A Heating Mechanism via Magnetic Pumping in the Intracluster Medium
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ICM as an astrophysical plasma

B = 8mP/B*~ 10-10°
Turbulent: V~10%2 km s™ (Rebusco+2006,Li+2020) ’
Weakly collisional:

O  Amfp~1-10 kpc ~ 10> cm
o pi~ 10°cm

Pressure Anisotropy

Weakly collisional, high-8, magnetized
Plasma
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(e.g. Kunz+2011, Arzamasskiy+2022)
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A Turbulent Heating Mechanism for the ICM:

e Gyroviscous Heating/Anisotropic Viscosity (e.g. Kulsrud,1983)

U: Internal Energy Density
dU B (PL — P ) B: Magnetic Field Strength
H Pj: Pressure components

dt
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U: Internal Energy Density

. . B: Magnetic Field Strength
Magnetic Pumping (e.g. Pj: Pressure components

Lichko+2017,2020):
Large-scale turbulent eddy / Pressure Anisotropy

acting locally Instabilities (Kunz+2011):
AP > B (Mirror, Firehose)




A Turbulent Heating Mechanism for the ICM:

e Gyroviscous Heating/Anisotropic Viscosity (e.g. Kulsrud,1983)

U: Internal Energy Density
B: Magnetic Field Strength
Pj: Pressure components

Magnetic Pumping (e.g.

Lichko+2017,2020):
Large-scale turbulent eddy / Pressure Anisotropy
acting locally Instabilities (Kunz+2011):

AP > 37" (Mirror, Firehose)

If no scattering: adiabatic invariance

e P.and P/ follow CGL evolution
(Chew, Goldberger, Low 1956)

e No net heating is possible



A Turbulent Heating Mechanism for the ICM:

e Gyroviscous Heating/Anisotropic Viscosity (e.g. Kulsrud,1983)

U: Internal Energy Density
B: Magnetic Field Strength
Pj: Pressure components

Magnetic Pumping (e.g.

Lichko+2017,2020):
Large-scale turbulent eddy / Pressure Anisotropy
acting locally Instabilities (Kunz+2011):

AP > 37" (Mirror, Firehose)

If scattering present:

e Adiabatic invariance is broken.
e Net heating is possible!



Results: Energy Density Evolution

e 2D fully kinetic PIC fon Energy Gain AU; [P
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Mirror & Firehose
instabilities
self-consistently excited.

Heating depends on
shear frequency.
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Conclusions

We perform fully kinetic 2D PIC simulations to show that a high- plasma can gain
energy by gyroviscous heating via magnetic pumping in presence of mirror and
firehose instabilities.

Heating rate depends on the shear frequency (~frequency of the large-scale
turbulent eddy), higher frequencies provide more heating.

In a fully developed turbulent cascade, particles can tap energy from each eddy.
(Future Work)

Good measurements and observations of turbulence in ICM are very important.



