UD ICECLASS MASTERCLASS

WORKSHOP ACTIVITY #2: LOOKING FOR NEUTRINO SOURCES

Image credit: Martin Wolf / NSF

We figured out how to find neutrinos in our data.

The questions we want to answer are:

- What can produce these neutrinos?
- Where do these neutrinos come from?

The electron-volt (eV) energy scale

The electron-volt (eV) energy scale

The electron-volt (eV) energy scale

Solar Neutrinos

The electron-volt (eV) energy scale

SUPERNOVA!

The electron-volt (eV) energy scale

THE PRINCIPLES OF NEUTRINO ASTRONOMY

- 1. Very High-Energy neutrinos come from cosmic accelerators
- 2. Neutrinos travel in a straight line from their source

AN INTRODUCTION TO SKYMAPS

SKYMAP OF 28 EVENTS – RANDOMISED BACKGROUND EVENTS

Or were we just lucky to find 7 events inside this particular circle?

- Is this a significant signal?
- We want to evaluate the likelihood that this clustering comes from a single source in the sky

In your group:

 Can you think of a method we could use to calculate a significance?

P-value =

of randomized « maps » with at least as many events as our data inside a circle

total # of randomized maps

One needs to compare the distribution of the signal to a large number of randomized maps

ACTIVITY!

75° 60° X × 45° X × × X 30° × 15° х × 90° -150× -120° -90° -60° -30° 30° 60° 120° 150° 0 0° X × × × X × ×× -15° × × × -30° × × \mathbf{v} -45° × -60° -75°

We will make multiple random maps like this...

...and count how often we get 1, 2, 3, etc. events inside our circle.

ACTIVITY!

Eventually, we want to find how often we get 7 events or more to conclude whether our map has a significant association with a neutrino source!

Please follow this link to run the exercise in Python*:

http://bit.ly/IceCubeSources

*PART 1: What does it mean to be random?

Question: What significance do you find?

IMPORTANT REMINDER

Please create your own copy of the notebook to make any edits:

How many events must come from the same region of the sky "discover" a source? How many events must come from the same region of the sky "discover" a source?

Answer: The number of events in the signal region must have less than 0.00000006% (or 6 x 10-7) chance of coming from randomized background

That is, only **one out of 1.7 million** randomized maps has more (or the same number of) events in the red circle than your data

Say that we expect **on average** 5 background events to occur within our patch of sky.

How many times are we going to see X events?

Here: 5 scrambles

Say that we expect **on average** 5 background events to occur within our patch of sky.

How many times are we going to see X events?

Here: 10 scrambles

Say that we expect **on average** 5 background events to occur within our patch of sky.

How many times are we going to see X events?

Here: 50 scrambles

bins = np.linspace(0,10,11)

ax.hist(np.random.poisson(lam=5,size=50),bins=bins)
ax.set_xlabel('# of events inside red circle (background)')
ax.set_ylabel('count')

[10]: Text(0, 0.5, 'count')

Say that we expect **on average** 5 background events to occur within our patch of sky.

How many times are we going to see X events?

Here: 100 scrambles

Say that we expect **on average** 5 background events to occur within our patch of sky.

How many times are we going to see X events?

Here: 1000 scrambles

After a loooot of trials, a clear shape appears... and that shape follows the equation:

QUANTIFYING SIGNIFICANCE

- You can save yourself a lot of computation time by guessing how your background behaves. This behaviour is characterized by a **probability distribution function (PDF)**
- For a purely random background, the number of events in a region is determined by a **Poisson distribution:**

• What is the expected number of background events for a signal region of ~0.0685 π rad² (the area of your circle)?

• What is the expected number of background events for a signal region of ~0.0685 π rad² (the area of your circle)?

Answer = 28 events $\cdot 0.0685\pi / 4\pi \approx 0.48$

(It's OK to expect non-integer values!)

WOULD THIS BE A SIGNIFICANT EVENT?

Going back to our Python exercise*:

http://bit.ly/IceCubeSources

*PART 2: Poisson statistics: Quantifying how lucky we need to be

Not quite!

Probability of getting 7 events or more by pure luck:

P ~ 7.64x10⁻⁷

Small, but still greater than 6x10⁻⁷

...We still cannot rule out a background at our desired confidence :(

WHAT IF ANOTHER EVENT ENDS UP IN THE CIRCLE?

First, we need to update our background expectation:

We now expect 29 x 0.0685 / 4 \approx 0.496 events per circle

Plug in numbers...

P ~ 5.9x10⁻⁸

Now we have a discovery!

Every single neutrino matters.

- What are the limitations of this approach?
- Do you think we could use more information to get our probability?
- Can you think of cases where binning may cause a problem?

MAKING THINGS A LITTLE MORE REALISTIC...

Would I still be able to detect a source using the bin on the right?

MAKING THINGS A LITTLE MORE REALISTIC...

Should all events have the same contribution?

THE REAL DEAL: THE LIKELIHOOD METHOD

p-value of the cluster: 0.08

[So, only expect the same cluster or weirder 8% of the time!]

FULL ANALYSIS WITH 3 YEARS OF DATA

p-value of the cluster: 0.84

[after 3 years, we see that it's possible to get the same cluster of weirder 84% of the time...]

FULL ANALYSIS WITH 7 YEARS OF DATA

p-value of the cluster: 0.81

[after 7 years, we see that it's possible to get the same cluster of weirder 81% of the time...]

> We can either generate random maps many times or use analytical background expectation (such as Poissonian probability) to quantify significance.

> Often, if we know the analytical form of the background expectation, it can save us a lot of computational time!

> Finally, it is better to know where we're looking instead of searching across the entire sky. Multimessenger observations can help guide our searches!

> We can either generate random maps many times or use analytical background expectation (such as Poissonian probability) to quantify significance.

> Often, if we know the analytical form of the background expectation, it can save us a lot of computational time!

> Finally, it is better to know where we're looking instead of searching across the entire sky. Multimessenger observations can help guide our searches!

> We can either generate random maps many times or use analytical background expectation (such as Poissonian probability) to quantify significance.

> Often, if we know the analytical form of the background expectation, it can save us a lot of computational time!

> Finally, it is better to know where we're looking instead of searching across the entire sky. Multimessenger observations can help guide our searches!

> We can either generate random maps many times or use analytical background expectation (such as Poissonian probability) to quantify significance.

> Often, if we know the analytical form of the background expectation, it can save us a lot of computational time!

> Finally, it is better to know where we're looking instead of searching across the entire sky. **Multimessenger observations can help guide our neutrino searches!**