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Perturbative structures of field theories seems to be
simpler that what appears from Feynman diagrams

S-matrix analysis
1 tree level singularities: poles only

↓

a class of theory is fully determined by the 3-particle
amplitude

2 loop singularities: poles and branch cuts

↓

at one loop, a class of theories is determined by the
quadruple cuts

Attention on N = 8 Supergravity
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Investigating loop-orders

unitarity-based method (Bern, Carrasco, Dixon, Dunbar,

Johansson, Kosower, Morgan, Roiban,...)

leading singularity:

1 N = 4 SYM (Cachazo & Skinner; Cachazo; Cachazo,

Spradlin & Volovich; Spradlin, Volovich & Wen)

2 N = 8 Supergravity (Cachazo & Skinner; Arkani-Hamed,

Cachazo, Kaplan)
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N = 8 Supergravity at 1-loop

N. Arkani-Hamed, F. Cachazo, J. Kaplan
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∆3 = ∑i ∆(i)
4

∆2 = ∑i ∆(i)
3

Triple and double cuts in terms of quadruple cuts

↓

Boxes reproduce Feynman diagrams singularities
(No-triangle hypotesys proven by E. Bjerrum-Bohr & P. Vanhove)
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N = 8 Supergravity at higher loops

at 1 loop: absence of triangles & bubbles ≡ amplitude
fully determined by leading singularities

what about higher loops?

↓

Conjecture (Arkani-Hamed, Cachazo, Kaplan):
The full S-matrix is determined by its leading
singularities

↓
Consequences, if true:

tree level amplitudes determine the full S-matrix
no UV-divergencies

Worth to explore!
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Leading Singularity Technique

Amplitude as sum of Feynman diagrams and in terms of an
integral basis {Ii}i∈I , Ii (k) =

∫
∏L

i=1 dd l (i) Ii (k, l)

Mn = ∑
f ∈F

∫ L

∏
i=1

dd l (i) Ff (k, l) = ∑
i∈I

ci (k) Ii (k)

Singularities: poles and branch cuts.
Leading Singularities : Highest codimension singularities

In d-dimensions the discontinuity across the leading
singularity is computed by a d-dimensional cut

↓

Quadruple-cut computes the leading singurality in
4-dimensions
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Leading Singularity Technique

Quadruple cut

..

.. ..

....

1

l2 + iε
→ δ+(l2)

4 δ-functions → l is localized in l (i) ∈ C4

↓

the integral is given by the jacobian of the change of variable
from l to the argument of δ evaluated at l (i)

Leading Singularities of Gravity Amplitudes Perimeter Institute & CPT Durham



Leading
Singularities of

Gravity Amplitudes

Paolo Benincasa

Motivations

Leading Singularity

N8SUGRA

Conclusion

Motivations Leading Singularity N8SUGRA Conclusion

Leading Singularity Technique

Contour integral point of view

∑
f ∈F

∫
γ

L

∏
i=1

d4 l (i) Ff (k, l) = ∑
i∈I

ci (k)
∫

γ

L

∏
i=1

d4l (i) Ii (k, l)

γ = T 4L ⊂ C4L

Massless case: ∀ loop, T 4 localizes the l-integral onto
l (i) ∈ C4 (i = 1, 2)
Algebraic linear equations for the coefficients ci (k)
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N = 8 Sugra: 2-loop 5-particle MHV Amplitude

Two sectors:


planar

non-planar

Two loops → integration contour γ = T 8

Three classes of contours T 8:

1 on diagrams with 8 internal propagators

2 on diagrams with 7 internal propagators

3 on diagrams with 6 internal propagators
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N = 8 Sugra: Planar Sector

Three topologies

topology 1

topology 2

topology 3
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N = 8 Sugra: Planar Sector - Topology 1

Expansion on integrals which share the same singularities

1 −

2
−

3 +

4+

5+

= B

1

23

4

5

+ C

1

2

3

4

5

+ D

1

2

4

3

5

T8 =
{
(p, q) ∈

(
C4 ×C4

) ∣∣∣ |p2 | = ε, |(p + k1)2 | = ε, |(p + k1 + q)2 | = ε, |(p − k2)2 | = ε,

|q2 | = ε, |(q − k5)2 | = ε, |(q + k1)2 | = ε, |(q + k1 + k2)2 | = ε
}

,
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N = 8 Sugra: Planar Sector - Topology 1

1 −

2
−

3 +

4+

5+

→

3 +

4+

5+

1−

2−

+

+

−

−

+

−

→

3 +

4+

5+ 1−

2−

+

+−

−

+

−

∑
multiplet

4

∏
s=1

M tree (s)
3

∣∣∣
p(i)

= stu M tree
4 , I =

(
4

∏
s=1

∮
zi=0

dzi

zi

)
|J |−1

Two equations

B − s25
h(2, 5, 4, 3)

C − s25

h(2, 5, 3, 4)
D = 0

B − s25
h(2, 3, 4, 5)

C − s25

h(2, 4, 3, 5)
D = −s3

12s15
〈1, 2〉8
N(5)

f(1, 3, 4, 2, 5)

2 equations in 3 unknowns: not enough!
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N = 8 Sugra: Planar Sector - Topology 3

Expansions on integrals which share the same singularities

1−

2−

3+

4+

5+

= C

1

2

3

4

5

T8 =
{
(p, q) ∈

(
C4 ×C4

) ∣∣∣|p2 | = ε, |(p + k1)2 | = ε, |(p + k1 + q)2 | = ε, |(p − k2)2 | = ε,

|q2 | = ε, |(q − k5)2 | = ε, |(q − k5 − k4)2 | = ε, |(q + k1 + k2)2 | = ε
}

,

Two solutions: the lhs vanishes on one solution and is zero
on the other one.

Contradiction?
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N = 8 Sugra: Planar Sector - Topology 3

NO!: The integral expansion is simply not complete!

↓

Introduce integrals with share the same singularity BUT do
not contribute to other topologies

1−

2−

3+

4+

5+

= C

1

2

3

4

5

+ C ′
1

2

3

4

5

+ C ′′
1

2

3

4

5

+ . . .
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N = 8 Sugra: Planar Sector - Topology 3

We need minimal set which makes the system consistent

1−

2−

3+

4+

5+

= C

1

2

3

4

5

+ C ′
1

2

3

4

5

Analogous expansion related to D needed (3 ↔4)

↓

Eqs from top 1 + Eqs from top 3 = 6 eqs in 5 unknowns

most likely it does not have solution
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N = 8 Sugra: Planar Sector - Topology 1+3

Surprisingly, it has a unique solution!

B = −s2
12s15s25 (s15 + s25)

〈1, 2〉8
N(5)

h(1, 3, 4, 2)h(1, 4, 3, 2)
h(1, 2, 3, 5)− h(1, 5, 3, 2)

C = s2
12s23s34s45s51

〈1, 2〉8
N(5)

h(1, 3, 4, 2)h(1, 4, 5, 2)
h(1, 2, 3, 5)− h(1, 5, 3, 2)

C ′ = s12s34s45
〈1, 2〉8
N(5)

h(1, 3, 4, 2)h(1, 4, 5, 2)h(1, 5, 3, 2)
h(1, 2, 3, 5)− h(1, 5, 3, 2)

D = −s2
12s24s43s35s51

〈1, 2〉8
N(5)

h(1, 4, 3, 2)h(1, 3, 5, 2)
h(1, 2, 4, 5)− h(1, 5, 4, 2)

D ′ = −s12s34s35
〈1, 2〉8
N(5)

h(1, 4, 3, 2)h(1, 3, 5, 2)h(1, 5, 4, 2)
h(1, 2, 4, 5)− h(1, 5, 4, 2)

.

Leading Singularities of Gravity Amplitudes Perimeter Institute & CPT Durham



Leading
Singularities of

Gravity Amplitudes

Paolo Benincasa

Motivations

Leading Singularity

N8SUGRA

Conclusion

Motivations Leading Singularity N8SUGRA Conclusion

N = 8 Sugra: Planar Sector - Topology 2

Expansion on integrals which share the same singularities

1−

2−
3+4+

5+

= N

1

2

5

34

+ C

1

2

3

4

5

+ P

1

2

3

4

5

+ Q

1

2

3

4

5

Topology 2 has a non-planarity feature built-in!
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N = 8 Sugra: Planar Sector - Topology 2

2 equations in 2 unknowns! (C and P already determined!)

N = s12s23s34s45s51
〈1, 2〉8
N(5)

h(1, 4, 5, 2)
s14h(1, 3, 4, 2)− s25h(2, 4, 5, 3)
f(3, 1, 4, 2, 5)− f(3, 2, 5, 1, 4)

Q = s12s23s34s45s51s13s35
〈1, 2〉8
N(5)

h(1, 4, 5, 2)
h(1, 3, 4, 2) + h(2, 4, 5, 3)

f(3, 2, 5, 1, 4)− f(3, 1, 4, 2, 5)

Appearence of the non-planar integral

↓

the two sectors cannot be disentangled
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N = 8 Sugra: Non-Planar Sector

Higher number of topologies
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N = 8 Sugra: Non-Planar Sector

First three topologies: 6-internal propagators

Question: how can we integrate on a T 8?

Answer: integrating out 1 loop variable → two extra
propagators from the jacobian.

However

the T 8 does not have solution: a simultaneous factorization
in these two channels cannot occur

↓

These three topologies are “not relevant” (?)
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N = 8 Sugra: Non-Planar Sector

Example: first non-planar topology

1−

2−

3+

4+

5+

= C1

1−

2−

3+

4+

5+

+ . . .

The amplitude cannot show a simultaneous factorization in
the channels (q + k1)2 and (q + k2)2

↓

C1 = 0

The coefficients of the integral expansion are determined by
the study of the topogies from the fourth on
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How to check that the final answer is correct?

Three limits to check:

collinear limit

multi-particle limit

soft limit

Problem with the soft-limit: explicit expression not known
for all the integrals → IR analysis hard...
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Conclusion

Perturbative structure of field theories is more intriguing
than what appears from Feynman diagrams
Study of poles at tree level: recursion relations
Branch-cuts at loop level: complicated structure

↓
special singularities: leading singularities

↑
computation of residues!
N = 8 supegravity at 1-loop as well
Other loops? 2-loop 5-particle amplitude as a first check
Coeffs of the integral expansion never computed before
More insights towards a proof of the leading singularity
conjecture?
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