Shlomo S. Razamat (Technion)

IR dualities

across dimensions

14/11/2022

31st Nordic Network Meeting on Strings, Fields and Branes

NBI, Copenhagen

Based roughly on $\underline{2203.06880}$ with E. Sabag, O. Sela, and G. Zafrir

RG Flows

* Our discussion will be supersymmetric, at least $\mathcal{N}=1$ in $4 D$

Outline:

A: Dualities
B: Dualities across dimensions
$\mathrm{C}: 4 \mathrm{D}$ dualities from geometry
D: Dualities from dualities
E: 4D flows from 6D flows
F: 6D Dualities
G: Deconstruction and fractons

A. Dualities

Eg: Dualities

* IR Duality

UV $\langle=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-$

Seiberg 94

$$
N_{f}<3 N, N_{f}<3 \widetilde{N}
$$

$\mathrm{CFT}_{3} \times$

* Strongly coupled SCFT
* UV Duality

$$
\widetilde{D}=6 \quad \Delta D=1
$$

Strongly coupled
$C F T_{1} \times$ SCFT

$$
\mathcal{N}=(1,0) \quad\left(D_{N+3}, D_{N+3}\right)
$$

Minimal Conformal Matter

Hayashi, Kim, Lee, Taki, Yagi 15

The power of counting: no SUSY

* Anomalies and Symmetries
* Symmetries are tricky: (assume no spontaneous breaking)
* $G_{I R}$ can be bigger than $G_{U V}$: emergence of symmetry
* $G_{I R}$ can be smaller than $G_{U V}$: act not faithfully
* Anomalies are robust: `t Hooft Anomaly matching
* Eg: Weakly coupled Lagrangians count massless Weyl fermions weighed with charges/representations
* Higher form/Higher group / Categorical generalization

The power of counting: SUSY I

* Superconformal algebra

$$
\{Q, \widetilde{Q}\} \sim P, \quad\{Q, S\} \sim \Delta+J+R
$$

* Conformal anomalies and R symmetry

$$
\left\langle T^{\mu}{ }_{\mu}\right\rangle \sim c W^{2}-a E_{4} \quad a=\frac{9 \operatorname{Tr} R^{3}-3 \operatorname{Tr} R}{32}, c=\frac{9 \operatorname{Tr} R^{3}-5 \operatorname{Tr} R}{32}
$$

* For this to be true R has to be the superconformal R-symmetry: a-maximization
$a\left(\lambda_{i}\right)=\frac{9}{32} \operatorname{Tr}\left(R+\lambda_{i} U(1)_{i}\right)^{3}-\frac{3}{32} \operatorname{Tr}\left(R+\lambda_{i} U(1)_{i}\right)$
a is maximized

The power of counting: SUSY II

* Power of holomorphy: non-renormalization theorems
* And various exact statements
* Eg marginal operators can be only either exactly marginal or marginally irrelevant
*Theories labeled by continuous parameters: conformal manifold \mathscr{M}_{c}
* Dimension of the conformal manifold also a counting problem

$$
\mathscr{M}_{c}=\left\{\lambda_{i}\right\} / G_{\mathbb{C}}
$$

The power of counting: SUSY III

Kinney, Maldacena, Minwalla, Raju 05; Romelsberger 05

* Counting local operators: Witten indices

$$
\mathscr{F}\left(q, p, u_{i}\right)=\operatorname{Tr}_{\mathscr{H}}\left[(-1)^{F} q^{\frac{1}{2} R+J_{1}-J_{2}} p^{\frac{1}{2} R+J_{1}+J_{2}} \prod_{i=1}^{\operatorname{Rank}_{G_{F}}} u_{i}^{Q_{i}}\right] e^{-\beta\left\{Q, Q^{+}\right\}}
$$

* Invariant of RG flow and continuous deformations
* Easy window to non-perturbative IR physics: can easily read off the spectrum of supersymmetric relevant and exactly marginal deformations, and global symmetry

Marginals-Currents $=\# q p \in \mathscr{I}$
Eg often determines the IR symmetry group ()

* Various countings give us the skeleton of the (IR) possibly strongly coupled theories

We then are able to deduce some properties (such as symmetries)

* and Conjecture more interesting dynamics such as IR dualities

Consistency checks

* Once a duality / emergence of symmetry / etc is conjectured
* one can perform a plethora of consistency checks
* RG flows/Moduli spaces of vacua (often included in counting)
* Obtain the same thing in two different way following the same logic

Eg: Conformal duals from counting

- Given an SCFT T_{1} with a and c central charges
- $a=\frac{9 \operatorname{Tr} R^{3}-3 \operatorname{Tr} R}{32}, c=\frac{9 \operatorname{Tr} R^{3}-5 \operatorname{Tr} R}{32}$

* Assume conformal gauge theory dual on $\mathscr{M}_{c^{\prime}} T_{2}$
* $a=a_{\nu} \operatorname{dim} \mathscr{G}+a_{\chi} \operatorname{dim} \mathscr{R}, c=c_{\nu} \operatorname{dim} \mathscr{G}+c_{\chi} \operatorname{dim} \mathscr{R}$
- Seek for conformal gauge theories with free $\operatorname{dim} \mathscr{R}$ chiral fields and $\operatorname{dim} \mathscr{G}$ vector fields
* Out of the finite set of such theories seek for models with same \mathscr{M}_{c} invariants: e.g. symmetry on $\mathscr{M}_{c^{\prime}}$ `t Hooft anomalies, indices etc
* If such models exist they are putative conformal duals

Example: Conformal dual of an exceptional SQCD

- $\operatorname{dim} \mathscr{M}_{c}=3, G_{F}=S U(2), \operatorname{Tr} R S U(2)^{2}=-\frac{14}{3}$
* Relevant operators $1+1+\mathbf{5}$ of $\operatorname{SU}(2)$
* $14=3+3+8$

B. Dualities across dimensions

* Can consider a higher dimensional theory "deformed" by compact geometry
* Flowing to a lower dimensional QFT in the IR
* The IR QFT might have a different, dual, description starting from a weakly coupled QFT in a lower dimension

Independent descriptions

* We assume $Q F T_{1}$ and $Q F T_{2}$ have independent descriptions
* These can be Lagrangian or Stringy, but independent
* (Otherwise the duality has no content)
* Eg without this the lower dimensional theories are sometimes called
* Non-Lagrangian CFTs:
* only defined through compactification

Examples

* Ex 1: $Q F T_{1}=\left(D_{4}, D_{4}\right)$ min. conf. matt.

* Ex 2: $Q F T_{1}=\left(D_{5}, D_{5}\right)$ min. conf. matt.

Nazzal, Nedelin, SR 2022

Examples

Interlude: "Caricature" of Punctures and 5d

* Compactifying on a surface with punctures we can elongate the region near the puncture into a long cylinder with a boundary
* On a cylinder, with suitable holonomies, get sometimes effective description as a 5d gauge theory
* Natural boundary conditions freezing the 5d gauge group and makes it 4d global symmetry (maximal puncture)
* The matter fields with Neumann boundary condition give a natural set of 4 d operators charged under this symmetry
* Different choices of bc can lead to a variety of punctures (colors)

$A_{N-1}(2,0)$ 5d EFT:

$$
\mathscr{G}_{5 d}^{\text {gauge }}=S U(N), \oplus \text { Adj. }
$$

Moment maps: 1 Adj χ-op.
E-string 5d EFT: Ganor, Morrison, Seiberg 1996

$$
\mathscr{G}_{5 d}^{\text {gauge }}=S U(2), N_{f}=8
$$

"Moment maps": $8 \square \chi$-op.

Interlude: Gluing punctures

* Gluing punctures we gauge the puncture $G_{5 d}^{\text {gauge }}$ symmetry, add charged fields, and turn on a superpotential
* There are choices how to glue related to choices of identifying the symmetries of the glued theories
* More general gluings:

$$
W=\sum_{i} M_{i} M_{i}^{\prime}+\sum_{j} \Phi_{j} \cdot\left(M_{j}-M_{j}^{\prime}\right)
$$

Derivation from counting: E-string $\left(\left(D_{4}, D_{4}\right)\right)$

- Take $6 d S C F T_{U V}$ to be rank 1 E-string and \mathscr{C}_{g} genus $g>1$ surface ($\mathscr{F}=0)$
- Anomaly in 4d:

$$
I_{6}=\int_{\mathscr{C}_{8}} I_{8} \rightarrow a=\frac{75}{16}(g-1), \quad c=\frac{43}{8}(g-1)
$$

* Assume in 4d described by Conformal Gauge Theory
* $\rightarrow \operatorname{dim} \mathscr{G}=16(g-1), \quad \operatorname{dim} \mathscr{R}=81(g-1), \quad 16=8+8$
* Fits a circular $\mathcal{N}=1$ quiver with $\mathscr{G}=S U(3)^{2 g-2}$ E-string on:

Basic evidence for the conjecture

* 6d: Symmetry preserved during the flow is E_{8}
* $\operatorname{dim} \mathscr{M}_{\text {conf. }}=(3 g-3)+(g-1)$ 248, $\quad G_{F}=\varnothing, \quad \operatorname{Tr} R E_{8}^{2}=-(g-1)$
* 4d: The above is indeed the conformal manifold of the quiver theory: Superpotentials from Baryons and triangles: $\quad \mathbf{2 4 8} \rightarrow \mathbf{8 0}+\overline{\mathbf{8 4}}+\mathbf{8 4}$
* Cartan of $S U(9) \rightarrow E_{8}, \quad \operatorname{Tr} R S U(9)^{2}=-(g-1)$
* Superconformal index matches expectations

More duals: $g=2$

* These then all are conjectured to be dual to each other: novel looking conformal duality
* Looking at the duals T_{2} and T_{3} there is a hint of "pairs of pants" decomposition $(3 \times 3=\overline{3}+6)$
* The dual frames come from two different splittings of the surface into pairs of pants

C. 4 d dualities from geometry

* Duality across dimensions might "explain" in-dimension dualities through a geometric decomposition

$\oplus=$
Gluing surfaces and Summing the fluxes

$$
\otimes=
$$

Example 1

* Ex 1: $\left(D_{4}, D_{4}\right)$ min. conf. matt. on $\mathscr{C}_{g=2}^{2}$

Example 2

* Ex 2: $\left(D_{4}, D_{4}\right)$ min. conf. matt. on $\mathscr{C}_{g=1, s=2}^{2}$ and flux $\left(G_{6 d}=E_{8}\right.$, flux for Cartan $)$

* Seiberg duality Seiberg 94

Kim, SR, Vafa, Zafrir 17

4 d dualities from 5 d dualities

Examples of geometrically mysterious 4 d dualities

* Ex1: Kutasov-Schwimmer/Brodie/Kutasov-Lin dualities (ADE classification)

D. Dualities from dualities

* Duality in higher dimensions might reduce to dualities in lower dimensions
* When reducing dualities proper care needs to be taken
* Eg: 4d to 3d generally leads to monopole superpotentials in 3d Aharony, SR, Seiberg, Willett 13
Niarchos 12; Gadde, Yan 11; Spiridonov, Vartanov 11

* Ex:

Seiberg $94 \quad 4 d: \quad U \operatorname{Sp}(2 N)$ with $2 N_{f} \leftrightarrow U \operatorname{Sp}\left(2 N_{f}-2 N-4\right)$ with $2 N_{f}+W$

Aharony $97 \quad 3 d: \quad U S p(2 N)$ with $2 N_{f} \leftrightarrow U \operatorname{Sp}\left(2 N_{f}-2 N-2\right)$ with $2 N_{f}+\widetilde{W}$

Do all 3d dualities have 4d uplift?

* Eg: 3d $\mathcal{N}=4$ Mirror symmetry
* R-symmetry in $3 \mathrm{~d} S U(2)_{H} \times S U(2)_{C}$ exchanged under mirror duality
* $\mathcal{N}=2$ R-symmetry in 4 d only $S U(2) \times U(1)$
* Seems problematic to uplift insisting on supersymmetry
* EX: $\mathcal{N}=4$ SYM S-duality walls

The 4 d uplift of $T[S U(N)]$

* One can uplift this model to 4d giving up supersymmetry to $\mathcal{N}=1$

* The global symmetry is $U S p(2 N) \times U S p(2 N)$
* One copy of $\operatorname{USp}(2 N)$ emerges in the IR
* The theory is self-dual exchanging the two symmetry factors

Rains 14

* Upon reduction (and deformation) to 3d one gets $T[S U(N)]$
* (* This model appears in compactifications of rank N E-string)

Hwang, Pasquetti, Sacchi 20
Hwang, SR, Sabag, Sacchi 21

* (** Can be thought of as a domain wall theory in 5d)

* Generalization of Seiberg duality

Rank N E-string on $\mathscr{C}_{g=1, s=2}^{2}$ and flux
$\left(G_{6 d}=E_{8} \times S U(2)\right.$, flux for Cartan $)$

Bottini, Hwang, Pasquetti, Sacchi 21-22

E. 6 d flows to 4 d flows

F. 6d dualities

* Can start from different 6d SCFTs, $Q F T_{A}$ and $Q F T_{B}$
* deform the two theories by different geometries, \mathscr{C}_{A}^{2} and \mathscr{C}_{B}^{2}
* and flow to the same SCFT in 4d

An example

* $Q F T_{A}: 6 \mathrm{M} 5$ branes
* $Q F T_{B}:\left(D_{4}, D_{4}\right)$ min. conf. matt. (Aka rank one E-string)

The E_{8} Minahan-Nemeschansky $\mathcal{N}=2$ SCFT in 4d

Additional Example

- $Q F T_{A}$: minimal $S U(3)$ SCFT in 6d (pure $S U(3)+$ tensor)
* $Q F T_{B}:\left(D_{4}, D_{4}\right)$ min. conf. matt. (Aka rank one E-string)

$$
\operatorname{dim} \mathscr{M}_{c}=\left(3 g_{B}-3\right)+248\left(g_{B}-1\right)+\left(3 g_{A}-3+s_{A}\right)
$$

Explanation of $6 d$ dualities?

$\mathrm{G}: \mathscr{D}=6$ theories from $\mathscr{D}<6$

* $A_{N-1}(2,0) \mathscr{D}=6$ SCFT compactified on a torus with k minimal punctures is across dimensions dual to a circular quiver

Gaiotto 09

* Conjecture (deconstruction): Take a double scaling limit if large number of punctures and close them. Closing punctures is obtained by giving VEVs to certain operators. One then obtains the full $\mathscr{D}=6$ SCFT on a finite size torus.

Arkani-Hamed, Cohen, Kaplan, Karch, Motl 03

More $\mathscr{D}=6$ theories from $\mathscr{D}<6$

* Consider an $(1,0) \mathscr{D}=6$ SCFT compactified on a torus with k "minimal" punctures and find its across dimensions dual
* Take a double scaling limit of large number of punctures and close them. Does one then obtains the full $\mathscr{D}=6$ SCFT on a finite size torus?
$\left(A_{k-1}, A_{k-1}\right)$ c.matter

$\left(D_{N+3}, D_{N+3}\right)$ min c.matter

Modern view of the Quivers

4d Quiver theory
$6 \mathrm{~d}(1,0)$ SCFT on punctured torus

* One can engineer the 4 d Quivers by taking a 6 d SCFT in presence of defects localised on a torus (and extended in 4 d). The quivers are an IR limit of this configuration.
* The different couplings correspond eg to positions of the defects (see the duality statements before). This is very analogous to the lattice models being effective descriptions of QED with "defects".

Modern view on Deconstruction

$6 \mathrm{~d}(1,0)$ SCFT on punctured torus in IR
Vevs to Baryons

Large number of defects

* The Higgs branch deconstruction corresponds to double scaling limit removing the punctures while taking the number of punctures to ∞
* This is again very analogous to the continuum limit of cond-mat lattices.

Sub-system symmetries

Global symmetry:

$$
G=\frac{U(1)_{\alpha}^{L_{2}} \times U(1)_{\beta}^{L_{1}} \times U(1)^{G C D\left(L_{1}, L_{2}\right)}}{U(1)}
$$

This is fixed by anomaly considerations
Fields at different sites are charged under different symmetries

The global symmetry (except for two $\mathrm{U}(1) \mathrm{s})$ is a subsystem symmetry

$$
[\mathscr{A}]=(0,1,1),[\mathscr{B}]=(1,-1,0),[\mathscr{C}]=(-1,0,-1)
$$

Geometric view of the Coulomb branch: Fractons

Vevs to winding operators

Large number of defects
$6 \mathrm{~d}(1,0)$ SCFT on punctured torus in IR

* Is there a nice geometric interpretation of this procedure
* We need to retain all the symmetries associated to the punctures
* Such setups are analogous to fractons: sub-system symmetry

Intricate web of relations between dimensions

Outlook

* Do all 6d flows to lower d have lower d duals ?
* Gauging emergent symmetries
* Do all dualities have geometric origin in $\mathrm{d}<6$?
* Do all dualities have string / M-theory origin?
* What is the structure of the space of flows?
* Are all SCFTs in $\mathrm{d}<5$ Lagrangian?
* Do all SCFTs in d>4 have a useful field theoretic description (maybe using a lattice)

Thank You!!

