John ZuHone (CfA), Maxim Markevitch (NASA/GSFC), Rainer Weinberger (CITA), Paul Nulsen (CfA), Kristian Ehlert (AIP), Christoph Pfrommer (AIP), Andrew Fabian (IoA), Stephen Walker (U of Alabama – Huntsville)

The interaction between mergerdriven gas motions and AGN feedback in clusters of galaxies

CENTER FOR **ASTROPHYSICS**

Radio Relics

- Diffuse, elongated, polarized radio emission seen in clusters with evidence of merging activity
- In the simplest models, they originate from shocks which accelerate uniformly distributed e⁻ from the ICM or reaccelerate pre-existing CRe
- Curiosities:
 - Not all radio relics are aligned with ICM shocks on the sky
 - How do you produce the highly-ordered B-field required for polarization from shock compression alone?
- What if these features are characteristics of the preshock CRe material instead?

van Weeren et al. 2010; Ogrean et al. 2014; van Weeren et al. 2019

ICM Motions Spreading CRe from AGNs

- AGN inject CRe which can persist for many Gyr after cooling to $\gamma \sim 100$
- Such CRe can be advected by gas motions in the ICM plasma: bulk motions and turbulence
- Questions:
 - What are the spatial distributions of CRe produced by advection?
 - In the CRe-enriched regions, what is the distribution of magnetic field?

Simulations

- MHD idealized cluster merger simulations performed with AREPO • ~10¹⁵ M $_{\odot}$ cluster, two different mergers (one minor, one major)
- Jet Physics:
 - t ~ 3.5 Gyr after merger, fire a jet in opposite directions with $E_{jet} \sim 10^{61}$ ergs from center of cluster
 - Jet material is magnetized with $\beta \sim 1$, injects thermal, kinetic, magnetic energy (Weinberger et al. 2017, 2018)
 - Fired along three principal simulation axes: x, y, z (merger is in x-y plane)
- In these first simulations, the "CRe" are represented by a passive tracer field that is advected along with the gas (but we'll change this later)

ZuHone et al. (2021a)

kT (keV)

Merger2 Simulation

ZuHone et al. (2021a)

$\rho_{\rm DM}~({\rm M}_\odot~{\rm kpc}^{-3})$

B (μ G)

CENTER FOR **ASTROPHYSICS**

Merger1

Merger1

Different Axis Projections: Merger1 Simulation

ZuHone et al. (2021a)

Merger2 Simulation, In-Plane Jets

ZuHone et al. (2021a)

CENTER FOR **ASTROPHYSICS**

Different Axis Projections: Merger2 Simulation

ZuHone et al. (2021a)

CENTER FOR **ASTROPHYSICS**

An Isolated Bubble Simulation

Wonki Lee will give another example on Friday

Aligned Magnetic Fields— **Potential Explanation for Polarization?**

- The same gas motions which spread the material from the bubbles stretch and amplify magnetic fields in the same direction
- Results in highly ordered fields in the location of CRe-enriched plasma
- "Emission-weighted" plane-of-sky B-field vectors ($\propto B^2 \epsilon_{\rm CR}$) to show which fields would actually be measured

ZuHone et al. (2021a)

CENTER FOR ASTROPHYSICS

Enhancing CR Physics

- The next step is to improve the CR physics included in the simulation:

 - Model CRs as separate fluid with $\Gamma = 4/3$ CR spatial diffusion (parallel to B) and Alfvén losses

ZuHone et al. (2021b)

CENTER FOR

Effect of CR Physics on **Observed B-field**

ZuHone et al. (2021b)

Other Effects of Core Gas Motions on AGN Bubbles

These cold fronts go to large radii—see Elena Bellomi's talk in less than an hour

flattened, distorted, and pushed bubbles

Fabian et al. (2022)

X-ray surface brightness residuals

Projected CRe energy density

CENTER FOR ASTROPHYSICS

X-ray surface brightness residuals

Fabian et al. (2022)

Projected CRe energy density

Summary

- features which are similar in appearance
- enriched by CRe with lengths ~1 Mpc
- around more quickly and to larger radii
- CR diffusion and cooling can complicate this picture by reducing CR energy
- In the early stages of an AGN cycle, fast sloshing can distort, stretch, and move bubbles, as seen in Perseus

• Bulk motions and turbulence can transport CRe from AGN bubbles to radii large enough to produce radio relics, and they can produce the elongated, mostly tangentially oriented

• Sloshing motions driven by minor mergers can produce straight, thin regions of plasma

• Major mergers produce more turbulent motions, which result in wider and more diffuse CRe distributions, but also tend to produce faster bulk motions which can move the CRe

• The magnetic fields produced in these CRe-enriched regions are largely oriented along the long axis of these features, potentially explaining the polarization of radio relic features

