Operator Growth and Complexity in Krylov space

(What We Talk About When We Talk About “Complexity”)

Pawet Caputa
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 [ntroduction/Motivation

 Krylov basis, operator growth and “Complexity” of operators and states

« Examples

e (Conclusions/Questions

Based on:;

“Quantum chaos and the complexity of spread of states” with V. Balasubramanian, J.M. Magan, Q.
Wu, Phys. Rev. D. 106 (2022) 4, 046007

“Geometry of Krylov Complexity” with J.M. Magan, D. Patramanis Phys. Rev. Res. 4, 013041

w.i.p with D. Patramanis and Sinong Liu.




General Problem

Unitary evolution of operators and states (QM or QFT):

8;0(t) = i[H, O(t)] iy [U(t)) = H [W(1))

O(t) = et O(0)e ! T(t)) = e [T(0))

Generically, a “simple” operator O(0) “grows” and becomes “complex”
(in operator space)

Similarly, a “simple” reference quantum state |¥(0)) “spreads” and becomes
“complex” (in Hilbert space)

How to quantify this “Complexity”?




Motivation/Intuition:

Ot) = et O(0)e "t = O(0) + it[H, O(0)] + (Z;)Q (H, [H,0(0)] + ...

E.Q.
H=> (Z+Zis1+ B Xi + B. Z;) O(0) = X, .
2
O(t) = X1 —2t(Y7 - Zs + B, Y1)
6
—2t%(B,Y,-Ys — ByB,Z1 — ByZy - Zy + 2B, X, - Zo + B2X | + X1 - Z3)
13 O(t =0)
3 (e, ) [5.Datta talk]

Common lore: the more “chaotic” H, the faster the operator grows.

How to quantify this: A universal definition of the operator size/complexity?



Motivation: Operator Growth and Holography (BH & QChaos)

1. Butterfly effect
@) = 7 e O(x)e T (o))
2. Growth of “Precursors”: W(t) = U (t)WU ()

3. Goals: Universal/working definition of the “Operator
Size”? Operator Complexity? Quantum Chaos?

Partial answers” from Out-of-Time Ordered Correlators:

WHVWE)V)s
WHW()s(VV)g

“Maximal chaos” (OTOC) for Einstein BH dual in the bulk.

CP(t) =

Related:
Many-body QChaos”?, Thermalisation (or lack thereof)

“Central Dogma”: Black Hole = Strongly Interacting Qubits

[Shenker,Stanford’13]
[Roberts,Stanford’14]
[+ Susskind]

I’ ty, ~ PBlogc

[Maldacena,Shenker,Stanford’15]



Motivation: Complexity in Holography? [Hartman&Maldacena *13] (2d CFT)

Time-evolved Thermofield-double state
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BH (ERB) continues to grow with t but entanglement entropy saturates (“not enough”)
What is the “CFT dual” of this (ERB) growth? “Complexity" of the TFD state”? [Susskind,’14]

Is there some useful universal notion of complexity (number)? Unexplored in QFT...



Attempts and Hopes for “Complexity”

Growth of the ERB,

| _ late time physics of BH,
States (Formation,Evolution): singularity?

g

Geometric Approaches (“Nielsen”)

AdS/TN (Path Integral Complexity)

“Distance measures” (Inf. metric)

?
Operators (Growth,Chaos) o
AN
. . N oA
Operator Size/Complexity? ,{@’%%Am&
NNV VALY
“Operator Size” in SYK p oo

OTOC Near (behind?)
horizon of BH....

Goal: Better understanding Hpuir == Hodr




Universal framework for “Complexity”? [Balasubramanian, PC, Magan, Wu "22]

1200 a1 1a2

Today: discuss a notion(s) of “complexity” based on the so-called Krylov basis
that can be universally defined (and computed) in systems from QM to QFT

and show some recent results for both, operators and states.

References (Operator Growth):

[Qi, Streicher 18] [Roberts,Stanford,Streicher ’18]

[Parker, Cao, Avdoshkin, Scaffidi, Altman ’19] [Barbon, Rabinovici, Shir, Sinha ’19] [Dymarsky, Gorsky '19]
[Rabinovici, Sanchez-Garrido, Shir, Sonner ’20] [Magan, Simon’20] [Jian, Swingle, Xian ’21]

[Kar, Lamprou, Rozali, Sully '21] [Dymarsky, Smolkin ’21] [Rabinovici, Sanchez-Garrido, Shir, Sonner ’21°22]...



Basic ldea

Given

U(t)) = e " |0(0)) O(t) = e O(0)e M = ¢

More generally we can think about quantum circuits (circuit H and circuit t)

We can expand them in a certain basis (Krylov basis):

() = e [Wo) = >~ pn(t) [Kn) O(t)) = e |Og) = én
Unitarity: Probability distribution
Pn(t) = |on(t)]’ D o) =1

Use this probability to characterise the evolution/growth and “complexity”



Krylov Basis [Recursion Method: Viswanath,Muller *63]

Unitary evolution/Q-circuit

w(o) = gy = 3 T

Goal: Given states

‘\Ifn> — {|\I/0> ,H |\I/0> g sevy Hn |\IJO> ) }
construct an orthonormal basis |K,,) recursively (Lanczos algorithm, G-S):
[Ant1) = (H — an)|[Kn) — bn|Kn-1), |Kn) = bT_Ll‘An>

with “Lanczos coefficients”:

an = (K| H|K,), by = (A, |A,)Y?

Such that bg = 0 and |Ky) = |¥y)



[Recursion Method: Viswanath,Muller ’63]

Krylov Basis detalls

Ant1) = (H —ap)|Ky) — by | Kp—1), K,) = bgl‘An>

Start from normalized |Kp) = o)

n=0

Ay =(H - ao) | Ko) K1) = by ' (H — ao) | Ko)
0 = (Ko [K1) = by ((Ko| H |Ko) — ao) ag = (Ko| H | Ko)
1 = (K1|K1) = b7 % (A1]Ay) by = (Ay|Ap)'?
n=1
[Az) = (H —a1) |Ky) — by |Ko) [Ky) = by ' |Ag)
0= (K1|K>) = by [(K1|H|K1) — ar) — bi (K1 | Ko)] a; = (K1|H|K1)

0= (Ko|K2) = (Ko|H|K1) — b1 = (Ko|(H —ao)|K1) — b1
= b1 (K1|K1) — b1 =0

1 = (Ks|Ks) = by 2(As] As) by = (Az|As)'/?



Krylov Basis

[Recursion Method: Viswanath,Muller ’63]

In the Krylov basis, the Hamiltonian becomes tri-diagonal

(ao b1 0 0 \
bl ap b2 0

H’Kn> — an’K’n> T bn+1|Kn-|-1> + bn‘Kn—1> <Km| H |Kn> - 8 bO2 Z2 ;

\ P b )

“Hessenberg form”

Expanding our state in the Krylov basis

T (1)) = e~ W) Z% K,) S e =3 pa =1

By construction, we have a Schrddinger equation for the coefficients (amplitudes)

10 [W(t)) = > i0pn(t) | Kn)

n

10, |U(t)) = Z bn () = [an®n(t) + bndn_1(t) + bns1dni1(t)] | Ky)

n

10t Pn (1) = Andn(t) + bndn_1(t) + bpi1Pna1(t) Pn(0) = 0n 0




| anczos coef. from return amD”tUde [Recursion Method: Viswanath,Muller ’63]
| | [Balasubramanian, PC, Magan, Wu ’22]

Lanczos coeft. are encoded in the "return amplitude” (auto-correlator, Loschmidt amp.)

S(t) = (U(t)|2(0)) = (Lole™" o) = 5(1)

Moments

dr no
o = =S| = (WO e (0)| = (Kol ()" |Ko)

t=0

Knowing moments allows to find Lanczos coefficients (algorithm)

e.g. (Kol (iH)|Ko) = iag (Kol (iH)" |Ko) = —ag — b}

(Comment) Inverse relations:

. 9 2 > > >
ag = —il1, b] = pj — o & e T\

Interesting for modular H: entanglement, capacity of ent., ... |
Physics of Lanczos coeff?
[Balasubramanian, Magan, Wu ’22]



[Recursion Method: Viswanath,Muller ’63]
[Parker, Cao, Avdoshkin, Scaffidi, Altman ’19]

Operator Growth in the Krylov Basis

Heisenberg evolution
2:0(t) = i[H,O(t)] O(t) = ¢t O(0) ¢~ iH!
Formally, we can write the operator as

~ ~

O(t) — i (Zt)'n @n @0 = O, O, = [H, O], Oy = [H, [H, OH,

n

Liouvillian (super)operator

L=[H, ], Ot =e*0o 0, = LO.

Given {O,L0,L?0,...} weneed a basis (GNS) [0) L]|O) = |[H,O))

We must pick an inner product (freedom):

B
(AIB)f = / g(N) (M ATe™ B AN (A)p= S Te (e P1A), 7 =Tr (e M)

8
g(A) =0, g(B—A)=g(N), %/O dAg(A) = 1.



[Recursion Method: Viswanath,Muller ’63]
[Parker, Cao, Avdoshkin, Scaffidi, Altman ’19]

Operator Growth in the Krylov basis

The most common: Wightman

\;

(A|B) = <6HB/2AT6 Hﬁ/2B>B g A) =5\ —3/2) H, Ha

Then we follow the Lanczos algorithm

O0) =10(0)) =10) by =0

Most of the inner products will involve Tr() so we don’t need a,, = 0

O(t)) = e10) = Y i"pn(8)|Oy)

n

Schrédinger equation:

atSpn(t) — bn%"n—l(t) - bn+190n+1(t) gpn(O) — 5n,0

Lanczos coefficients are encoded in the return amplitude

S(t) = (0]O(1)) = (Oole’“"|Op) = Zrnw\m )26 (5 710) B (5 +it)



Krylov Basis Summary

States

T (1)) = e [Wy) Zcbn

S Ioa®P =Y pa=1

Zat¢n (t) — an¢n (t) + bn§bn—1(t) + bn—l—l ¢n—|—1(t)

S(t) = (T(1)[(0)) = (Tole"™*[To) = 5 (¢)

Operators

O(t)) = e“10) = Y i"pn(t)|Oy)

n

S lenlP =3 pa =1

atgpn (t) — bngpn—l(t) — bn—|—190n—|—1(t)

S(t) = (0(0)|O(t)) = (Oole™"|O0) = wol(t)

Connections:

E.g. Wightman

B(t)) = pi *OL(t)p5 " s)



Questions?




Kry|ov/8pread ComDIexF[y [Parker, Cao, Avdoshkin, Scaffidi, Alitman ’19]

[Balasubramanian, PC, Magan, Wu ’22]

The physics of the growth/evolution <=> motion of a particle on a chain

b1 b2 b3 by,

O—— OO O > len(®)* =1

¥0o P1 ¥©2 ¥3

The further in the chain the particle is, the more “complex” state in the Krylov
basis needs to be employed (to represent the state or the operator)

A natural (working) definition of “complexity” as an average position on the chain:
Cy(t) =) nlpn(t) Ko =) nlen(t)
n n

Evolution can be also characterised with other Ql/Probability tools:

K-entropy Sk =—» pnlogp, K-variance, K-capacity, Cx = e %

[Barbon, Rabinovici, Shir, Sinha ’19] [PC, Datta ’21] [Patramanis ’21]. ....



Qomment [Balasubramanian, PC, Magan, Wu ’22]

Starting from the state:  |[¢(t)) = e | (0))

Complexity = “Spread in Hilbert space”

Take a basis: B={|B,):n=0,1,2,---} and a “cost function” (a family, ¢, = n)

Cp(t) = ch|<¢(t)‘3n>‘2 = chplg(n,t)

n n

C'(t) = min Ci(t) minimum (finite t) for the
B Krylov basis!

Intuition: For discrete time evolution, assume n=N-1 vectors equal
to the Krylov basis. Then in the next step:

[Wn) = o |Kn) +pylx))



Ex.1 g-SYK and “Universal Operator Growth Hypothesis” [Parker, Cao, Avdoshkin,
' ' o Scaffidi, Altman ’19]

[Roberts,Stanford,
: Streicher ’18]
HéqS?K = i9/? Z ]il...iq}/ilyizﬂ-yiq O = \/§fy1

1Sl1<12<“‘<quN

At large q this growth is represented by return amplitude (low T, 7 ~ 2/q )

5(t) = (O(1)|0(0)) ~ —— e

~ e
cosh” (”—t)

Lanczos coefficients and amplitudes (an=0)

n/mnt :iig
7T I'(n+n) tanh (7) 047 ‘=20
bn — _ 1 t — S t=25
B\/n(n+n ) Spn( ) \/ TL'F(??) COShn(%t) - t=3.0
NI
0.0 ——

T T T T I LI II T T T
0.5 1 ) 10 50 100 500

t ; '
Ko = nsinh? (%) ~ Ze%t



Ex.1 g-SYK and “Universal Operator Growth Hypothesis” [Parker et al. *19]

Hypothesis: “Maximal growth of Lanczos coefficients”

b, < an+ O(1) o

S 151

10

Claim: Saturated for “maximally chaotic” systems (OTOC)
Saturation <=> exponential growth of Krylov Complexity

b, = an + O(1) => Ko ~ e A =2a



' ' Barbon, Rabinovici, Shir, Sinha ’19
Ex.2 Extensive studies of operator growth [Barbon, Rabinovici, Shir, Sinha '19]

[Rabinovici, Sanchez-Garrido, Shir, Sonner ’21°22]
Continuum limit: r=cen, @,t)=qpyt), v(r)=2eb, = 2eb(en)
1
Bupl, 1) + v(@)dpipla, 1) + S’ (2)p(x, 1) = 0 (cont. eq for p = |o|*)

Numerics (Operator growth in XXZ chain + Integrability breaking terms, RMT)

n Lanczos  wavefunction | K-complexity = time scales
. coefficients ; ;
Linear growth .~ Exponential growth
inn in time f
b, ~ an : | 0<t<lo
l<n<S§ " [ T g5
Plateau, | ~ Linear growth in
constantinn [ T time
n>S | t>log$
b, ~ AS e
Descent
A
n~e® \ o




[PC, Magan, Patramanis '21]
Ex.3 Symmetry approach: e.qg. SL(2,R) [Balasubramanian, PC, Magan, Wu *22]

Take the SL(2,R) algebra

Lo, Ly1] = FL4q, L1, L_1] = 2Ly

And the representation (basis)
LO h7n> — (h+n) ‘h7n>7
o) — \/ Ty L) = DR bt 1),
n!T'(2h + n)
Li|h,n) = /n(2h +n — 1) |h,n — 1),

Consider a class of models/states where the (state/operator) evolution in the
Krylov space can be represented by

H=~Ly+a(L_1+ L) |K,) = |h,n)

Then we can immediately read-off the Lanczos coefficients

an =y(n+h) by, = ar/n(2h +n — 1)

Related: Toda system, Orthogonal polynomials [Dymarsky, Gorsky *19] [Muck, Yang *22]



Ex.3 Symmetry approach: SL(2.R) [PC, J.M.Magan, D.Patramanis '21]
J S ‘ ' [Balasubramanian, PC, Magan, Wu ’22]

The state evolution can be represented as a generalised coherent state (“driven CFT")
U(1) = e ) = e PhocCh |y = 37 (1) [ K

These “amplitudes” solve the Schrddinger equation with SL(2,R) Lanczos coeft.

We can also derive a general result for complexity for this symmetry setup

- 2h 2
Co(t) = ann — P sinh? (Ozt\/l — b)
n=0

%

Exponential growth for: v < 2«
Oscillating: v > 2«

Quadratic for: v =2a (an ~ 2an, b, ~ an)

Complexity and Variation of Ly :

Cu(t) = (W ()| Lo[W(t)) — (¥(0)|Lo|¥(0))



Application to SYK(~2d CFT) [PC, J.M.Magan, D.Patramanis ’21]

T'(y + n) tanh" (%) T
n(l) = bn — 5 — 1
o) \/ n!l'(n) cosh” (%) 5\/n(77+” )
Displacement operator and generalised coherent states [Perelomov’72]
DE) =t e m=DE)  E=fee? 2 =tanh(G)e”

(2h +n) tanh™(p/2)
h znqﬁ k, A
= Lo [ e
“Trajectory in Phase Space”: p = 2at, ¢ =1/2 a=m/p

O(t)) = e+ 0) L=a(Ll_1+L) Ky) = |h =n/2,n)



Re|a’[ion to Cleometric ComDIexitv’? [PC, J.M.Magan, D.Patramanis ’21] [PC, Datta '21]

[Miyaii et al. *15]
With coherent states we can associate a natural “information metric”
dshg = (dz|dz) — (dz|2)(zdz) (Fubini-Study)
E.g. for SL(2,R) this becomes a hyperbolic disc metric
dshs = (fh_dd) = (dp? + sink? (p)ds?) R=—7
Operator growth is a geodesic in this manifold (phase space): p = 2at, ¢ =m/2

Observe a universal relation between the Volume and Krylov complexity

2act 27
Vi = / dp/ do\/g = 2rhsinh®(at) = 1Ko
0 0
In all the symmetry examples that we studied (SU(2),HW)
Krylov complexity operator and Ly (Symmetry generator)

L_1 = —ie " [coth(p)dy + i0,]

Lo = id |
e Ly = —ie' [coth(p)dy — id,] .



Cartoon:

Operator Trajectory

Krylov Complexity

Phase Space “Information Geometry”



Ex.4 Complexity for evolution of the TFD [Balasubramanian, PC, Magan, Wu 22]

Consider the TFD state

_ ! e~ 5En | n _ \ " . —BEn
Wg) \/Tﬁ); n,n) Z(5) zn:

and Its time evolution [Hartman,Maldacena '13]

[Pp(t)) = e 1) H=Hp+Hr  H=Hyp
Goal: expand this state in the Krylov basis and compute complexity.

Lanczos coefficients from the moments of

S(t) = (Vg(t)|Vs) = (~SFF)!  [Polchinski et al. *16]

Non-universal, can be extracted once we know Z (also in some limits).

See [Balasubramanian, PC, Magan, Wu ’22]



Ex.5 Evolution of TED for 2 HO

1 1

Hyp=Hrp=w(i+3), En=wh+s) Z(B)
return amplitude
S(t) sinh (%‘")
sinh (—(5 _2”)“’)
Lanczos coefficients
1 W
a, =vy(n-+ =), b, = an, = :
nt3) ' tanh (<2)

Amplitudes (solutions of Schrodinger eq.)

sinh (%w)

2 2

—jsin (<
oult) = 2 Le il
sinh (ﬁ) sinh ( ’

Spread/Krylov complexity

 sin?(wt/2)
Colt) = sinh?(Bw /2)

)




Ex.5 Evolution of TED for 2 HO

: Buw N |
S(t) = Smh(gz)) 0-8\/\/\
Slnh (T) 0.6} — [S(1)]
ﬁ 1S(t)] 2
n(t/2 N
sin“(w i
C\I/(t) = — 02
sinh”(fw/2) |
‘Inverted” h.o. l W — 1w
sty = (&)
sinh (w(t;w)) 3
ﬁ — |S()|
, 2/ IS 2
sinh”(wt/2 B , c(t
C\y(t) = ( / ) New(t ts) L
sin?(Bw/2) —
9 Buw I T

t, = = log(2sin —
u}og( sin 2)



Ex.6 Evolution of the TED for RMT [Balasubramanian, PC, Magan, Wu ’22]

Late Times: “Black Holes and RM” [Polchinski et al. *16]

Consider a random Hamiltonian (NxN, Hermitian matrix, GUE,...)

—0.625778 4 0.1 0.0534572 — 0.238692: —0.106837 + 0.170713¢
H =1 0.0534572 + 0.238692¢ 0.518485 + 0.2 0.995288 — 0.08132022
—0.106837 — 0.170713z  0.995288 4 0.0813202: —0.589891 + 0.2

We can easily diagonalise it, compute SFF, moments, Lanczos, etc.

We want to put it into the tri-diagonal form /ZO Zl z? g :::\
. 0 bz a9 bg

and exponentiate 0 0 by ag -
IR

There exist very efficient algorithms/libraries (Python or Mathematica) to put a matrix into
this form (Hessenberg). So we can also read off Lanczos coeff. this way.

We also need to “rotate” a TFD into vec: {1,0,0,....}

Then applying exp(-iHt) to the initial state gives all the (bn(t)



Ex.3 Evolution of the TED for RMT

Examples Lanczos: GUE, N (up to 4096)

0.00 1 FMMWM N
: 0.8 1
—0.50 1

0.6 1
< —0.751 :
| _ QO
-1.00 = 3=0.0 "
2 = p=10
—1.50 1 = 3=2.0 "
. £
—1.75 1 = §=10.0 "
0.0 0.2 ) ;
n/N
50
0.0
40
—0.51
30
& 1.0 Q
20
—1.51 _17-
10 :
2.0 Q
201 I ' |
- 70 O —1.8
|
-
1.01 50 (U
—-1.9
0.8 40
0.6 1 30
—2.01
Q: Q
0.4 1 20
0.2 1 i Wi 7 4 10
0.04 . | | | I I I I |
0 10 20 30 40 50 = _

[Balasubramanian, PC, Magan, Wu ’22]

0.0

1.0

0.2 0.4 0.6 0.8
n/N
aaaaaaaSSEsEsEsSsSsSsSs
0 10 20 30 40 50 60 70

n

50

40

30

20

10



Ex.6 Evolution of the TED for RMT [Balasubramanian, PC, Magan, Wu '22]

Complexity for TFD evolved with GUE Hamiltonian (Similar for GOE,GSE,SYK)

Early time Ramp, Peak, Slope, Plateau
6 50
0.6
> 40 0.5
S 4 30 5 0.4
.-|U 3 Q. So3
Im~ 2 20 © 0.2
1- 10 0.1 ‘
0] / 0.0{ !
0.0 05 10 15 20 5’5 30 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
B3¢ » t/N
N = {1024, 1280, 1536, 1792, 2048, 2560, 3072, 3584, 4096 }
o006 t=0 t=1000 t=2000 t=3000 t=4000 Slope; Dlp; Ramp, Plateau
0.004 1 ) ‘- GUE uncorrelated|
0.002 A _4]
0.000 MM ’t 6
t=5000 t=6000 t=7000 t=8000 t=40000 )
0.006 g N
0.004 A -
_10_
0.002
_12_
0 2500 0 2500 0 2500 0 2500 0 2500 0 2 4 6 8 10 12 14

log(t)
N = 4096 and 5 = 1, averaged over 10 samples of the GUE



Conclusions

New definition of Krylov/Spread Complexity for operators/states !

Progress on a useful notion of “Complexity” in many-body systems

Computable for operators and states; numerically for discrete models and QFTs

Crucial ingredient: return amplitude (2- and higher-point function, SFF etc.)

* FEvolution of TFD in RM: Ramp, Peak, Slope, Plateau

Symmetry: new angle on Lanczos coefficients and growth in SYK, 2d CFT

For SL(2,R) (semi-simple Lie alg.) we can “geometrize” it (coherent states)
and interpret as phase space volume

Straightforward to generalise to more interesting many-body setups
(topological phases)



Many Open Problems

Universal laws for Spread/Krylov complexity? Is it useful for QI or QC?

* Integrable vs Chaotic growth? Is it sensitive? At which time regime?

* Purely Integrable models? Can we study it using integrability (not just numerics)?
* Interesting states” More complicated objects (defects, boundaries)?

* Precise connection with Holography?

o (Complexity and near-horizon geometry (AdS2)?

 More from Symmetry/Algebras? BMS, flat space, non-relativistic....”?
e Late-time physics of AdS/CFT and Black-Holes?

 Why Krylov basis? Bulk understanding? (Chords in SYK? [Lin'22])

Thank You! Stay Tuned! Join the fun ;)




Backup slides



SU(Q) [PC, J.M.Magan, D.Patramanis ’21]

[Ji, JJ] m— iEiijk Jir = J1 £y [JOaji] = xJy, [‘]—HJ—] = 2Jy
Liouvillian:
£ = Oé(J_|_ + J_)
Representation:
T ljs—j+n) =/ + 1)(25 —n) |j, —j +n+1) by, = a/n(2j —n +1).
J_lj,—j+n)=+vn2ji—n+1)]j,—j+n—1).

01 j+ 2j

N =



SU( 2 ) [PC, J.M.Magan, D.Patramanis '21]

Spin coherent states:

z,5) = (14 22)” Z oI ]_n+1)|],—]—|—n> z—tan(2>ez

Trajectory: 6 = 2at and ¢ = 7/2

tan” (act) \/ ['(25 +1)

onlt) = cos™?% (at) \| n!'(2j —n+1)

Krylov complexity:
Ko =) nlen(t)]* = 2jsin®(at)
Information Geometry

2jdzdz  § . o /20”5 /27T .9
= (db 0d Vi = do d — 2wy sin®(at) = 7K
(1 n |Z|2) 9 ( —I_Sln ¢ ) t 0 . ¢\/§ J ( ) O

ds® =




“Comp|eXi’[y Algebra” [PC, J.M.Magan, D.Patramanis '21]

More generally lessons from the symmetry approach
L{On) = bn|On-1) + bnt1|Ont1) L=L,+L_
B|On) = =b,|On-1) + bp11|Ont1) B=L.—-L_
Lets commute: From these definitions
K = [L, B]|Oy) = 2(bj 41 — b7)]Oy)

We can demand that the algebra closes at this first step. This gives

2([9721+1 —b,) = An+ B by, = \/iAn(n — 1)+ %Bn +C

What if it doesn't? Number of steps to the closure? Classification?



"Comp|eXi’[y Algebra’ [PC, J.M.Magan, D.Patramanis '21]

For SL(2,R)
L=a(lL_1+ L), B=a(l_1—-1L1), K=4a*Ly,
Geometrically, these are simply combinations of the isometry generators

Lo = i0y,
h

ds* = 5 (dp” + SinhQ(p)d¢2) Ly = _756__i¢ coth(p)dg + i0,]
Ly = —ie"® [coth(p)dg — i0,].

In particular
K =40*(Kp 4+ h) ~ 0y

Relation between complexity and Isometries (Momentum/Boost)

[Lin,Maldacena,Zhao’19]



Generalisations [PC, Datta '21]

Operator Growth in 2d CFTs: Primary flow into the bath of descendants.

NN < E
B
NN

/

O

O1r11—LL1

/

Example:




| anczos Coefficients [PC, Datta '21]

Linear Growth of Lanczos coefficients corresponds to

g—0—Mm— 00— 000 — OOmd — - - -

Growth for “typical” states

s VON

t Y
yp T

Slower than the initial linear growth (consistent with ETH)

Krylov complexity is the same as for the global (SL(2,R)) case (exponential
growth) slowed down to polynomial for typical states and then is expected
to saturate (for constant b, regime beyond CFT(?7))



