu) 20 B[^] 10 B_{z} (nT) 3664 2007 (ш/∧ш) -5 ш[×] -10 E_y (mV/m) 0 -2 -4 -6 E_z (mV/m) 30 0 10 20 40 50 60 Time (s) Ion Velocity Distribution (MMS) ____-

Solar Wind Parameters

- "Typical" parameters at 1 AU
 - Mainly H⁺ (95%) and He²⁺ (5%), + some minor ions (O, C, N, etc.)
 - Speed ~ 400 km/s, n ~ 10 cm⁻³, B ~ 10 nT
 - $T_i \sim T_e \sim 10 \text{ eV} \rightarrow \beta \sim 1$
- Typical scales
 - $-L \sim 1 \text{ AU} \gg \rho_{i} \sim 100 \text{ km} \gg \lambda_{D} \sim 10 \text{ m}$
 - $\omega_{\rm p} \sim 10^5 \, {\rm s}^{-1} \gg \Omega_{\rm i} \sim 1 \, {\rm s}^{-1} \gg \nu_{\rm ee} \sim 10^{-5} \, {\rm s}^{-1}$
- Great for studying turbulence
 - large volume, scale separation, relatively undisturbed, fast flowing, long data sets with variety of conditions

Solar Wind Parameters – Variability

Some might say a natural laboratory for plasma (astro)physics (albeit one in which we can't control the conditions)

Solar Wind Physics

- Many processes studied (e.g., Wilson et al. 2021 RevGeo)
 - waves, turbulence, reconnection, shocks, particle acceleration, instabilities, plasma kinetics, CMEs, large-scale structures, solar cycle

- Open questions:
 - plasma physics: nature of turbulence/reconnection/shocks/acceleration
 - heliophysics: coronal heating, solar wind origin/acceleration, ISM interaction, space weather prediction
 - astrophysics: compare (inform/learn from) other astrophysical plasmas

2. Solar Wind Turbulence and Dissipation

[see Chen 2016 JPP for a review]

Solar Wind Turbulence

- Early measurements showed
 - Alfvénically polarized fluctuations much of the time
 - power law spectrum of fluctuations over many decades
- Large scale Alfvén waves drive cascade of Alfvénic turbulence

Alfvénic Turbulence Models

• MHD in Elsasser variables $\mathbf{z}^{\pm} = \mathbf{u} \pm \mathbf{b}$,

$$\frac{\partial \delta \mathbf{z}^{\pm}}{\partial t} \mp v_A \frac{\partial \delta \mathbf{z}^{\pm}}{\partial z} + \delta \mathbf{z}^{\mp} \cdot \nabla \delta \mathbf{z}^{\pm} = -\nabla p_t,$$

- Strong MHD turbulence (Goldreich & Sridhar 1995)
 - critical balance: $\tau_A \sim \ell_{\parallel}/v_A$ and $\tau_{nl} \sim \ell_{\perp}/\delta b$

-
$$E(k_{\perp}) \sim k_{\perp}^{-5/3}, k_{\parallel} \sim k_{\perp}^{2/3}$$

- scale-dependent anisotropy
- With alignment (Boldyrev 2006 PRL)
 - $\delta v \& \delta b$, align to scale-dependent angle ~ $\ell_{\perp}^{1/4}$

$$- \mathsf{E}(\mathsf{k}_{\perp}) \sim \mathsf{k}_{\perp}^{-3/2}$$

- Imbalanced (Lithwick/Goldreich/Sridhar, Beresnyak/Lazarian, Chandran, Perez/Boldyrev, ...)
- Intermittent (Chandran/Schekochihin/Mallet, Mallet/Schekochihin, ...)
- Reconnecting (Louriero/Boldyrev, Mallet/Schekochihin/Chandran, ...)

[see Schekochihin 2022 JPP for a review]

counter-propagating wavepackets (Irosknikov 1963; Kraichnan 1965)

Solar Wind Spectra

- Velocity and magnetic field scale differently (-3/2 vs -5/3)
- Magnetic energy dominates (residual energy), indicating polarisations are not totally linear
- σ_c = (E⁺-E⁻)/(E⁺+E⁻) = imbalance of Alfvénic fluxes
- E_v constant, E_b varies with σ_c
- Total energy varies from -5/3 to -3/2 (not predicted by any model)
- But for large σ_c , residual energy is low, -3/2 favours Boldyrev alignment model

Anisotropy

- Split spectra into local par and perp
 - Critical balance predicts a k_{\parallel}^{-2} spectrum, this is found (Horbury et al. 2008 PRL)
 - Also found by many others since (Podesta/Luo/Wicks/Chen/He/...)

- Can also measure full 3D anisotropy
 - see 3D-anisotropic eddies
 - change with scale
 - may be several causes (Mallet et al. 2016, 2017, Verdini et al. 2018, 2019)

Chen 2016 JPP

Sub-Ion-Gyroscale Range

- Further cascade expected, $k_{\perp}^{-7/3}$ or $k_{\perp}^{-8/3}$
- B & n spectra steepen, index ~ -2.8
 - closer to -8/3 prediction (2D sheets) (Boldyrev & Perez 2012 ApJL)
 - But other possibilities: e.g., electron
 Landau damping (Howes et al. 2011 PRL)
- KAW or whistler turbulence?
 - KAW: $\delta \tilde{n} = \delta \boldsymbol{b}_{\perp}$
 - whistler: δñ << δ**b**_⊥
- Data shows kinetic Alfvén turbulence
- Low frequency \rightarrow implications for heating

KAW: $\omega \ll k_{\perp} v_{\mathrm{th},i}$ Whistler: $\omega \gg k_{\perp} v_{\mathrm{th},i}$

Chen et al. 2013 PRL

Landau Damping

- How is turbulent energy dissipated?
- Method: correlating f_e and E_{\parallel} gives field-particle energy transfer
 - symmetric bi-polar signatures
 - at resonant expected velocity
 - consistent with Landau damping
- Total integrated energy transfer

 $C_{E_{\parallel},e} \approx 3.4 \times 10^{-12} \,\mathrm{kg \, m^{-1} \, s^{-3}}$

- comparable to cascade rate
- significant energy conversion

Chen et al. 2019 Nat Comm

Parker Solar Probe

- Closer to Sun than ever before
- Now in the solar corona (Kasper et al. 2021 PRL)
- Turbulence changes TBC
- Switchback structures TBC

Chen et al. 2020 ApJ

45.5R₀ 10 November 2018

Distance from the Sun

Date (ur)

Jack McIntyre Near-Sun turbulence

56.2Ro

31 October 2018

101.5R

21 October 2018

100-

-100

3_R (nT)

B_R (nT)

Andrea Larosa What are these switchbacks?

92.0R₀ 20 November 2018

3. Pressure Anisotropy Instabilities

Pressure Anisotropy Instabilities

- Plasma is weakly collisional

 → non-thermal distributions
 → instability, simplest due to pressureanisotropy (but many others too)
- Important for
 - understanding non-linear instability
 - plasma transport properties
 - affect turbulence/reconnection/dynamo
 - evolution of global dynamics (sw)
- Studied many years, iconic Hellinger plot
 - many years of solar wind data
 - appears to be constrained/shaped by firehose/mirror thresholds

Instabilities – Fluctuations

- Evidence that instabilities are acting
 - enhanced fluctuations near thresholds
 - cyclotron waves, mirror modes seen
- Simulations show effects on many processes

Bale et al. 2019 Nature

20

Chen, unpublished

Instabilities – Multi-Species

- Previously, only single species studied separately
 - not complete
 - plasma stability depends on all species
- Combine proton (H+), alpha (He++) and electron data
 - fluid-firehose well constrained

$$\frac{\beta_{\parallel}-\beta_{\perp}}{2}>1$$

 non-resonant firehose many be important in solar wind

Chen et al. 2016 ApJL 21

Instabilities – Multi-Species with Drifts

- There are also "drifts" between species
 - contribute to parallel pressure

$$\frac{\beta_{\parallel} - \beta_{\perp}}{2} + \frac{\sum_{s} \rho_{s} |\Delta \mathbf{v}_{s}|^{2}}{\rho v_{\mathrm{A}}^{2}} > 1$$

- Plot shows how each term constrains distribution
- 2 populations
 - times with proton beam
 - times without
- Both anisotropies and drifts important for long-wavelength firehose

Chen et al. 2016 ApJL

Instabilities – Multi-Species Contributions

- Combined thresholds constrain data well
- Protons dominate instability (~2/3), but other species are significant (~1/3)
- Can use these thresholds for astro modelling (Chandran et al. 2011, Sharma et al. 2006)
- Open question: role of long-wavelengths vs kinetic (resonant) instabilities

$$\Lambda_{\rm f} \equiv \frac{\beta_{\parallel} - \beta_{\perp}}{2} + \frac{\sum_{s} \rho_{s} |\Delta v_{s}|^{2}}{\rho v_{\rm A}^{2}} > 1$$
$$\Lambda_{\rm m} \equiv \sum_{s} \beta_{\perp s} \left(\frac{\beta_{\perp s}}{\beta_{\parallel s}} - 1 \right) - \frac{\left(\sum_{s} q_{s} n_{s} \frac{\beta_{\perp s}}{\beta_{\parallel s}} \right)^{2}}{2 \sum_{s} \frac{(q_{s} n_{s})^{2}}{\beta_{\parallel s}}} > 1$$

4. Effective Collisionality

work from Jesse Coburn

Effective Collisionality – The Question

- Why does the solar wind behave in a more fluid way than it should?
 - Alfvén modes as expected
 - Compressive fluctuations follow MHD modes
- Many solar wind phenomena are modelled with MHD
 - why does it work so well?
 - at what scales is it valid?
- First step is to characterize the effective collisionality

Verscharen, Chen & Wicks 2007 ApJ 25

Effective Collisionality – Technique

- Technique
 - measure correlations based on CGL invariants to see how broken by heat fluxes and/or effective collisions
 - fit to find $\lambda_{mfp,eff.}$

$$\begin{split} n_{\mathrm{p}}B\frac{\mathrm{d}}{\mathrm{d}t} & \left(\frac{p_{\perp}^{\mathrm{p}}}{n_{\mathrm{p}}B}\right) = -\boldsymbol{\nabla} \cdot (q_{\perp}^{\mathrm{p}}\hat{\boldsymbol{b}}) - q_{\perp}^{\mathrm{p}}\boldsymbol{\nabla} \cdot \hat{\boldsymbol{b}} + \frac{\nu_{\mathrm{eff}}}{3}(p_{\parallel}^{\mathrm{p}} - p_{\perp}^{\mathrm{p}}) \\ & \frac{n_{\mathrm{p}}^{3}}{2B}\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{p_{\parallel}^{\mathrm{p}}B^{2}}{n_{\mathrm{p}}^{3}}\right) = -\boldsymbol{\nabla} \cdot (q_{\parallel}^{\mathrm{p}}\hat{\boldsymbol{b}}) + q_{\perp}^{\mathrm{p}}\boldsymbol{\nabla} \cdot \hat{\boldsymbol{b}} + \frac{2\nu_{\mathrm{eff}}}{3}(p_{\perp}^{\mathrm{p}} - p_{\parallel}^{\mathrm{p}}) \\ & C_{\parallel} = \frac{\langle \delta p_{\parallel}^{\mathrm{p}} \delta(n_{\mathrm{p}}^{3}/B^{2}) \rangle}{\langle |\delta p_{\parallel}^{\mathrm{p}}|^{2} \rangle^{1/2} \langle |\delta (n_{\mathrm{p}}^{3}/B^{2})|^{2} \rangle^{1/2}}, \\ & A_{\parallel} = \frac{\langle |\delta (n_{\mathrm{p}}^{3}/B^{2})|^{2} \rangle^{1/2}}{\langle n_{\mathrm{p}}^{3}/B^{2} \rangle} \frac{\langle p_{\parallel}^{\mathrm{p}} \rangle}{\langle |\delta p_{\parallel}^{\mathrm{p}}|^{2} \rangle^{1/2}}, \\ & C_{\perp} = \frac{\langle \delta p_{\perp}^{\mathrm{p}} \delta(n_{\mathrm{p}}B) \rangle}{\langle |\delta p_{\perp}^{\mathrm{p}}|^{2} \rangle^{1/2} \langle |\delta (n_{\mathrm{p}}B)|^{2} \rangle^{1/2}}, \\ & A_{\perp} = \frac{\langle |\delta (n_{\mathrm{p}}B)|^{2} \rangle^{1/2}}{\langle n_{\mathrm{p}}B \rangle} \frac{\langle p_{\perp}^{\mathrm{p}} \rangle}{\langle |\delta p_{\perp}^{\mathrm{p}}|^{2} \rangle^{1/2}}, \end{split}$$

Coburn, Chen & Squire 2022 arXiv:2203.12911

Effective Collisionality – Solar Wind

- Many years of compressive (slow mode) data in the solar wind at 1AU
 - clear deviations from unity
 - CGL is not appropriate (both invariants)
 - fit to model to determine parameters

Effective Collisionality – Solar Wind

- 3 model fit parameters
 - $k_{iso} = isotropic outer scale$
 - $\alpha = anisotropy exponent$
 - $-\lambda_{mfp,eff.} = effective mfp$
- k_{iso} and α consistent with previous findings
- $\lambda_{mfp,eff.} = 4 \times 10^5 \text{ km}$

 λ_{mfp} is ~10³ times smaller than classical (Spitzer-Harm) estimate!

Coburn, Chen & Squire 2022 arXiv:2203.12911

Mechanisms & Links to Astro

- In the solar wind at 1AU, $k_{\parallel}\lambda_{mfp,eff.} \sim 1$ corresponds to $k_{\perp}\rho_i \sim 1$
- Related to ion gyroscale processes?
 - pressure anisotropy instabilities? (Bale et al. 2009, Kunz et al. 2020)
 - other kinetic processes? (Kellogg 2000, Bale et al. 2005, Schekochihin et al. 2016, Meyrand et al. 2019)
 - answer TBC
- Consistent(?) with galaxy cluster observations (Zhuravleva et al. 2019)
- If k_{||}λ_{mfp,eff.} ~ k_⊥ρ_i is a general property of weakly collisional plasmas, this could be used to parametrize their effective collisionality...

Chen et al. 2013 PRL

5. Summary

Summary

- Solar wind is great for studying various plasma physics
- Links to ICM?

