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Introduction

MHV amplitudes 〈+ +−− · · · − −〉 are much simpler than other helicity
amplitudes

- why?

Usual view of MHV amplitudes:

Negative helicity (positive energy) particles are anti self-dual

Re-interpret MHV amplitudes as scattering off ASD background

ASD Einstein or ASDYM eqns are integrable ⇔ simple MHV amplitudes

Today: focus on gravity
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MHV Amplitudes & ASD Spacetimes
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ASD backgrounds

Seek an action that is well-adapted to describing ASD solutions

TMx ' S+
x ⊗ S−x (eg xa → xαα̇) and connections decompose

ASD solutions have S+ flat

Plebanski action for gravity

S =
1

κ2

∫
M

Σα̇β̇ ∧ (dΓ + Γ ∧ Γ)α̇β̇

Σα̇β̇ = e
α(α̇ ∧ e

β̇)
α (eαα̇ = σαα̇a ea

µdxµ are vierbein 1-forms)

Γα̇
β̇

is an independent connection on S+

Equations of motion are DΓΣ = 0 and RΓ ∧ e = 0; imply usual GR

Rescaling Γ→ κ2Γ and taking limit κ→ 0 get

Schiral =

∫
M

Σα̇β̇ ∧ dΓα̇β̇

Eom: dΣ = 0 and dΓ ∧ e = 0
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Scattering off an ASD background

Put Γ = Γ0 + γ and Σ = Σ0 + σ and linearize around ASD background

Linearized eom are dσα̇β̇ = −2γ
(α̇
γ̇ ∧ Σ

β̇)γ̇
0 and dγα̇β̇ ∧ eββ̇0 = 0

Solns with γ = 0 (mod gauge) move to different ASD background;
we want R+

(Γ0+γ) 6= 0

Amplitude(φin|t→−∞ −→ φout|t→+∞) given formally by

〈φin|φout〉 =

∫
[dφ] exp

(
i
~
S [φ]

)
where integral taken over all fields obeying desired boundary conditions

At classical level, path integral localizes on solution of eom

〈
{σ, γ}in

∣∣{σ, γ}out

〉
ASD
≈ i

~κ2

∫
M

Σ0 ∧ γ ∧ γ

Can be proved more rigorously using geometric/canonical quantization
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Relation to Usual Form of Amplitudes

Claim:

i
~κ2

∫
M

Σ0 ∧ γ ∧ γ =
∑
n

(n-particle BGK amplitude)

where BGK amplitude = iκn−2/~× δ (
∑

pi )MBGK
n and

MBGK
n = [1n]8

〈12〉〈n − 2 n − 1〉
[1 n − 1]

F

N(n)

n−3∏
i=1

n−1∏
j=i+2

[ij ] + P(2,...,n−2)


N(n) :=

∏
i<j [ij ]

F :=
∏n−3

k=3 〈k|pk+1 + pk+2 + · · ·+ pn−1|n]

(Integral is gauge invariant because of field eqns)
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Relation to Usual Form of Amplitudes

Claim:

i
~κ2

∫
M

Σ0 ∧ γ ∧ γ =
∑
n

(n-particle BGK amplitude)

Dependence on the ASD background is encoded in linearized field eqns
(and in Σ0). Scattering amplitudes usually viewed as living in flat space.

Expand out background as fluctuations away from flat space

- how?

(decompose field into Fock basis; amplitudes are coefficients)

Not so simple! The ASD equations are non-linear; background is an
honest curved spacetime.

Integrability of ASD equations comes to the rescue

Twistor space is particularly well-suited to exploiting this integrability
(integrability in spacetime = holomorphy in twistor space)
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Twistor Theory
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Linearized gravity in twistor space

According to Penrose transform, gravitons of helicity ∓2⇔ h2(Z ), h̃−6(Z )

In vacuum (Gab = 0, Λ = 0), gravitational radiation ⇔ linearized
curvature fluctuations with four dotted or undotted spinor indices
(Weyl curvature ⊂ Riemann curvature)

(δR)αβγδ(x) =

∫
Lx

[π dπ] ∧ ∂h2

∂ωα∂ωβ∂ωγ∂ωδ

∣∣∣∣
Lx

(δR)α̇β̇γ̇δ̇(x) =

∫
Lx

[π dπ] ∧ πα̇πβ̇πγ̇πδ̇ h̃−6(Z )
∣∣∣
Lx

Penrose transform of self-dual spin connection is

γα̇
β̇

(x) =

∫
Lx

[π dπ] ∧ πα̇πβ̇ B|Lx

where B ∈ Ω1,1(PT′,O(−4)), rather than (0,1)-form

εαβ∂αBβ = h̃−6 ensures dγα̇
β̇

= (δR)α̇
β̇γ̇δ̇

dxγγ̇ ∧ dx δ̇
γ
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Linearized gravity in twistor space
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The nonlinear graviton I

Linearized gravitons are really infinitesimal deformations of spacetime
curvature - what about twistor space?

Penrose’s Non-Linear Graviton{
Finite deformations of complex

structure PT′ ; PT

}
1:1←→


ASD deformations of
conformal structure
(M, η) ; (M, [g ])


h2 ⇒ V := ∂h2

∂ωα
∂
∂ωα
∈ H0,1(PT′,TPT′) generates infinitesimal

deformation of complex structure. Deformations are integrable.

Twistor space is a complex manifold iff Nijenhuis tensor vanishes.
Sufficient condition is (∂̄ + V )2 = 0

Unknown what h̃−6 deforms ⇒ only get ASD spacetime
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BGK amplitudes in twistor space∫
M

Σ0 ∧ γ ∧ γ =

∫
M×CP1×CP1

d4x [πn dπn][π1 dπ1] I (Bn, · )y
1

∂̄ + LV
B1[πn π1]4

B fields are Penrose transform of each γ
ASD background encoded in ∂̄ + LV ‘propagator’

No canonical way to pullback vector field; make gauge choice

V = V α ∂
∂ωα → V αξα̇

[π ξ]
∂
∂yαα̇ with [ξ| = [n|

I ( , ) := εαβ ∂
∂ωα ∧ ∂

∂ωβ
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BGK amplitudes in twistor space

∫
M

Σ0 ∧ γ ∧ γ =

∫
M×CP1×CP1

d4x [πn dπn][π1 dπ1] I (Bn, · )y
1

∂̄ + LV
B1[πn π1]4

Expanding in powers of V gives

∞∑
n=3

∫
d4x [πn dπn] I (Bn, · )y

(
1

∂̄
LVn−1

1

∂̄
LVn−2 · · ·

1

∂̄
LV3

1

∂̄
LV2

1

∂̄
B1 [πn π1]4

)

Inserting momentum eigenstates gives all BGK amplitudes (n ≥ 3)

[1n]8

[1 n − 1][n − 1 n][n1]

{
1

C (n)

n−2∏
k=2

〈k|pk−1 + · · ·+ p1|n]

[kn]
+ Perms

}

Derivative of δ-fn support → perturbative description of support on
deformed twistor lines
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Odds and Ends

D. Skinner (Oxford) Gravity & Twistors September 2008 11 / 13



Twistor Action for MHV Gravity

ASD background ⇔ Integrable background complex structure

S =

∫
PT′

Ω ∧ Bα∂α

(
∂̄h +

1

2
{h, h}

)
where B and h are no longer ∂̄-closed

Field equations: vanishing of Nijenhuis tensor

Propagator links positive and negative helicity gravitons

The spacetime Plebanski action
∫
M Σ ∧ dΓ +

∫
M Σ ∧ Γ ∧ Γ suggests we

consider the twistor action

S =

∫
PT′

Ω ∧ Bα∂α

(
∂̄h +

1

2
{h, h}

)
+

∫
M×CP1×CP1
d4x [πn dπn][π1 dπ1] I (Bn, · )y

1

∂̄ + LV
B1[πn π1]4
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Twistor strings?

Twistor MHV amplitudes (& action) have straightforward susy
generalization (N ≤ 4), describing scattering off a 1/2 BPS background.

In twistor-string theory, csugra showed up through vertex operators V
and B representing cohomology classes

H1(PT′,TPT′) and H1(PT′,Ω2
cl(−4))

Our V and B are exactly the same fields, except V here has the extra
constraint V α = ∂αh2 while B here has the extra freedom
B ∼ B + f [π dπ]

Perhaps a first step...

Can we find a ‘connected prescription’ for Einstein gravity?
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constraint V α = ∂αh2 while B here has the extra freedom
B ∼ B + f [π dπ]

Perhaps a first step...

In Yang-Mills, P-T amplitudes generated by
∫

d4|8x log det
(
∂̄ +A

)

Can we find a ‘connected prescription’ for Einstein gravity?
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