Substructure and Patchiness in Radio Relics

Paola Domínguez Fernández

University of Bologna

Collaborators: Dongsu Ryu and Hyesung Kang

IAUGA Busan FM6 | 2022

Galaxy cluster mergers

Radio relics!

IAUGA Busan FM6 | 2022

X-ray Radio

[X-ray: NASA/CXC/RIKEN/L. Gu et al; Radio: NCRA/TIFR/GMRT; Optical: SDSS]

IAUGA Busan FM6 | 2022

145 MHz Hoang et. al 2017

IAUGA Busan FM6 | 2022

145 MHz Hoang et. al 2017

325 MHz van Weeren et. al 2011

IAUGA Busan FM6 | 2022

145 MHz Hoang et. al 2017

325 MHz van Weeren et. al 2011

IAUGA Busan FM6 | 2022

145 MHz Hoang et. al 2017

325 MHz van Weeren et. al 2011

> **1.4 GHz** Loi et. al 2017

IAUGA Busan FM6 | 2022

145 MHz Hoang et. al 2017

325 MHz van Weeren et. al 2011

> **1.4 GHz** Loi et. al 2017

IAUGA Busan FM6 | 2022

145 MHz Hoang et. al 2017

325 MHz van Weeren et. al 2011

> **1.4 GHz** Loi et. al 2017

1.5 - 4 GHz Di Gennaro et. al 2018

IAUGA Busan FM6 | 2022

145 MHz Hoang et. al 2017

325 MHz van Weeren et. al 2011

> **1.4 GHz** Loi et. al 2017

1.5 - 4 GHz Di Gennaro et. al 2018

IAUGA Busan FM6 | 2022

145 MHz Hoang et. al 2017

325 MHz van Weeren et. al 2011

> **1.4 GHz** Loi et. al 2017

1.5 - 4 GHz Di Gennaro et. al 2018

> 14.25 GHz Loi et. al 2020

IAUGA Busan FM6 | 2022

145 MHz Hoang et. al 2017

325 MHz van Weeren et. al 2011

> **1.4 GHz** Loi et. al 2017

1.5 - 4 GHz Di Gennaro et. al 2018

> 14.25 GHz Loi et. al 2020

IAUGA Busan FM6 | 2022

145 MHz Hoang et. al 2017

325 MHz van Weeren et. al 2011

> **1.4 GHz** Loi et. al 2017

1.5 - 4 GHz Di Gennaro et. al 2018

> 14.25 GHz Loi et. al 2020

18.6 GHz Loi et. al 2020

IAUGA Busan FM6 | 2022

145 MHz Hoang et. al 2017

325 MHz van Weeren et. al 2011

> **1.4 GHz** Loi et. al 2017

1.5 - 4 GHz Di Gennaro et. al 2018

> 14.25 GHz Loi et. al 2020

> 18.6 GHz Loi et. al 2020

145 MHz

Why do some radio relics seem patchier at high frequencies?

1.5 - 4 GHz Di Gennaro et. al 2018

IAUGA Busan FM6 | 2022

325 MHz

1.4 GHz

14.25 GHz Loi et. al 2020

18.6 GHz Loi et. al 2020

IAUGA Busan FM6 | 2022

IAUGA Busan FM6 | 2022

A shock front is characterised by a distribution of Mach numbers

Domínguez-Fernández et al. 2021]

IAUGA Busan FM6 | 2022

A shock front is characterised by a distribution of Mach numbers

Domínguez-Fernández et al. 2021]

IAUGA Busan FM6 | 2022

A shock front is characterised by a distribution of Mach numbers

Pre-shock ICM is then indeed turbulent

[Domínguez-Fernández et al. 2020,2021]

IAUGA Busan FM6 | 2022

Our work

Model A: Fresh injection

Electrons from the thermal pool

Model B: Re-acceleration

Pre-existing mildly relativistic electrons

Our work

Model A: Fresh injection

Electrons from the thermal pool

Model B: Re-acceleration

Pre-existing mildly relativistic electrons

Fresh-injection

[Domínguez-Fernández, Ryu & Kang to be submitted.]

IAUGA Busan FM6 | 2022

Re-acceleration

Fresh-injection

[Domínguez-Fernández, Ryu & Kang to be submitted.]

IAUGA Busan FM6 | 2022

Re-acceleration

ach number distribution

 $f_2^{inj}(p) \propto \eta(\mathcal{M})\mathcal{M}^3 p^{-q}$

Depending on \mathcal{M}

Re-acceleration model:

1.5 2.0

IAUGA Busan FM6 | 2022

$$f_{2}^{\text{reac}}(p) = \frac{q}{|q-s|} f_{\text{pre}} \left(\frac{p}{p_{\text{inj}}}\right)^{-r}$$

Depending on \mathcal{M}

DSA theory [Blandford & Ostriker 1978; Drury 1983]

 $\mathcal{M} = \sqrt{\frac{2\alpha + 3}{2\alpha - 1}}$

 $S(\nu) \propto \nu^{-\alpha}$

DSA theory [Blandford & Ostriker 1978; Drury 1983]

 $\mathcal{M} = \sqrt{\frac{2\alpha + 3}{2\alpha - 1}}$

 $S(\nu) \propto \nu^{-\alpha}$

1.5 GHz

~200 kpc

Relative surface brightness variations:

IAUGA Busan FM6 | 2022

 $\delta_{S_{\nu}} = S_{\nu} / \bar{S}_{\nu} - 1$

1.5 GHz

~35 kpc

kpc

200

IAUGA Busan FM6 | 2022

[Domínguez-Fernández, Ryu & Kang to be submitted.]

1.5 GHz

kpc

200

IAUGA Busan FM6 | 2022

[Domínguez-Fernández, Ryu & Kang to be submitted.]

10¹

1.5 GHz **Relative surface brightness variations: Fresh-injection** Fresh injection, $M_{cr} = 1$ $\mathcal{M}_{cr} = 2.3$ - $\mathcal{M}_i = 2$ 10^{1} - $\mathcal{M}_i = 2.5$ - $\mathcal{M}_i = 3$ kpc 200 $\sigma_{\delta S_{\nu}/S_{\nu}}$ 10⁰ · 10^{0} 10^{1} 10^{0} 10^{1} Frequency [GHz]

Frequency [GHz]

~35 kpc

IAUGA Busan FM6 | 2022

Factor

10¹

1.5 GHz **Relative surface brightness variations: Fresh-injection** Fresh injection, $M_{cr} = 1$ $\mathcal{M}_{cr} = 2.3$ - $\mathcal{M}_i = 2$ 10^{1} - $\mathcal{M}_i = 2.5$ - $\mathcal{M}_i = 3$ kpc 200 $\sigma_{\delta S_{\nu}/S_{\nu}}$ 10⁰ · 10^{0} 10^{1} 10^{0} 10^{1} Frequency [GHz]

Frequency [GHz]

~35 kpc

IAUGA Busan FM6 | 2022

Smoothing: 20" x 20" ~66 kpc

IAUGA Busan FM6 | 2022

Summary

Why do some radio relics seem smooth at low frequencies and patchier at high frequencies?

The fresh injection model reproduces patchier structures at high frequencies, but 1.

not entirely in line with observations

Summary

Why do some radio relics seem smooth at low frequencies and patchier at high frequencies?

The fresh injection model reproduces patchier structures at high frequencies, but

Re-acceleration also reproduces patchier structures at high frequencies, but 2.

- also not entirely in line with observations but a bit closer! *

Summary

Why do some radio relics seem smooth at low frequencies and patchier at high frequencies?

The fresh injection model reproduces patchier structures at high frequencies, but

Re-acceleration also reproduces patchier structures at high frequencies, but 2.

The degree of patchiness is smaller than in the injection model The substructure at high and low frequencies П. differs less than in the injection model

Thank you!

- also not entirely in line with observations but a bit closer! *

