A Heating Mechanism via Magnetic Pumping in the Intracluster Medium

FRANCISCO LEY,¹ ELLEN ZWEIBEL,^{1,2} MARIO RIQUELME,³ LORENZO SIRONI,⁴ DRAKE MILLER,¹ AND AARON TRAN⁴

¹Department of Astronomy, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA ²Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, WI, USA 53706 ³Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Chile

⁴Department of Astronomy, Columbia University, New York, NY 10027, USA

To be Submitted Soon!

Francisco Ley - fley@wisc.edu

6th ICM Workshop August 18, 2022

Extreme Science and Engineering Discovery Environment

ICM as an astrophysical plasma

- $\beta \equiv 8\pi P/B^2 \sim 10-10^3$
- Turbulent: V~10² km s⁻¹ (Rebusco+2006,Li+2020)
- Weakly collisional:
 - \circ λ_{mfp} ~1 10 kpc ~ 10²¹ cm
 - ρ_i ~ 10⁹ cm
- Pressure Anisotropy

$$\Delta P \equiv P_{\perp} - P_{\parallel} \neq 0$$

Weakly collisional, high-β, magnetized Plasma

(e.g. Kunz+2011, Arzamasskiy+2022)

• Gyroviscous Heating/Anisotropic Viscosity (e.g. Kulsrud, 1983)

$$\frac{dU}{dt} = \frac{\dot{B}}{B}(P_{\perp} - P_{\parallel})$$

U: Internal Energy Density B: Magnetic Field Strength Pj: Pressure components

• Gyroviscous Heating/Anisotropic Viscosity (e.g. Kulsrud, 1983)

```
Magnetic Pumping (e.g.
Lichko+2017,2020):
Large-scale turbulent eddy
acting locally
```


U: Internal Energy Density B: Magnetic Field Strength Pj: Pressure components

Pressure Anisotropy Instabilities (Kunz+2011): $\Delta P > \beta^{-1}$ (Mirror, Firehose)

• Gyroviscous Heating/Anisotropic Viscosity (e.g. Kulsrud, 1983)

Magnetic Pumping (e.g. Lichko+2017,2020): Large-scale turbulent eddy acting locally

U: Internal Energy Density B: Magnetic Field Strength Pj: Pressure components

Pressure Anisotropy Instabilities (Kunz+2011): $\Delta P > \beta^{-1}$ (Mirror, Firehose)

If no scattering: adiabatic invariance

- P₁ and P // follow CGL evolution (Chew, Goldberger, Low 1956)
- No net heating is possible

• Gyroviscous Heating/Anisotropic Viscosity (e.g. Kulsrud, 1983)

Magnetic Pumping (e.g. Lichko+2017,2020): Large-scale turbulent eddy acting locally

U: Internal Energy Density B: Magnetic Field Strength Pj: Pressure components

Pressure Anisotropy Instabilities (Kunz+2011): $\Delta P > \beta^{-1}$ (Mirror, Firehose)

If scattering present:

- Adiabatic invariance is broken.
- Net heating is possible!

Results: Energy Density Evolution

- 2D fully kinetic PIC Simulations (TRISTAN-MP, Spitkovsky+2005, Riquelme+2012).
- Shearing-box periodically driven.
 (β=20,kBT/mic²=0.1)
- Mirror & Firehose instabilities self-consistently excited.
- Heating depends on shear frequency.

Results: Energy Density Evolution

- 2D fully kinetic PIC Simulations (TRISTAN-MP, Spitkovsky+2005, Riquelme+2012).
- Shearing-box periodically driven. (β=20,kBT/mic²=0.1)
- Mirror & Firehose instabilities self-consistently excited.
- Heating depends on shear frequency.

Conclusions

- We perform fully kinetic 2D PIC simulations to show that a high-β plasma can gain energy by gyroviscous heating via magnetic pumping in presence of mirror and firehose instabilities.
- Heating rate depends on the shear frequency (~frequency of the large-scale turbulent eddy), higher frequencies provide more heating.

 In a fully developed turbulent cascade, particles can tap energy from each eddy. (Future Work)

• Good measurements and observations of turbulence in ICM are very important.