

Cosmological zoom simulations of merging galaxy clusters

Thomas Berlok 6th ICM Theory and Computation Workshop, 19/8/22

Part I

Magneto-thermal instability with suppressed heat conductivity in mirror-unstable regions

Magneto-thermal instability

Berlok, Quataert, Pessah and Pfrommer, MNRAS, 2021

Magneto-thermal instability

Berlok, Quataert, Pessah and Pfrommer, MNRAS, 2021

Part II

Hydromagnetic waves in an expanding universe – cosmological MHD code tests using analytic solutions

New tests of comoving hydrodynamics/MHD

- Berlok 2022, MNRAS
- Python implementation of analytic solutions available: <u>https://github.com/tberlok/comoving_mhd_waves</u>

Ideal MHD equations

$$\frac{d\ln\rho}{dt} = -\nabla_{\boldsymbol{r}} \cdot \boldsymbol{v} \; ,$$

$$\rho \frac{d\boldsymbol{v}}{dt} = -\nabla_{\boldsymbol{r}} p - \nabla_{\boldsymbol{r}} \cdot \left(\frac{B^2}{2} \mathbf{1} - \boldsymbol{B} \boldsymbol{B}\right) - \rho \nabla_{\boldsymbol{r}} \Phi ,$$

$$\frac{\partial \boldsymbol{B}}{\partial t} = \nabla_{\boldsymbol{r}} \times (\boldsymbol{v} \times \boldsymbol{B}) ,$$

$$\frac{p}{\gamma-1}\frac{d\ln(p\rho^{-\gamma})}{dt}=0,$$

Comoving MHD equations

Substitutions

$$oldsymbol{r} = aoldsymbol{x}, \
ho_{
m c} = aoldsymbol{a}^3, \ oldsymbol{u} = a\dot{oldsymbol{x}}, \ oldsymbol{B}_{
m c} = oldsymbol{B}a^2, \ arepsilon_{
m c} = arepsilon a^3 \ arepsilon = p/(\gamma - 1)$$

$$\frac{d\ln\rho_{\rm c}}{dt} = -\frac{1}{a}\nabla_{\boldsymbol{x}}\boldsymbol{\cdot}\boldsymbol{u} \;,$$

$$a\rho_{\rm c}\frac{d\boldsymbol{u}}{dt} = -\nabla_{\boldsymbol{x}}p_{\rm c} - \frac{1}{a}\nabla_{\boldsymbol{x}}\cdot\left(\frac{B_{\rm c}^2}{2}\boldsymbol{1} - \boldsymbol{B}_{\rm c}\boldsymbol{B}_{\rm c}\right) - \rho_{\rm c}\nabla_{\boldsymbol{x}}\delta\Phi - \rho_{\rm c}\dot{\boldsymbol{a}}\boldsymbol{u}\,,$$

$$\frac{\partial \boldsymbol{B}_{c}}{\partial t} = \frac{1}{a} \nabla_{\boldsymbol{x}} \times (\boldsymbol{u} \times \boldsymbol{B}_{c}) ,$$

$$\frac{d\varepsilon_{\rm c}}{dt} = -3\frac{\dot{a}}{a}(\gamma-1)\varepsilon_{\rm c} - \gamma\varepsilon_{\rm c}\frac{1}{a}\nabla_{x}\cdot\boldsymbol{u} ,$$

$$\nabla_{\boldsymbol{x}}^2 \delta \Phi = \frac{4\pi G}{a} (\rho_{\text{tot,c}} - \bar{\rho}_{\text{tot,c}})$$

Friedmann equation $\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\bar{\rho}_{\text{tot}}$ $\bar{\rho}_{\text{tot}} = \left(\frac{\Omega_{\text{r},0}}{a^4} + \frac{\Omega_{\text{m},0}}{a^3} + \Omega_{\Lambda,0}\right)\rho_{\text{crit},0}$ $\rho_{\text{crit},0} = 3H_0^2/(8\pi G)$

Linear theory (Berlok, MNRAS, 2022)

$$c_{\rm s} \equiv \sqrt{\frac{\gamma p}{\rho}} = \sqrt{\frac{\gamma p_{\rm c,0}}{\rho_{\rm c}}} a^{-3(\gamma-1)/2} ,$$
$$v_{\rm A} \equiv \frac{B}{\sqrt{\rho}} = \frac{B_{\rm c}}{\sqrt{\rho_{\rm c}}} a^{-1/2} ,$$
$$v_{\rm g} \equiv \frac{\sqrt{4\pi G\rho}}{k'} = \frac{\sqrt{4\pi G\rho_{\rm c}}}{k} a^{-1/2}$$
$$k' = k/a$$

Standard MHD result

Alfvén wave $\omega = k' v_A$ Magnetosonic wave $\omega = k' (c_s^2 + v_A^2 - v_g^2)^{1/2}$

Useful definitions

$$\mathcal{V}_{\mathrm{s}} \equiv \sqrt{\frac{\gamma p_{\mathrm{c},0}}{\rho_{\mathrm{c}}}} , \quad \mathcal{V}_{\mathrm{A}} \equiv \frac{B_{\mathrm{c}}}{\sqrt{\rho_{\mathrm{c}}}} , \quad \mathcal{V}_{\mathrm{g}} \equiv \frac{\sqrt{4\pi G \rho_{\mathrm{c}}}}{k} ,$$

 $\Omega_{\mathrm{s}} \equiv \frac{k \mathcal{V}_{\mathrm{s}}}{H_{0}} , \quad \Omega_{\mathrm{A}} \equiv \frac{k \mathcal{V}_{\mathrm{A}}}{H_{0}} , \quad \Omega_{\mathrm{g}} \equiv \frac{k \mathcal{V}_{\mathrm{g}}}{H_{0}} .$

Comoving Alfvén wave

$$\frac{\partial}{\partial t} \frac{\delta B_{\rm c}}{B_{\rm c}} = \frac{{\rm i}k}{a} \delta u$$

$$\underbrace{\frac{\partial}{\partial t} (a\delta u)}{\partial t} = {\rm i}k \frac{B_{\rm c}^2}{a\rho_{\rm c}} \frac{\delta B_{\rm c}}{B_{\rm c}} = \frac{{\rm i}k}{H_0 a^{1/2}} \delta u$$

$$\underbrace{\frac{\partial}{\partial a} \frac{\delta B_{\rm c}}{B_{\rm c}}}{\dot{a} = H_0 / \sqrt{a}} \xrightarrow{\frac{\partial}{\partial a} \frac{\delta B_{\rm c}}{B_{\rm c}}} = \frac{{\rm i}k \mathcal{V}_{\rm A}^2}{H_0 a^{1/2}} \frac{\delta B_{\rm c}}{B_{\rm c}}$$

Euler equation

 \sim -

$$\frac{\partial^2}{\partial a^2} \frac{\delta B_{\rm c}}{B_{\rm c}} + \frac{3}{2a} \frac{\partial}{\partial a} \frac{\delta B_{\rm c}}{B_{\rm c}} + \frac{\Omega_{\rm A}^2}{a^2} \frac{\delta B_{\rm c}}{B_{\rm c}} = 0$$

$$\frac{\delta B_{\rm c}}{B_{\rm c}} = a^{-1/4} \left(c_1 {\rm e}^{{\rm i}\kappa \ln a} + c_2 {\rm e}^{-{\rm i}\kappa \ln a} \right)$$

$$\kappa \equiv \sqrt{\Omega_{\rm A}^2 - \frac{1}{16}}$$

Comoving Alfvén wave

 $\delta B_{
m c}/B_{
m c}$

 $\delta u/\mathcal{V}_{
m a}$

11

Magnetosonic wave

$$\begin{aligned} \frac{\partial}{\partial a} \frac{\delta \rho_{\rm c}}{\rho_{\rm c}} &= -\frac{{\rm i}k}{H_0\sqrt{a}} \delta u \ ,\\ \frac{\partial(a\delta u)}{\partial a} &= -\frac{{\rm i}k\sqrt{a}}{H_0} \left(\frac{\mathcal{V}_{\rm s}^2}{a^{3(\gamma-1)}} + \frac{\mathcal{V}_{\rm A}^2 - \mathcal{V}_{\rm g}^2}{a}\right) \frac{\delta \rho_{\rm c}}{\rho_{\rm c}} \end{aligned}$$

Gravitational instability

- $\gamma = 1$ Thermal pressure term does not decay
- $\gamma = 4/3$ Thermal pressure term decays at same rate as other terms
- $\gamma=5/3~$ Thermal pressure term decays faster than other terms

Differential equation

$$\frac{\partial^2}{\partial a^2} \frac{\delta \rho_{\rm c}}{\rho_{\rm c}} + \frac{3}{2a} \frac{\partial}{\partial a} \frac{\delta \rho_{\rm c}}{\rho_{\rm c}} + \left(\frac{\Omega_{\rm s}^2}{a^{3\gamma-2}} + \frac{\Omega_{\rm A}^2 - \Omega_{\rm g}^2}{a^2}\right) \frac{\delta \rho_{\rm c}}{\rho_{\rm c}} = 0$$

 $\gamma = 4/3$ is an Euler ODE, in general a transformed Bessel equation!

Part III

Zoom simulations of merging galaxy clusters

Major merger including galaxy formation

Size: 39.73 mio. ly

Age: 11.06 Gyr

11 mio cpu-h on SuperMUC-NG in Germany (PI: T. Berlok)

In collaboration with:

Joseph Whittingham, Léna Jlassi, Larissa Tevlin, Martin Sparre, Rainer Weinberger, Ewald Puchwein, Rüdiger Pakmor and Christoph Pfrommer

Resolving the magnetic dynamo is expensive

Part IV

Braginskii viscosity in Arepo

Braginskii viscosity in Arepo

- Extensive test suite (detailed in Berlok, Pakmor & Pfrommer 2020)
- Second order accurate Super timestepping (RKL2)
- Recently extended for cosmological applications

Idealized 2D bubbles

AGN jet with Braginskii viscosity

Berlok+ (unpublished)

Analysis to be done!

