

Gravity, Twistors & the MHV Formalism

David Skinner

Mathematical Institute, Oxford

Based on arXiv:0808.3907 [hep-th] with L. Mason

Hidden Structures in Field Theory Amplitudes

12th September 2008

Introduction

MHV amplitudes $\langle + + - - \dots - - \rangle$ are much simpler than other helicity amplitudes

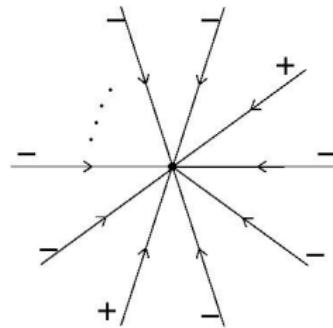
Introduction

MHV amplitudes $\langle + + - - \dots - - \rangle$ are much simpler than other helicity amplitudes - **why?**

Introduction

MHV amplitudes $\langle + + - - \dots - - \rangle$ are much simpler than other helicity amplitudes - why?

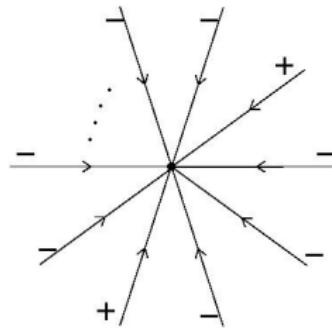
- Usual view of MHV amplitudes:



Introduction

MHV amplitudes $\langle + + - - \dots - - \rangle$ are much simpler than other helicity amplitudes - why?

- Usual view of MHV amplitudes:

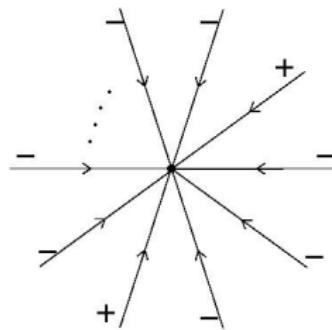


- Negative helicity (positive energy) particles are **anti self-dual**

Introduction

MHV amplitudes $\langle + + - - \dots - - \rangle$ are much simpler than other helicity amplitudes - why?

- Usual view of MHV amplitudes:

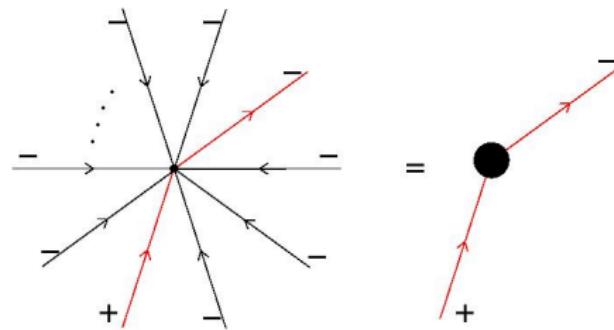


- Negative helicity (positive energy) particles are anti self-dual
- Re-interpret MHV amplitudes as scattering off ASD background

Introduction

MHV amplitudes $\langle + + - - \dots - - \rangle$ are much simpler than other helicity amplitudes - why?

- Non-perturbative view:

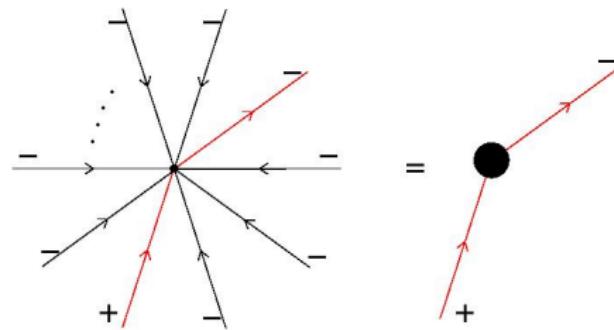


- Negative helicity, positive energy particles are anti self-dual
- Re-interpret MHV amplitudes as scattering off ASD background

Introduction

MHV amplitudes $\langle + + - - \dots - - \rangle$ are much simpler than other helicity amplitudes - why?

- Non-perturbative view:



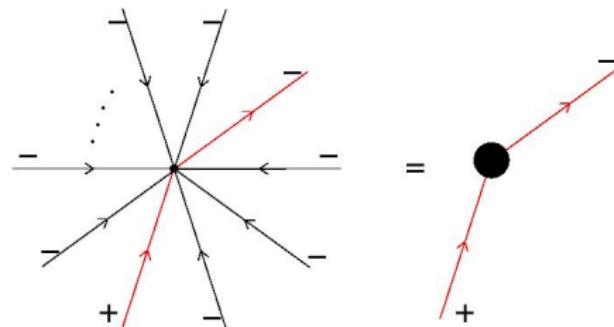
- Negative helicity, positive energy particles are anti self-dual
- Re-interpret MHV amplitudes as scattering off ASD background

ASD Einstein or ASDYM eqns are **integrable** \Leftrightarrow simple MHV amplitudes

Introduction

MHV amplitudes $\langle + + - - \dots - - \rangle$ are much simpler than other helicity amplitudes - why?

- Non-perturbative view:



- Negative helicity, positive energy particles are anti self-dual
- Re-interpret MHV amplitudes as scattering off ASD background

ASD Einstein or ASDYM eqns are **integrable** \Leftrightarrow simple MHV amplitudes

- Today: focus on gravity

MHV Amplitudes & ASD Spacetimes

ASD backgrounds

Seek an action that is well-adapted to describing ASD solutions

ASD backgrounds

Seek an action that is well-adapted to describing ASD solutions

- $TM_x \simeq \mathbb{S}_x^+ \otimes \mathbb{S}_x^-$ (eg $x^a \rightarrow x^{\alpha\dot{\alpha}}$) and connections decompose

ASD backgrounds

Seek an action that is well-adapted to describing ASD solutions

- $TM_x \simeq \mathbb{S}_x^+ \otimes \mathbb{S}_x^-$ (eg $x^a \rightarrow x^{\alpha\dot{\alpha}}$) and connections decompose
- ASD solutions have \mathbb{S}^+ flat

ASD backgrounds

Seek an action that is well-adapted to describing ASD solutions

- $TM_x \simeq \mathbb{S}_x^+ \otimes \mathbb{S}_x^-$ (eg $x^a \rightarrow x^{\alpha\dot{\alpha}}$) and connections decompose
- ASD solutions have \mathbb{S}^+ flat

Plebanski action for gravity

$$S = \frac{1}{\kappa^2} \int_M \Sigma^{\dot{\alpha}\dot{\beta}} \wedge (d\Gamma + \Gamma \wedge \Gamma)_{\dot{\alpha}\dot{\beta}}$$

- $\Sigma^{\dot{\alpha}\dot{\beta}} = e^{\alpha(\dot{\alpha}} \wedge e_\alpha^{\dot{\beta})}$ ($e^{\alpha\dot{\alpha}} = \sigma_a^{\alpha\dot{\alpha}} e_\mu^a dx^\mu$ are vierbein 1-forms)
- $\Gamma^{\dot{\alpha}}_{\dot{\beta}}$ is an **independent** connection on \mathbb{S}^+

ASD backgrounds

Seek an action that is well-adapted to describing ASD solutions

- $TM_x \simeq \mathbb{S}_x^+ \otimes \mathbb{S}_x^-$ (eg $x^a \rightarrow x^{\alpha\dot{\alpha}}$) and connections decompose
- ASD solutions have \mathbb{S}^+ flat

Plebanski action for gravity

$$S = \frac{1}{\kappa^2} \int_M \Sigma^{\dot{\alpha}\dot{\beta}} \wedge (d\Gamma + \Gamma \wedge \Gamma)_{\dot{\alpha}\dot{\beta}}$$

- $\Sigma^{\dot{\alpha}\dot{\beta}} = e^{\alpha(\dot{\alpha}} \wedge e_\alpha^{\beta)}$ ($e^{\alpha\dot{\alpha}} = \sigma_a^{\alpha\dot{\alpha}} e_\mu^a dx^\mu$ are vierbein 1-forms)
- $\Gamma^{\dot{\alpha}}_{\dot{\beta}}$ is an independent connection on \mathbb{S}^+

Equations of motion are $D_\Gamma \Sigma = 0$ and $R_\Gamma \wedge e = 0$; **imply usual GR**

ASD backgrounds

Seek an action that is well-adapted to describing ASD solutions

- $TM_x \simeq \mathbb{S}_x^+ \otimes \mathbb{S}_x^-$ (eg $x^a \rightarrow x^{\alpha\dot{\alpha}}$) and connections decompose
- ASD solutions have \mathbb{S}^+ flat

Plebanski action for gravity

$$S = \frac{1}{\kappa^2} \int_M \Sigma^{\dot{\alpha}\dot{\beta}} \wedge (d\Gamma + \Gamma \wedge \Gamma)_{\dot{\alpha}\dot{\beta}}$$

- $\Sigma^{\dot{\alpha}\dot{\beta}} = e^{\alpha(\dot{\alpha}} \wedge e_\alpha^{\beta)}$ ($e^{\alpha\dot{\alpha}} = \sigma_a^{\alpha\dot{\alpha}} e_\mu^a dx^\mu$ are vierbein 1-forms)
- $\Gamma^{\dot{\alpha}}_{\dot{\beta}}$ is an independent connection on \mathbb{S}^+

Equations of motion are $D_\Gamma \Sigma = 0$ and $R_\Gamma \wedge e = 0$; imply usual GR

- Rescaling $\Gamma \rightarrow \kappa^2 \Gamma$ and taking limit $\kappa \rightarrow 0$ get

$$S_{\text{chiral}} = \int_M \Sigma^{\dot{\alpha}\dot{\beta}} \wedge d\Gamma_{\dot{\alpha}\dot{\beta}}$$

ASD backgrounds

Seek an action that is well-adapted to describing ASD solutions

- $TM_x \simeq \mathbb{S}_x^+ \otimes \mathbb{S}_x^-$ (eg $x^a \rightarrow x^{\alpha\dot{\alpha}}$) and connections decompose
- ASD solutions have \mathbb{S}^+ flat

Plebanski action for gravity

$$S = \frac{1}{\kappa^2} \int_M \Sigma^{\dot{\alpha}\dot{\beta}} \wedge (d\Gamma + \Gamma \wedge \Gamma)_{\dot{\alpha}\dot{\beta}}$$

- $\Sigma^{\dot{\alpha}\dot{\beta}} = e^{\alpha(\dot{\alpha}} \wedge e_\alpha^{\beta)}$ ($e^{\alpha\dot{\alpha}} = \sigma_a^{\alpha\dot{\alpha}} e_\mu^a dx^\mu$ are vierbein 1-forms)
- $\Gamma^{\dot{\alpha}}_{\dot{\beta}}$ is an independent connection on \mathbb{S}^+

Equations of motion are $D_\Gamma \Sigma = 0$ and $R_\Gamma \wedge e = 0$; imply usual GR

- Rescaling $\Gamma \rightarrow \kappa^2 \Gamma$ and taking limit $\kappa \rightarrow 0$ get

$$S_{\text{chiral}} = \int_M \Sigma^{\dot{\alpha}\dot{\beta}} \wedge d\Gamma_{\dot{\alpha}\dot{\beta}}$$

- Eom: $d\Sigma = 0$ and $d\Gamma \wedge e = 0$

Scattering off an ASD background

Put $\Gamma = \Gamma_0 + \gamma$ and $\Sigma = \Sigma_0 + \sigma$ and linearize around ASD background

Scattering off an ASD background

Put $\Gamma = \Gamma_0 + \gamma$ and $\Sigma = \Sigma_0 + \sigma$ and linearize around ASD background

Linearized eom are $d\sigma^{\dot{\alpha}\dot{\beta}} = -2\gamma^{(\dot{\alpha}} \wedge \Sigma_0^{\dot{\beta})\dot{\gamma}}$ and $d\gamma_{\dot{\alpha}\dot{\beta}} \wedge e_0^{\beta\dot{\beta}} = 0$

Scattering off an ASD background

Put $\Gamma = \Gamma_0 + \gamma$ and $\Sigma = \Sigma_0 + \sigma$ and linearize around ASD background

Linearized eom are $d\sigma^{\dot{\alpha}\dot{\beta}} = -2\gamma^{(\dot{\alpha}} \wedge \Sigma_0^{\dot{\beta})\dot{\gamma}}$ and $d\gamma_{\dot{\alpha}\dot{\beta}} \wedge e_0^{\beta\dot{\beta}} = 0$

- Solns with $\gamma = 0$ (mod gauge) move to different ASD background; we want $R_{(\Gamma_0 + \gamma)}^+ \neq 0$

Scattering off an ASD background

Put $\Gamma = \Gamma_0 + \gamma$ and $\Sigma = \Sigma_0 + \sigma$ and linearize around ASD background

Linearized eom are $d\sigma^{\dot{\alpha}\dot{\beta}} = -2\gamma^{(\dot{\alpha}} \dot{\gamma} \wedge \Sigma_0^{\dot{\beta})} \dot{\gamma}$ and $d\gamma_{\dot{\alpha}\dot{\beta}} \wedge e_0^{\dot{\beta}\dot{\beta}} = 0$

- Solns with $\gamma = 0$ (mod gauge) move to different ASD background; we want $R_{(\Gamma_0 + \gamma)}^+ \neq 0$

Amplitude($\phi_{\text{in}}|_{t \rightarrow -\infty} \longrightarrow \phi_{\text{out}}|_{t \rightarrow +\infty}$) given formally by

$$\langle \phi_{\text{in}} | \phi_{\text{out}} \rangle = \int [d\phi] \exp \left(\frac{i}{\hbar} S[\phi] \right)$$

where integral taken over all fields obeying desired boundary conditions

Scattering off an ASD background

Put $\Gamma = \Gamma_0 + \gamma$ and $\Sigma = \Sigma_0 + \sigma$ and linearize around ASD background

Linearized eom are $d\sigma^{\dot{\alpha}\dot{\beta}} = -2\gamma^{(\dot{\alpha}} \dot{\gamma} \wedge \Sigma_0^{\dot{\beta})} \dot{\gamma}$ and $d\gamma_{\dot{\alpha}\dot{\beta}} \wedge e_0^{\dot{\beta}\dot{\beta}} = 0$

- Solns with $\gamma = 0$ (mod gauge) move to different ASD background; we want $R_{(\Gamma_0 + \gamma)}^+ \neq 0$

Amplitude($\phi_{\text{in}}|_{t \rightarrow -\infty} \longrightarrow \phi_{\text{out}}|_{t \rightarrow +\infty}$) given formally by

$$\langle \phi_{\text{in}} | \phi_{\text{out}} \rangle = \int [d\phi] \exp \left(\frac{i}{\hbar} S[\phi] \right)$$

where integral taken over all fields obeying desired boundary conditions

- At **classical level**, path integral localizes on **solution of eom**

Scattering off an ASD background

Put $\Gamma = \Gamma_0 + \gamma$ and $\Sigma = \Sigma_0 + \sigma$ and linearize around ASD background

Linearized eom are $d\sigma^{\dot{\alpha}\dot{\beta}} = -2\gamma^{(\dot{\alpha}} \dot{\gamma} \wedge \Sigma_0^{\dot{\beta})} \dot{\gamma}$ and $d\gamma_{\dot{\alpha}\dot{\beta}} \wedge e_0^{\dot{\beta}\dot{\beta}} = 0$

- Solns with $\gamma = 0$ (mod gauge) move to different ASD background; we want $R_{(\Gamma_0 + \gamma)}^+ \neq 0$

Amplitude($\phi_{\text{in}}|_{t \rightarrow -\infty} \longrightarrow \phi_{\text{out}}|_{t \rightarrow +\infty}$) given formally by

$$\langle \phi_{\text{in}} | \phi_{\text{out}} \rangle = \int [d\phi] \exp \left(\frac{i}{\hbar} S[\phi] \right)$$

where integral taken over all fields obeying desired boundary conditions

- At classical level, path integral localizes on solution of eom

$$\langle \{\sigma, \gamma\}_{\text{in}} | \{\sigma, \gamma\}_{\text{out}} \rangle_{\text{ASD}} \approx \frac{i}{\hbar \kappa^2} \int_M \Sigma_0 \wedge \gamma \wedge \gamma$$

Scattering off an ASD background

Put $\Gamma = \Gamma_0 + \gamma$ and $\Sigma = \Sigma_0 + \sigma$ and linearize around ASD background

Linearized eom are $d\sigma^{\dot{\alpha}\dot{\beta}} = -2\gamma^{(\dot{\alpha}} \dot{\gamma} \wedge \Sigma_0^{\dot{\beta})} \dot{\gamma}$ and $d\gamma_{\dot{\alpha}\dot{\beta}} \wedge e_0^{\dot{\beta}\dot{\beta}} = 0$

- Solns with $\gamma = 0$ (mod gauge) move to different ASD background; we want $R_{(\Gamma_0 + \gamma)}^+ \neq 0$

Amplitude($\phi_{\text{in}}|_{t \rightarrow -\infty} \longrightarrow \phi_{\text{out}}|_{t \rightarrow +\infty}$) given formally by

$$\langle \phi_{\text{in}} | \phi_{\text{out}} \rangle = \int [d\phi] \exp \left(\frac{i}{\hbar} S[\phi] \right)$$

where integral taken over all fields obeying desired boundary conditions

- At classical level, path integral localizes on solution of eom

$$\langle \{\sigma, \gamma\}_{\text{in}} | \{\sigma, \gamma\}_{\text{out}} \rangle_{\text{ASD}} \approx \frac{i}{\hbar \kappa^2} \int_M \Sigma_0 \wedge \gamma \wedge \gamma$$

- Can be proved more rigorously using geometric/canonical quantization

Relation to Usual Form of Amplitudes

Claim:

$$\frac{i}{\hbar \kappa^2} \int_M \Sigma_0 \wedge \gamma \wedge \gamma = \sum_n (n\text{-particle BGK amplitude})$$

where BGK amplitude = $i\kappa^{n-2}/\hbar \times \delta(\sum p_i) \mathcal{M}_n^{\text{BGK}}$ and

$$\mathcal{M}_n^{\text{BGK}} = [1n]^8 \left\{ \frac{\langle 12 \rangle \langle n-2 \ n-1 \rangle}{[1 \ n-1]} \frac{F}{N(n)} \prod_{i=1}^{n-3} \prod_{j=i+2}^{n-1} [ij] + P_{(2, \dots, n-2)} \right\}$$

- $N(n) := \prod_{i < j} [ij]$
- $F := \prod_{k=3}^{n-3} \langle k | p_{k+1} + p_{k+2} + \dots + p_{n-1} | n \rangle$

Relation to Usual Form of Amplitudes

Claim:

$$\frac{i}{\hbar \kappa^2} \int_M \Sigma_0 \wedge \gamma \wedge \gamma = \sum_n (n\text{-particle BGK amplitude})$$

where BGK amplitude = $i\kappa^{n-2}/\hbar \times \delta(\sum p_i) \mathcal{M}_n^{\text{BGK}}$ and

$$\mathcal{M}_n^{\text{BGK}} = [1n]^8 \left\{ \frac{\langle 12 \rangle \langle n-2 \ n-1 \rangle}{[1 \ n-1]} \frac{F}{N(n)} \prod_{i=1}^{n-3} \prod_{j=i+2}^{n-1} [ij] + P_{(2, \dots, n-2)} \right\}$$

- $N(n) := \prod_{i < j} [ij]$
- $F := \prod_{k=3}^{n-3} \langle k | p_{k+1} + p_{k+2} + \dots + p_{n-1} | n \rangle$

(Integral is gauge invariant because of field eqns)

Relation to Usual Form of Amplitudes

Claim:

$$\frac{i}{\hbar\kappa^2} \int_M \Sigma_0 \wedge \gamma \wedge \gamma = \sum_n (n\text{-particle BGK amplitude})$$

Dependence on the ASD background is encoded in linearized field eqns (and in Σ_0). Scattering amplitudes usually viewed as living in flat space.

Relation to Usual Form of Amplitudes

Claim:

$$\frac{i}{\hbar\kappa^2} \int_M \Sigma_0 \wedge \gamma \wedge \gamma = \sum_n (n\text{-particle BGK amplitude})$$

Dependence on the ASD background is encoded in linearized field eqns (and in Σ_0). Scattering amplitudes usually viewed as living in flat space.

- Expand out background as fluctuations away from flat space - **how?** (decompose field into Fock basis; amplitudes are coefficients)

Relation to Usual Form of Amplitudes

Claim:

$$\frac{i}{\hbar\kappa^2} \int_M \Sigma_0 \wedge \gamma \wedge \gamma = \sum_n (n\text{-particle BGK amplitude})$$

Dependence on the ASD background is encoded in linearized field eqns (and in Σ_0). Scattering amplitudes usually viewed as living in flat space.

- Expand out background as fluctuations away from flat space - how? (decompose field into Fock basis; amplitudes are coefficients)

Not so simple! The ASD equations are non-linear; background is an honest curved spacetime.

Relation to Usual Form of Amplitudes

Claim:

$$\frac{i}{\hbar\kappa^2} \int_M \Sigma_0 \wedge \gamma \wedge \gamma = \sum_n (n\text{-particle BGK amplitude})$$

Dependence on the ASD background is encoded in linearized field eqns (and in Σ_0). Scattering amplitudes usually viewed as living in flat space.

- Expand out background as fluctuations away from flat space - how? (decompose field into Fock basis; amplitudes are coefficients)

Not so simple! The ASD equations are non-linear; background is an honest curved spacetime.

- **Integrability of ASD equations** comes to the rescue

Relation to Usual Form of Amplitudes

Claim:

$$\frac{i}{\hbar\kappa^2} \int_M \Sigma_0 \wedge \gamma \wedge \gamma = \sum_n (\text{n-particle BGK amplitude})$$

Dependence on the ASD background is encoded in linearized field eqns (and in Σ_0). Scattering amplitudes usually viewed as living in flat space.

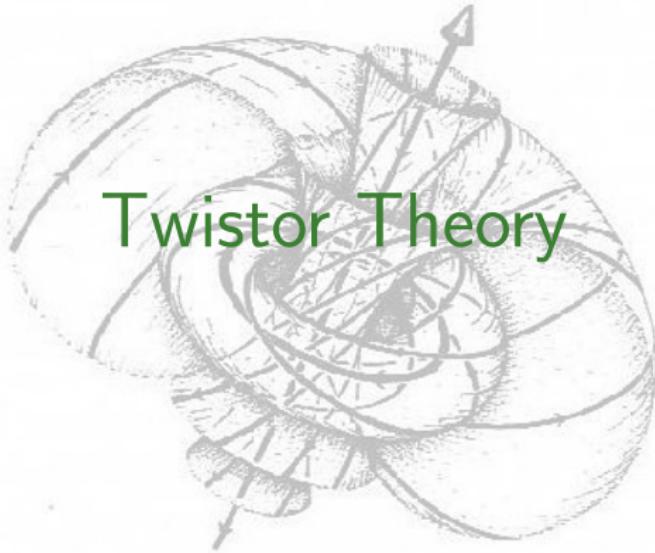
- Expand out background as fluctuations away from flat space - how? (decompose field into Fock basis; amplitudes are coefficients)

Not so simple! The ASD equations are non-linear; background is an honest curved spacetime.

- **Integrability of ASD equations** comes to the rescue

Twistor space is particularly well-suited to exploiting this integrability (integrability in spacetime = holomorphy in twistor space)

Twistor Theory



Linearized gravity in twistor space

According to Penrose transform, **gravitons of helicity $\mp 2 \Leftrightarrow h_2(Z), \tilde{h}_{-6}(Z)$**

Linearized gravity in twistor space

According to Penrose transform, gravitons of helicity $\mp 2 \Leftrightarrow h_2(Z), \tilde{h}_{-6}(Z)$

- In vacuum ($G_{ab} = 0, \Lambda = 0$), gravitational radiation \Leftrightarrow linearized curvature fluctuations with four dotted or undotted spinor indices (Weyl curvature \subset Riemann curvature)

Linearized gravity in twistor space

According to Penrose transform, gravitons of helicity $\mp 2 \Leftrightarrow h_2(Z), \tilde{h}_{-6}(Z)$

- In vacuum ($G_{ab} = 0, \Lambda = 0$), gravitational radiation \Leftrightarrow linearized curvature fluctuations with four dotted or undotted spinor indices (Weyl curvature \subset Riemann curvature)

$$(\delta R)_{\alpha\beta\gamma\delta}(x) = \int_{L_x} [\pi \, d\pi] \wedge \frac{\partial h_2}{\partial \omega^\alpha \partial \omega^\beta \partial \omega^\gamma \partial \omega^\delta} \Big|_{L_x}$$

$$(\delta R)_{\dot{\alpha}\dot{\beta}\dot{\gamma}\dot{\delta}}(x) = \int_{L_x} [\pi \, d\pi] \wedge \pi_{\dot{\alpha}} \pi_{\dot{\beta}} \pi_{\dot{\gamma}} \pi_{\dot{\delta}} \tilde{h}_{-6}(Z) \Big|_{L_x}$$

- Penrose transform of self-dual spin connection is

$$\gamma^{\dot{\alpha}}_{\dot{\beta}}(x) = \int_{L_x} [\pi \, d\pi] \wedge \pi^{\dot{\alpha}} \pi_{\dot{\beta}} B|_{L_x}$$

where $B \in \Omega^{1,1}(\mathbb{PT}', \mathcal{O}(-4))$, rather than $(0,1)$ -form

Linearized gravity in twistor space

According to Penrose transform, gravitons of helicity $\mp 2 \Leftrightarrow h_2(Z), \tilde{h}_{-6}(Z)$

- In vacuum ($G_{ab} = 0, \Lambda = 0$), gravitational radiation \Leftrightarrow linearized curvature fluctuations with four dotted or undotted spinor indices (Weyl curvature \subset Riemann curvature)

$$(\delta R)_{\alpha\beta\gamma\delta}(x) = \int_{L_x} [\pi \, d\pi] \wedge \frac{\partial h_2}{\partial \omega^\alpha \partial \omega^\beta \partial \omega^\gamma \partial \omega^\delta} \Big|_{L_x}$$

$$(\delta R)_{\dot{\alpha}\dot{\beta}\dot{\gamma}\dot{\delta}}(x) = \int_{L_x} [\pi \, d\pi] \wedge \pi_{\dot{\alpha}} \pi_{\dot{\beta}} \pi_{\dot{\gamma}} \pi_{\dot{\delta}} \tilde{h}_{-6}(Z) \Big|_{L_x}$$

- Penrose transform of self-dual spin connection is

$$\gamma^{\dot{\alpha}}_{\dot{\beta}}(x) = \int_{L_x} [\pi \, d\pi] \wedge \pi^{\dot{\alpha}} \pi_{\dot{\beta}} B|_{L_x}$$

where $B \in \Omega^{1,1}(\mathbb{PT}', \mathcal{O}(-4))$, rather than $(0,1)$ -form

- $\epsilon^{\alpha\beta} \partial_\alpha B_\beta = \tilde{h}_{-6}$ ensures $d\gamma^{\dot{\alpha}}_{\dot{\beta}} = (\delta R)^{\dot{\alpha}}_{\dot{\beta}\dot{\gamma}\dot{\delta}} dx^{\gamma\dot{\gamma}} \wedge dx_{\gamma}^{\dot{\delta}}$

The nonlinear graviton I

Linearized gravitons are really infinitesimal deformations of spacetime curvature - what about twistor space?

The nonlinear graviton I

Linearized gravitons are really infinitesimal deformations of spacetime curvature - what about twistor space?

Penrose's Non-Linear Graviton

$$\left\{ \begin{array}{l} \text{Finite deformations of complex} \\ \text{structure } \mathbb{PT}' \leadsto \mathcal{PT} \end{array} \right\} \xleftrightarrow{1:1} \left\{ \begin{array}{l} \text{ASD deformations of} \\ \text{conformal structure} \\ (M, \eta) \leadsto (\mathcal{M}, [g]) \end{array} \right\}$$

The nonlinear graviton I

Linearized gravitons are really infinitesimal deformations of spacetime curvature - what about twistor space?

Penrose's Non-Linear Graviton

$$\left\{ \begin{array}{l} \text{Finite deformations of complex} \\ \text{structure } \mathbb{PT}' \sim \mathcal{PT} \end{array} \right\} \xleftrightarrow{1:1} \left\{ \begin{array}{l} \text{ASD deformations of} \\ \text{conformal structure} \\ (M, \eta) \sim (\mathcal{M}, [g]) \end{array} \right\}$$

- $h_2 \Rightarrow V := \frac{\partial h_2}{\partial \omega^\alpha} \frac{\partial}{\partial \omega_\alpha} \in H^{0,1}(\mathbb{PT}', T_{\mathbb{PT}'})$ generates infinitesimal deformation of complex structure. Deformations are **integrable**.

The nonlinear graviton I

Linearized gravitons are really infinitesimal deformations of spacetime curvature - what about twistor space?

Penrose's Non-Linear Graviton

$$\left\{ \begin{array}{l} \text{Finite deformations of complex} \\ \text{structure } \mathbb{PT}' \leadsto \mathcal{PT} \end{array} \right\} \xleftrightarrow{1:1} \left\{ \begin{array}{l} \text{ASD deformations of} \\ \text{conformal structure} \\ (M, \eta) \leadsto (\mathcal{M}, [g]) \end{array} \right\}$$

- $h_2 \Rightarrow V := \frac{\partial h_2}{\partial \omega^\alpha} \frac{\partial}{\partial \omega_\alpha} \in H^{0,1}(\mathbb{PT}', T_{\mathbb{PT}'})$ generates infinitesimal deformation of complex structure. Deformations are integrable.

Twistor space is a complex manifold iff Nijenhuis tensor vanishes.
Sufficient condition is $(\bar{\partial} + V)^2 = 0$

The nonlinear graviton I

Linearized gravitons are really infinitesimal deformations of spacetime curvature - what about twistor space?

Penrose's Non-Linear Graviton

$$\left\{ \text{Finite deformations of complex structure } \mathbb{PT}' \sim \mathcal{PT} \right\} \xleftrightarrow{1:1} \left\{ \text{ASD deformations of conformal structure } (M, \eta) \sim (\mathcal{M}, [g]) \right\}$$

- $h_2 \Rightarrow V := \frac{\partial h_2}{\partial \omega^\alpha} \frac{\partial}{\partial \omega_\alpha} \in H^{0,1}(\mathbb{PT}', T_{\mathbb{PT}'})$ generates infinitesimal deformation of complex structure. Deformations are integrable.

Twistor space is a complex manifold iff Nijenhuis tensor vanishes.
Sufficient condition is $(\bar{\partial} + V)^2 = 0$

- Unknown what \tilde{h}_{-6} deforms \Rightarrow only get ASD spacetime

BGK amplitudes in twistor space

$$\int_M \Sigma_0 \wedge \gamma \wedge \gamma = \int_{M \times \mathbb{CP}^1 \times \mathbb{CP}^1} d^4x [\pi_n d\pi_n] [\pi_1 d\pi_1] I(B_n, \cdot) \lrcorner \frac{1}{\bar{\partial} + \mathcal{L}_V} B_1 [\pi_n \pi_1]^4$$

BGK amplitudes in twistor space

$$\int_M \Sigma_0 \wedge \gamma \wedge \gamma = \int_{M \times \mathbb{CP}^1 \times \mathbb{CP}^1} d^4x [\pi_n d\pi_n] [\pi_1 d\pi_1] I(B_n, \cdot) \lrcorner \frac{1}{\bar{\partial} + \mathcal{L}_V} B_1 [\pi_n \pi_1]^4$$

- B fields are Penrose transform of each γ

BGK amplitudes in twistor space

$$\int_M \Sigma_0 \wedge \gamma \wedge \gamma = \int_{M \times \mathbb{CP}^1 \times \mathbb{CP}^1} d^4x [\pi_n d\pi_n] [\pi_1 d\pi_1] I(B_n, \cdot) \lrcorner \frac{1}{\bar{\partial} + \mathcal{L}_V} B_1 [\pi_n \pi_1]^4$$

- B fields are Penrose transform of each γ
- ASD background encoded in $\bar{\partial} + \mathcal{L}_V$ ‘propagator’
 - No canonical way to pullback vector field; make gauge choice

$$V = V^\alpha \frac{\partial}{\partial \omega^\alpha} \rightarrow \frac{V^\alpha \xi^{\dot{\alpha}}}{[\pi \xi]} \frac{\partial}{\partial y^{\alpha \dot{\alpha}}} \text{ with } |\xi| = |\eta|$$

BGK amplitudes in twistor space

$$\int_M \Sigma_0 \wedge \gamma \wedge \gamma = \int_{M \times \mathbb{CP}^1 \times \mathbb{CP}^1} d^4x [\pi_n d\pi_n] [\pi_1 d\pi_1] I(B_n, \cdot) \lrcorner \frac{1}{\bar{\partial} + \mathcal{L}_V} B_1 [\pi_n \pi_1]^4$$

- B fields are Penrose transform of each γ
- ASD background encoded in $\bar{\partial} + \mathcal{L}_V$ ‘propagator’
 - No canonical way to pullback vector field; make gauge choice $V = V^\alpha \frac{\partial}{\partial \omega^\alpha} \rightarrow \frac{V^\alpha \xi^{\dot{\alpha}}}{[\pi \xi]} \frac{\partial}{\partial y^{\alpha \dot{\alpha}}}$ with $[\xi] = [n]$
- $I(\cdot, \cdot) := \epsilon^{\alpha\beta} \frac{\partial}{\partial \omega^\alpha} \wedge \frac{\partial}{\partial \omega^\beta}$

BGK amplitudes in twistor space

$$\int_M \Sigma_0 \wedge \gamma \wedge \gamma = \int_{M \times \mathbb{CP}^1 \times \mathbb{CP}^1} d^4x [\pi_n d\pi_n] [\pi_1 d\pi_1] I(B_n, \cdot) \lrcorner \frac{1}{\bar{\partial} + \mathcal{L}_V} B_1 [\pi_n \pi_1]^4$$

Expanding in powers of V gives

$$\sum_{n=3}^{\infty} \int d^4x [\pi_n d\pi_n] I(B_n, \cdot) \lrcorner \left(\frac{1}{\bar{\partial}} \mathcal{L}_{V_{n-1}} \frac{1}{\bar{\partial}} \mathcal{L}_{V_{n-2}} \cdots \frac{1}{\bar{\partial}} \mathcal{L}_{V_3} \frac{1}{\bar{\partial}} \mathcal{L}_{V_2} \frac{1}{\bar{\partial}} B_1 [\pi_n \pi_1]^4 \right)$$

BGK amplitudes in twistor space

$$\int_M \Sigma_0 \wedge \gamma \wedge \gamma = \int_{M \times \mathbb{CP}^1 \times \mathbb{CP}^1} d^4x [\pi_n d\pi_n] [\pi_1 d\pi_1] I(B_n, \cdot) \lrcorner \frac{1}{\bar{\partial} + \mathcal{L}_V} B_1 [\pi_n \pi_1]^4$$

Expanding in powers of V gives

$$\sum_{n=3}^{\infty} \int d^4x [\pi_n d\pi_n] I(B_n, \cdot) \lrcorner \left(\frac{1}{\bar{\partial}} \mathcal{L}_{V_{n-1}} \frac{1}{\bar{\partial}} \mathcal{L}_{V_{n-2}} \cdots \frac{1}{\bar{\partial}} \mathcal{L}_{V_3} \frac{1}{\bar{\partial}} \mathcal{L}_{V_2} \frac{1}{\bar{\partial}} B_1 [\pi_n \pi_1]^4 \right)$$

- Inserting momentum eigenstates gives all BGK amplitudes ($n \geq 3$)

$$\frac{[1n]^8}{[1\ n-1][n-1\ n][n1]} \left\{ \frac{1}{C(n)} \prod_{k=2}^{n-2} \frac{\langle k | p_{k-1} + \cdots + p_1 | n \rangle}{[kn]} + \text{Perms} \right\}$$

BGK amplitudes in twistor space

$$\int_M \Sigma_0 \wedge \gamma \wedge \gamma = \int_{M \times \mathbb{CP}^1 \times \mathbb{CP}^1} d^4x [\pi_n d\pi_n] [\pi_1 d\pi_1] I(B_n, \cdot) \lrcorner \frac{1}{\bar{\partial} + \mathcal{L}_V} B_1 [\pi_n \pi_1]^4$$

Expanding in powers of V gives

$$\sum_{n=3}^{\infty} \int d^4x [\pi_n d\pi_n] I(B_n, \cdot) \lrcorner \left(\frac{1}{\bar{\partial}} \mathcal{L}_{V_{n-1}} \frac{1}{\bar{\partial}} \mathcal{L}_{V_{n-2}} \cdots \frac{1}{\bar{\partial}} \mathcal{L}_{V_3} \frac{1}{\bar{\partial}} \mathcal{L}_{V_2} \frac{1}{\bar{\partial}} B_1 [\pi_n \pi_1]^4 \right)$$

- Inserting momentum eigenstates gives all BGK amplitudes ($n \geq 3$)

$$\frac{[1n]^8}{[1\ n-1][n-1\ n][n1]} \left\{ \frac{1}{C(n)} \prod_{k=2}^{n-2} \frac{\langle k | p_{k-1} + \cdots + p_1 | n \rangle}{[kn]} + \text{Perms} \right\}$$

BGK amplitudes in twistor space

$$\int_M \Sigma_0 \wedge \gamma \wedge \gamma = \int_{M \times \mathbb{CP}^1 \times \mathbb{CP}^1} d^4x [\pi_n d\pi_n] [\pi_1 d\pi_1] I(B_n, \cdot) \lrcorner \frac{1}{\bar{\partial} + \mathcal{L}_V} B_1 [\pi_n \pi_1]^4$$

Expanding in powers of V gives

$$\sum_{n=3}^{\infty} \int d^4x [\pi_n d\pi_n] I(B_n, \cdot) \lrcorner \left(\frac{1}{\bar{\partial}} \mathcal{L}_{V_{n-1}} \frac{1}{\bar{\partial}} \mathcal{L}_{V_{n-2}} \cdots \frac{1}{\bar{\partial}} \mathcal{L}_{V_3} \frac{1}{\bar{\partial}} \mathcal{L}_{V_2} \frac{1}{\bar{\partial}} B_1 [\pi_n \pi_1]^4 \right)$$

- Inserting momentum eigenstates gives all BGK amplitudes ($n \geq 3$)

$$\frac{[1n]^8}{[1\ n-1][n-1\ n][n1]} \left\{ \frac{1}{C(n)} \prod_{k=2}^{n-2} \frac{\langle k| p_{k-1} + \cdots + p_1 |n] }{[kn]} + \text{Perms} \right\}$$

BGK amplitudes in twistor space

$$\int_M \Sigma_0 \wedge \gamma \wedge \gamma = \int_{M \times \mathbb{CP}^1 \times \mathbb{CP}^1} d^4x [\pi_n d\pi_n] [\pi_1 d\pi_1] I(B_n, \cdot) \lrcorner \frac{1}{\bar{\partial} + \mathcal{L}_V} B_1 [\pi_n \pi_1]^4$$

Expanding in powers of V gives

$$\sum_{n=3}^{\infty} \int d^4x [\pi_n d\pi_n] I(B_n, \cdot) \lrcorner \left(\frac{1}{\bar{\partial}} \mathcal{L}_{V_{n-1}} \frac{1}{\bar{\partial}} \mathcal{L}_{V_{n-2}} \cdots \frac{1}{\bar{\partial}} \mathcal{L}_{V_3} \frac{1}{\bar{\partial}} \mathcal{L}_{V_2} \frac{1}{\bar{\partial}} B_1 [\pi_n \pi_1]^4 \right)$$

- Inserting momentum eigenstates gives all BGK amplitudes ($n \geq 3$)

$$\frac{[1n]^8}{[1\ n-1][n-1\ n][n1]} \left\{ \frac{1}{C(n)} \prod_{k=2}^{n-2} \frac{\langle k | p_{k-1} + \cdots + p_1 | n \rangle}{[kn]} + \text{Perms} \right\}$$

BGK amplitudes in twistor space

$$\int_M \Sigma_0 \wedge \gamma \wedge \gamma = \int_{M \times \mathbb{CP}^1 \times \mathbb{CP}^1} d^4x [\pi_n d\pi_n] [\pi_1 d\pi_1] I(B_n, \cdot) \lrcorner \frac{1}{\bar{\partial} + \mathcal{L}_V} B_1 [\pi_n \pi_1]^4$$

Expanding in powers of V gives

$$\sum_{n=3}^{\infty} \int d^4x [\pi_n d\pi_n] I(B_n, \cdot) \lrcorner \left(\frac{1}{\bar{\partial}} \mathcal{L}_{V_{n-1}} \frac{1}{\bar{\partial}} \mathcal{L}_{V_{n-2}} \cdots \frac{1}{\bar{\partial}} \mathcal{L}_{V_3} \frac{1}{\bar{\partial}} \mathcal{L}_{V_2} \frac{1}{\bar{\partial}} B_1 [\pi_n \pi_1]^4 \right)$$

- Inserting momentum eigenstates gives all BGK amplitudes ($n \geq 3$)

$$\frac{[1n]^8}{[1\,n-1][n-1\,n][n1]} \left\{ \frac{1}{C(n)} \prod_{k=2}^{n-2} \frac{\langle k|p_{k-1} + \cdots + p_1|n]}{[kn]} + \text{Perms} \right\}$$

- Derivative of δ -fn support \rightarrow perturbative description of support on deformed twistor lines

Odds and Ends

Twistor Action for MHV Gravity

ASD background \Leftrightarrow Integrable background complex structure

Twistor Action for MHV Gravity

ASD background \Leftrightarrow Integrable background complex structure

$$S = \int_{\mathbb{PT}'} \Omega \wedge B^\alpha \partial_\alpha \left(\bar{\partial} h + \frac{1}{2} \{h, h\} \right)$$

where B and h are no longer $\bar{\partial}$ -closed

- Field equations: vanishing of Nijenhuis tensor

Twistor Action for MHV Gravity

ASD background \Leftrightarrow Integrable background complex structure

$$S = \int_{\mathbb{PT}'} \Omega \wedge B^\alpha \partial_\alpha \left(\bar{\partial} h + \frac{1}{2} \{h, h\} \right)$$

where B and h are no longer $\bar{\partial}$ -closed

- Field equations: vanishing of Nijenhuis tensor
- Propagator links positive and negative helicity gravitons

Twistor Action for MHV Gravity

ASD background \Leftrightarrow Integrable background complex structure

$$S = \int_{\mathbb{PT}'} \Omega \wedge B^\alpha \partial_\alpha \left(\bar{\partial} h + \frac{1}{2} \{h, h\} \right)$$

where B and h are no longer $\bar{\partial}$ -closed

- Field equations: vanishing of Nijenhuis tensor
- Propagator links positive and negative helicity gravitons

The spacetime Plebanski action $\int_M \Sigma \wedge d\Gamma + \int_M \Sigma \wedge \Gamma \wedge \Gamma$ suggests we consider the **twistor action**

$$S = \int_{\mathbb{PT}'} \Omega \wedge B^\alpha \partial_\alpha \left(\bar{\partial} h + \frac{1}{2} \{h, h\} \right) + \int_{M \times \mathbb{CP}^1 \times \mathbb{CP}^1} d^4x [\pi_n d\pi_n] [\pi_1 d\pi_1] I(B_n, \cdot) \lrcorner \frac{1}{\bar{\partial} + \mathcal{L}_V} B_1 [\pi_n \pi_1]^4$$

Twistor strings?

Twistor MHV amplitudes (& action) have straightforward susy generalization ($\mathcal{N} \leq 4$), describing scattering off a 1/2 BPS background.

Twistor strings?

Twistor MHV amplitudes (& action) have straightforward susy generalization ($\mathcal{N} \leq 4$), describing scattering off a 1/2 BPS background.

- In twistor-string theory, csugra showed up through vertex operators V and B representing cohomology classes

$$H^1(\mathbb{PT}', T_{\mathbb{PT}'}) \quad \text{and} \quad H^1(\mathbb{PT}', \Omega_{\text{cl}}^2(-4))$$

Twistor strings?

Twistor MHV amplitudes (& action) have straightforward susy generalization ($\mathcal{N} \leq 4$), describing scattering off a 1/2 BPS background.

- In twistor-string theory, csugra showed up through vertex operators V and B representing cohomology classes

$$H^1(\mathbb{PT}', T_{\mathbb{PT}'}) \quad \text{and} \quad H^1(\mathbb{PT}', \Omega_{\text{cl}}^2(-4))$$

- Our V and B are exactly the same fields, **except** V here has the extra **constraint** $V^\alpha = \partial^\alpha h_2$ while B here has the extra **freedom** $B \sim B + f[\pi d\pi]$

Twistor strings?

Twistor MHV amplitudes (& action) have straightforward susy generalization ($\mathcal{N} \leq 4$), describing scattering off a 1/2 BPS background.

- In twistor-string theory, csugra showed up through vertex operators V and B representing cohomology classes

$$H^1(\mathbb{PT}', T_{\mathbb{PT}'}) \quad \text{and} \quad H^1(\mathbb{PT}', \Omega_{\text{cl}}^2(-4))$$

- Our V and B are exactly the same fields, except V here has the extra constraint $V^\alpha = \partial^\alpha h_2$ while B here has the extra freedom $B \sim B + f[\pi d\pi]$

Perhaps a first step...

In Yang-Mills, P-T amplitudes generated by $\int d^{4|8}x \log \det (\bar{\partial} + \mathcal{A})$

Twistor strings?

Twistor MHV amplitudes (& action) have straightforward susy generalization ($\mathcal{N} \leq 4$), describing scattering off a 1/2 BPS background.

- In twistor-string theory, csugra showed up through vertex operators V and B representing cohomology classes

$$H^1(\mathbb{PT}', T_{\mathbb{PT}'}) \quad \text{and} \quad H^1(\mathbb{PT}', \Omega_{\text{cl}}^2(-4))$$

- Our V and B are exactly the same fields, except V here has the extra constraint $V^\alpha = \partial^\alpha h_2$ while B here has the extra freedom $B \sim B + f[\pi \, d\pi]$

Perhaps a first step...

In Yang-Mills, **all** tree amplitudes generated by $\int d\mu \log \det (\bar{\partial} + \mathcal{A})$

Twistor strings?

Twistor MHV amplitudes (& action) have straightforward susy generalization ($\mathcal{N} \leq 4$), describing scattering off a 1/2 BPS background.

- In twistor-string theory, csugra showed up through vertex operators V and B representing cohomology classes

$$H^1(\mathbb{PT}', T_{\mathbb{PT}'}) \quad \text{and} \quad H^1(\mathbb{PT}', \Omega_{\text{cl}}^2(-4))$$

- Our V and B are exactly the same fields, except V here has the extra constraint $V^\alpha = \partial^\alpha h_2$ while B here has the extra freedom $B \sim B + f[\pi \, d\pi]$

Perhaps a first step...

In Yang-Mills, all tree amplitudes generated by $\int d\mu \log \det (\bar{\partial} + \mathcal{A})$

- Can we find a 'connected prescription' for Einstein gravity?