UD ICECLESE MASTERCLASS

WORKSHOP ACTIVITY #1: LEARNING TO RECOGNIZE A NEUTRINO

Image credit: Martin Wolf / NSF

REMINDER FROM THE PREVIOUS TALK

There are two types of interactions with IceCube neutrinos:

• •

••

1. "Track" interactions

2. "Cascade" interactions

IN REAL DATA...

These neutrinos interactions look like this:

1. "Track" interactions

ACTIVITY!

Look at real events from IceCube here:

icecube.wisc.edu/viewer/quiz

Try to identify the following events:

- Up-going tracks
- Down-going tracks
- Cascades
- Coincident events

SIGNAL VS. BACKGROUND

10 milliseconds of raw IceCube data:

http://icecube.wisc.edu/ viewer/background_signal Type: PPlus E(GeV): 1 42e+04 Zen: 17.37.deg Azi: 253.08 deg NTrack: 990/1826 shown, min E(GeV) == 1184.28 NCosc: 100/14225 shown, min E(GeV) == 0.94

ACTIVITY!

To find astrophysical neutrinos, you need to distinguish them from background events.

In your groups try to answer the following questions:

- What are the properties of an event?
- What are the background events we want to remove
- Think of a procedure one could use to select signals while removing background from your data

You can compare simulated background event with signal events here:

http://icecube.wisc.edu/viewer/background_signal

You can also read more about IceCube's event selection here:

https://masterclass.icecube.wisc.edu/en/analyses/cosmic-neutrinos

THE VETO TECHNIQUE

THE VETO TECHNIQUE

To select neutrinos of astrophysical origin, IceCube has implemented the High-Energy Starting Event (HESE) selection

The criteria for an event to be considered are:

- Start point: time when 250 photoelectrons (pe) are detected
- Veto: the DOMs in the veto regions must have less than 3 pe
- Energy: the event must reach a brightness of more than 6000 pe

You can check ou the selection method here:

http://icecube.wisc.edu/viewer/training

ACTIVITY!

Look at the True HESE event selection:

http://icecube.wisc.edu/viewer/hese_all#

• Can you find the 5 most energetic events in the selection?

Browse through the Event details here:

http://icecube.wisc.edu/viewer/hese

- What properties are interesting for an astronomer?
- What's special about some of the events?

QUESTION FOR YOU:

How sure are we that the sample we collected comes from space?

1. Understand the physics of your background

2. Understand the response of your detector

3. Collect enough statistics

1. Understand the physics of your background

V atmospheric muon neutrinos

Cosmic Rays

lceCube

ATMOSPHERE

 V_{τ}

tau neutrino

2. Understand the response of your detector

t = 0

3. Collect enough statistics

(wait longer...)

3. Collect enough statistics

(or upgrade your experiment!)

