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# Accurate predictions for complicated processes essential for the LHC
= NLO computations for tt+jets, V'V +jets etc.

# Traditional methods to calculate scattering amplitudes very inefficient
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On-Shell Methods

# Physical d.o.f. = efficient evaluation of multi-particle processes.

# Insight into hidden structures:
s Multi-Loop N =4 SYM
» Finiteness of N = 8 Super-Gravity

# Insight from Twistor space: Complex analysis and factorisation

Tree-level: MHV Rules (CSW), On-shell recursion (BCFW)




# Traditional unitarity methods construct amplitudes from double cuts
[Bern,Dixon,Dunbar,Kosower (1994)]
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» Fit loop amplitudes to a basis of known integral functions [Ellis,Zanderighi]

[Denner,Nierste,Scharf]
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» Improve fitting using multiple cuts

ete” — 4 partons [Bern,Dixon,Kosower (1997)]
Quadruple cuts [Britto,Cachazo,Feng (2004)]

» Completely determines amplitudes in super-symmetric theories
» Rational terms missed by 4-d cuts:

s Recursion relations [Bern,Dixon,Kosower]
[Berger,Bern,Dixon,Forde,Kosower]
s D-dimensional cuts [Britto,Feng,Mastrolia]

[Anastasiou,Britto,Feng,Kunszt]

[Ellis,Giele,Kunszt,Melnikov]




Parametrise loop momentum to solve on-
shell constraints [Britto,Cachazo,Feng]
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# Solving constraints fixes all four coefficients — 2 solutions
{12 =0,(I; —K3)*=0,(l; — K23)* =0, (l; + K1)* =0}

#» Box coefficient given as sum over both solutions
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#» Examine analytic behaviour of triple cut [Forde]
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#» Consider t as a complex variable then one can see that
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# Integrals over non-zero powers of ¢ vanish L aurent series around £ — oo

Inf [X(t)] =x0+ a1t + x2t2 + x3t3
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» Here the two unfixed integrals can be parametrised by,

I =yK] +a(l —y)x + 1K) [x] + by(1 — y)|x) K]

» Decomposition and complex integration similar - non-vanishing integrals
» Final Coefficient
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» Extension to massive particles in the loops is straightforward
[Britto,Feng,Mastrolia, Yang]
[Kilgore]

» General complex, massive loop momenta:
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» Complex analysis is unchanged — New solutions to on-shell constraints




#» On-shell recursion relations apply to rational terms [Bern,Dixon,Kosower (2005)]
» Make use of factorisation properties
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r MU“Zi-glUOﬂ amplitudes [Berger,Bern,Dixon,Forde,Kosower]
s Higgs+multi gluon amplitudes [Berger,Dixon,Del Duca]

[SB,Glover,Risager]

[Glover,Mastrolia,Williams]

» Complex factorisation at one-loop remains to be fully understood




» D-dimensional cuts have been used successfully both numerically and

analytically
s One-loop gluons amplitudes n < 20 (Rocket) [Giele,Kunszt,Melnikov]
[Giele,Zanderighi]
s One-loop it + n(g) amplitudes n < 3 [Ellis,Giele,Kunszt,Melnikov]
» Analytic expressions for Hqqg, 5g,4g[ns, np] [Bern,Morgan]

[Britto,Feng,Mastrolia, Yang]

» 4 — 2e-dimensional cuts are equivalent to massive cuts

[D=1—2¢ = l[g) T2

lip) = 0= Iy = =liag = 1

[Bern,Morgan (1995)]
D; e/ 9 D [Bern,Dixon,Dunbar,Kosower (1997)]
/ d~l = / d ('u ) / d l[4] [Ossola,Papadopoulos,Pittau (2008)]




#» The integral basis in D-dimensions has no rational terms: [Giele et al.]
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# Taking the D — 4 — 2¢ limit gives us the rational terms

R, = _6 Z Cz[fﬂr{él — 5 Z C:EK;; o 6 Z (K22 - S(m% + m%)) Cé?]I{Q




# Study analytic properties of the massive quadruple cut [SB (2008)]
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#» Pentagon contributions drop out of the rational part
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# Rational contribution from leading ;.2 behaviour at contour boundary
S Dedimensional Cuts and Extracting Rational Terms — 2119




» Triangle and Bubble coefficients follow from similar analysis
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# All on-shell constraints in terms four dimensional momenta
» Pentagon contributions isolated




» Gluon scattering is well documented — ideal testing ground
» Rational terms originate from scalar loops only:
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» Compact tree amplitudes from recursion relations [SB,Glover,Khoze, Svréek]

[Forde,Kosower]




» Particularly simple: only box contributions
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» Form product of four tree amplitudes
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# Solution for loop momentum around p — oc:
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# Final coefficient
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» Full result:
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# Using discrete Fourier projections possible to evaluate rational
coefficients directly

pp—1
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» Accuracy dependent on values of p,, and ji.
» \Verified results of up to six external gluons

» Further study required to improve speed and accuracy:. OPP analysis to
remove spurious poles, c.f.

Bl ackhat [Berger,Bern,Febres-Cordero,Dixon,Forde, |ta,Kosower,Maitre]
Rocket [Giele,Zanderighi;Ellis,Giele,Kunszt,Melnikov]




#» On-shell methods combined with complex momenta

# Analytic computations are reduced to the analysis of tree amplitudes at
the boundary of the complex plane

» Well behaved growth in complexity with number of external legs
# Allows useful insight into hidden structures

No-Triangle Hypothesis in N/ = 8 Supergravity: [Bjerrum-Bohr,Dunbar,Ita,Perkins,Risager]
[Bjerrum-Bohr,Vanhove]

[Bern,Carrasco,Forde,lIta,Johansson]

[Arkani-Hamed,Cachazo,Kaplan]

Multi-loop N/ = 4 Super-Yang-Mills: [Bern,Dixon,Kosower,Roiban,Spradlin,Vergu,Volovich]

[Cachazo,Spradlin,Volovich]
# Generalisations to massive particles ¢t + jets, WW + jets
#» Numerical technigues for complicated NLO matrix elements

Combination with real radiation for cross-sections
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