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This is wmore of a journey down a rabbit hole ...



Non Lorentzian Liwmits

* We are tamiliar with Galilean limits.

* Here we would be interested in the diametrically opposite one, the Carroll limif.






Today ...

We will give a brief overview of:
* Flat holography from a Carroll Perspective

* Tensionless or null strings



Flat Holography: A Carroll Perspective



Carroll and Conformal Carroll Symwmetry: The algebraic way

* Carroll algebra: Inonu-Wigner contraction of Poincare algebra when ¢ — 0

* This can be achievedby z* — z', ¢t —>et, €—0

* Carvoll generators: H=0;, P,=0;, C;=ux;0y, J;jj =x;0; —1;0;.

* Thealoebra: [Jij, Ju] = 404 Jn5) [Jijs Pe] = 20k Pyyy [Jig, Cr] = 204;Cy, [Cs, Pyl = =65 H.
* Crucially:[C;,C;] = 0. Reflects non-Lorentzian nature of the algebra.

* Conformal extension: D = t0; + ;0;, Ko = x;2;0;, K; = 2x;(t0 + x,0;) — x;2,;0;.

* GConformal Carroll aloehra: (D, B] = —F;, |[D,H| = —H [D, K;] = Kj, [D, Ko| = Ko,
Ko, P = —2C; [K;, H] = —2C;, [K;, Pj] = —26;;D — 2.J;;.

* (Can be given an infinite dimensional lift in all dimensions.



~o

(C,h,0,V)
e C is a d dimensional manifold, on which one can choose a coordinate chart (¢, z").
e h is a covariant, symmetric, positive, tensor field of rank d — 1 and of signature (0,+1,...,+1).
d—1
e ( is a non-vanishing vector field which generates the kernel of h .
e V is a symmetric affine connection that parallel transports both fLW and 6.
~ - ~ A



Flat space and BMS symmetries

* Asymptotic symmetries of flat space at null infinity is given by the Bondi-Metzner-
Sachs (BMS) group.

* [n 3 and 4 dimensions, the BMS group is infinite dimensional.

* |n 3 dimensions, the BMS_3 algebra reads:

CL,
[an Lm] — (n — m)Lm+n | 125n—|—m,0(n3 - ’TL)
CM
Ly, My, = (n—m)M,,, - " 5n+m,o(n3 —n)
M., M,,] = 0.

* M’s: supertranslations. Angle dependent translations along the null direction.

* Ls: superrotations. Diffeos of the circle at infinity.

Penrose Diagram of Minkowski spacetime

* For Einstein gravit YV, c =0, cpm = G Barnich, Compere 2006



Asymptotic Symwetries of 4d Flat Spacetime

* |n 4d, the BMS _4 algebra is a bit more involved.

Ly Lip] = (n = m)Lyim,  [Ln, Lin] = (0 —m)Lyim

1 _ 1
[Lna Mr,s] — (n_QI_ T) Mn—l—r,s: [Lna Mr,s] — (n;_ 5) Mfr‘,n—l—s

[MT,Sv Mt,u] = 0.

* Two Virasoros and supertranslations with two legs.

* Complications regarding central charges, which we will studiously avoid for now.



The Connection
AB 2010;
Duval, Gibbons, Horvathy 2014.

— — —
T —— e — o — _ - — = —  — = — —— o —

if‘ i

 CCatty = bmsdﬂ ;4
1

L - — = =
:—mw e —— T — —— = . = —— — — ==

‘ e

Conforwmal Carroll algebra in d-dimensions is isomorphic to the BMS algebra in (d+1) dimensions



* (an obtain flat space by taking the radivs of AdS to infinity.

From AdS to Flatspace

* Start with 2 copies of Virasoro algebra that form asymptotic symmetries of AdS2.

Ly L]

L1y Lo

L, L]

= (n—m)Lnim

= (n—m)Lptm
= (

* The cenfral terms of the left and right copies:

* We take the following limit:

C 3

162 5n+m,0(n3 —n).
I 74
C — (C — ——
2G

Ly, = [fn o [:—na

M, =e(L, +L_,)

* Easy to see that this contracts 2 copies of Virasoro algebra o BMS? algebra.

* The centralferms ¢cL =c—c=0 and

* Flatspace limit in bulk = Carroll limit on boundary.

cy = €(c+c) =

3

Barnich, Compere 2006

G




Carrollian road fo Minkowskian holography

* Field theory dual to Minkowski spacetimes should inherit its asymptotic symwetries.

* For D-dim Minkowski spacetimes, the dual theory should be a (P-1)-dim field theory
living on the null boundary of flatspace. It should he a (D-1)-dimensional Carrollian CFT.

* We would have two separate tools to study these field theories.
* The intrinsic way: use only symmetries of BMS.
* The limiting way: use the Carrollian limit from relativistic CFTs.

* We will be attempting to understand aspects of flatspace from a field theory on 7. .



Carrollian Holography: some checks of proposal

Asymptotic density of states from field theory and bulk LAB Detournay, Fareghbal, Simon 2012 Barnich 2012; A Basv 2013.]

Multipoint correlation functions of EM tensor in boundary and bulk.
* Novel phase transitions from zero-point functions. LAB Detournay, Grumiller, Simon'1 31.
* Matching of higher point correlations LAB Gruwiller, Merbis “15].

Construction and matching of Entanglement Entropy LAB Basu, Gruwmiller, Riegler ‘14; Jiang, Song, Wen °17: Hijano-Rabideau '171.
Holographic Reconstruction of 3d flatspace [Hartong ‘151,

Construction of bulk-boundary dictionary, matching of correlation functions of primary operators LHijano-Rabideav ‘17 Hijano 1 81

BMS Characters & matching with 1-loop partition function LOblak ‘15: Barnich, Gonzalez, Oblak, Maloney ‘159: AB Saha, Zodinmawia °19]
Asymptotic Structure constants from boundary and bulk LAB Nandi, Saha, Zodinmawia "20]

Generalisations
* Flat Space Chiral Gravity: CS Gravity duval to chiral half of CFT. LAB Detournay, Gruwmiller 121
* Higher spin theories in flat space. LAfshar, AB Fareghbal, Gruwiller, Rosseel '13; Gonzalez, Matulich, Pino, Troncoso ‘131

Fluid-Gravity correspondence for flat space LGiambelli, Marteau, Petkou, Petropoulos, Siampos °181.

Carrollian holography for d=4 LDonnay et al °221.



Ancient History

AB Detournay, Fareghbal, Simon 201 2.
See also Barnich 2012,



S=Area/4G for Flat Holography?

* |mportant early checks of AdS/CFT: CFT reproduces Black Hole entropy.
* Entropy of BTZ black holes = Entropy from Cardy formula in CFT2.
* (an we do something similar for holography in flat spacetimes?

* Yes! AB Detournay, Fareghbal, Simon 2012. (See also Barnich 2012)

We will quickly review this old work to remind people of one of the early
successes of this programwe.



BTZ Black holes and 2d CFT

* The non-extremal BTZ black hole is given by

2 2 )2 2
re—r r-—r 14 _ black holes
ds* = (r +)( _)dtz | zr > dr* + 7 <dqb | r+r2 dt) naked
ref? (rz _ r_|_)(r2 _ 1’_) £r singularities singularities
I \/2G£(£M +J) £ \/ZGE(EM —J); e
S
: everywhere angular defects everywhere
. . Area of Horizon  7ry N
* Bekenstein-Hawking entropy: s = —— = —Z G N

angular excess

* Cardy formula for 2d CFTs: Scrr =2 (\/? | \/g )
* Central terms for AdS3 and weights: c=c=5x. "= %(fMH) +oo k= %(w ~D+ o

* So ultimately: Szy = Scrr



Flat Space Cosmologies

* Take the radius of AdS to infinity. No Black holes in 3d flat spacetimes. What is
happening?

* Quter horizon goes to infinity. Left with inside of BTZ black hole.

/2
{ —s00: 1y = 0V2GM = 0P, r_ —rg= MGJ.

* lnner horizon survives. Cosmological solution with horizon. Flat Space Cosmology.

r? dr?

ds?.. =2 dt? — - Fride” — 27 rodtdg
SC + 7“_2|_ (7“2 — Tg) cosmological solutions
%k EM‘['VOPY-' o Area of horizon 7rg  7J
FSC = 10 - 2G \2GM

Phase space of Min_3 solutions



BPMS-Cardy formula and Entropy matching

Label states of the 2d Carroll CFT:  Lo|A, &) = AJAE), My|A, &) =E|A,€)

Partition function: Zcorroncrr = It CXP {27‘(’i (ULO + pMO)}

Carroll modular transformations: - —

Pemand invariance of Z to derive BMS-Cardy forwmula

SO =1nd(A,¢) = 277(0,;\/25 | A\/CQ—]?)
M

3

Carroll Weights: ¢ = GM, A = J. Central Charges: cir = =, cL =0.

Putting things together: Spsc = Sprs—cardy



Flat Holography : Aspects of dual theory

Symwetry of 2d Carroll CFT: (L, L] = (= 1) Linin + 5 0n4m 0(n” —n)

[LnaMm] — (TL — m)Mm—|—n | 19 n—l—m,O(n — TL)
M,,, M,,] = 0.

Label states of the theory with Lo|A, &) = A|A,€), Mo|A, &) = ¢|A,E)

We will build highest weight representations.

BMS Primaries: L,,|A, &), = M, |A,€), =0, Vn > 0.

BMS wmodules are built out of these primary states by acting with raising operators.

A general descent is of the form L™ L%, . L% M% M%) MT|A &) = LMy |A, &)



Carroll CFT: Partition functions.

Can define the theory on a eylinder. L, = ie'"?(9, + in7d,), M, = ie"™®9,
The mapping from the plane to the eylinder: z = ¢*®, ¢ = ire*®

We can identify the end of the cylinder to define the theory on the torus.
Partition function: Zepwoncrr = 1rexp {2mi (o Ly + pMp)}

Look at Carroll limit of CFTs. 2d CFT partition funetion: Zopr = Tr e2™¥¢Loe—2miCLo
Relation between weights: A =h —h, € = e¢(h + h).

In a convenient basis: Z.or = Y  derr(h, R)e2mi(Ch—Ch) _ Y d(A, £)e2mileA=28)
Here 20 =C—(, 2p=(C+¢C

We work with the assumption that ZcrT — Zcarroncer as € — 0

To keep the partition function finite, we need toscale p — ¢p



Modular invariance in 2d Carroll CFTs

* BMS Partition function: Zo\s = ) d(A, €)™ (72 77%)

* Any notion of BMS modular invariance? We again investigate the limit.

L - b
* Modular transformation in the original CFT: ¢ — ZE: - with ad —be =1
* |n the BMS basis: a(c+p)+b ac+b (ad—bc)p (ad— bc)cp?

TP T ot td cotd (cotd? | (cotd)?

ao + b \ 0
cot+d (co + d)?

* The contracted modular transformation reads: |0 —

* This is what we will call the Carroll modular transformation.

* |ntrinsic interpretation=»> S-transformation: Exchange of circles on the Euclidean torus.
Lala Detournay-Hartman-Hofmann for warped CFT. See e.9. Song et al 20171



Invariance of Partition function

* Pemand partition function is invariant under Carroll modular transformation and find
consequences.

BMS (0'7 ,0) = Ir 627Ti0(LO_CTL)€27Ti'O(MO 012\4)

ZO _ e.wz'(acL—l—pcM)Z

BMS (07 /0)

* Carroll S-transtormation: (o,p) — ( 17 ,02)

1
* Invariance of the above quantity: Zo.s(o,p) = ZSMS( » pz)

. C
2mio —L

I oM gi(—LYEL 274 ( -2 CM 1
* This translates t0: Zows(0,p) = 2772 2P = 2mil=3) 3 o 72mi(52) ZBMS(—;,%)

* The density of states can be found with an inverse Laplace transformation
d(A, €) = / dodp €2/ ("’p)Z< : , ’; > .

O O
where ;. _co o o o .
2 2 20 202

* [n the limit of large charges, this integration can be done with a saddle point approximation.




PMS Oardy formula

In the large charge limit, 7o, p) — 70, p) = “ME Ao — &p.

20 202

Value at the extremum is /™ (o, p) = —@'(CL A C—M)
QCM 25

BMS-Cardy formula is given by

SO =1nd(A,¢) :27T(CL 25 | A\/CZ—]?)
M

Bagchi, Detournay, Fareghbal, Stmon 2012.

One can calculate leading logarithwic corrections to this.

CM 3
Cavr

‘




FSC entropy from dual theory

e The weights for the FSC: ¢ = GM A M GM A=

wJ
V2GM

Bagchi, Detournay, Fareghbal, Simon 2012; Barnich 2012

e Putting this back into the BMS-Cardy formula, we get Srsc =

which is precisely what we obtained from the gravitational analysis.

o Thelog-correction is of the form 5% = —g log(2G M)

2 3 2 3 :
e Total entropy: | Srsc = ZLTCZO 5 log( Zg)) 5 log k + constant Bagchi, Basu 2013.

Here, _ ™ _ 8GM s the surface gravity of FSC.

ro ro

e (Can also be obtained in the limit from the “inner” Cardy formula.

Riegler 2014; Fareghbal, Naseh 2014.




Bulk Scattering from Garroll CFTs

AB Banerjee, Basu, Dutta 2022 (PRL)



What’s new? Bulk Scattering from Carroll CFTs

AB Banerjee, Basu, Dutta 2022 (PRL)

In asymptotically flat spaces, S-matrices are the observables of interest.
Especially true in d>=4, where one has propagating POF.

Can we connect Carroll CFT correlations to S-matrix? YES!

Interesting branches of correlators. “Weird” branch gives correct answer.
We show this for d=3 boundary theory and d=4 bulk.

Inspired by Pasterski-Shao map for Celestial CFTs. Use modified Mellin
transformations.



3d Carrollian CFTs

Algebra 0N 7 ¢ [Ln, L] = (n —m)Lpm, Ly Lin] = (n = m) Ly m
[Lm M"“,S] — <n —2|_ : T) Mn—l—r,& [Ena Mr,s] — (n —2|_ 1 S> Mfr,n—l—s [MT’S’ Mt’u] = 0.

n 1 n T il 1 =N T =S
Representation (vector fields): Ln=—2""'0, - 5(n+1)2"udy  Ln = — T0. - 5+ 170y My =2"2°0,

Here z: stereographic coordinate on sphere, u: null direction.

Labelling of operators: [Lo, ®(0)] = h®(0), [Lo, ®(0)] = h®(0).
Assume existence of Conformal Carroll primaries on &+

Highest weight representations: [L,,, ®(0)] =0, [L,,®(0)]=0, Yn >0, [M,, ®0)]=0, VYrs>0.

: : : : i 1 _
Transformation rules for Carrollian primaries: 0L, Pp (U, 2,2) =€ 2", + (n+1)2" (h 2u8u> D) 5(u, 2, 2)

O, s Pp (U, 2,2) = €2"2°0, Py, (U, 2, 2).



Scattering in 4d flatspace: Connections to 2d CFT

Consider massless particles. 4-momenta parametrised as:

P =w(l+2z,2+2,—i(z—2),1 —22), p'p, =0

Me"i" fra“sformaﬁo"- We also introduce a symbol € which is equal to +1 if the particle is (outgoing) incoming.

M ({Zi,Zi,hi,hi,ei}) — | | /o dwiwiAz_lS({eiwi,zi,ii,ai}), AeC, o¢ 5
i=1

S is the S-matrix element for n massless particle scattering.

A A — o

2

Also: 7 —

+0’ P
2

Using Lorentz transformation properties of the S-matrix, it can be shown that the LHS
transforws like a correlation function of n primary operators of a 2d CFT.

[Pasterski-Shao(-Strominger), 2016]



4d Scattering: Modified Mellin Transformation

. /I — /! _ —/ =
Under supertranslations: ¢ = v =u+ f(2,2), 2 22 =2, 2> 2 =2

1
. dw\ 2 [dw ) 2 L L
Under superrotations: v — ' = (E) (£> u, 2 = 2 =w(z), 2 7 =w(2)

Modified Mellin transformation:

({UZ,Z@,ZZ, x 7,767,} H/ dwz Rim Zezwzuzs({Ezwuzuzmgz}) AeC

[Banerjee 2017, Banerjee-Ghosh-Paul 2020]

Now defined in a 3d space with coordinates (v, z, z). Transforms covariantly under BMS
transformations

Used in Celestial holography since original Mellin transformation is not convergent due fo bad UV
behaviour of gravitation scattering amplitudes.



4d Scattering: Modified Mellin Transformation

Define: ¢y 7 (U, 2, 2) :/ dw wr e " (ew, 2, Z, o).
’ 0

where a(ew, z,Z,0) is the momentum space (creation) annihilation operator of a massless
particle with helicity o when (e = —1) e = 1. In terms of these fields we can write

({uzazzazu 19 2762} H¢ 1 uZ7ZZ7ZZ>

The field 45 7 (u, 2, 2) transtorms under BMS fransforma’nons as:
Supertranslation: ¢, 7w, 2,2) = ¢} 5 (u+ f(2,2), 2, 2)
H € = dw " dU_J . € / I =/
Superrotation: ¢}, 5(u, 2 2) = <£> <£> NACEERED
These are exactly the same as the Carrollian CFT primaries that were defined earlier.

This is a central observation of what is to follow.



Proposal: Scattering Amplitude = Carroll CFT Correlator

It is natural to identify the time-dependent correlation functions of primary
fields in a Carrollian CFT with the modified Mellin transformation:

The time-dependent correlators of a 3d Carroll CFT compute the 4d scattering
amplitudes in the Mellin basis.



Carrollian CFT and Correlation functions

» We are interested in vacuum correlation of Carroll primary fields.

» Asin CFTs, possible to fix 2 and 2-point tns by the global” or Poincare sub-algebra of the BMS4.

Poincare sub-alaebra: ({ My, Ln} with [,m = 0,1 and n = 0,=+1)
» Consider the Z-point function G(u, z,z,v’, 2, ") = (0|®(u, z, 2)®' (v, 2, Z2")|0).
Here ®(u, z,z) and ®(v/, 2/, Z') are primaries with weight (h, k') and (h, k') respectively.

8|5’
ou  Ou

#» lnvariance under Carroll time translations: ( > G(u,z,z,u', 2, Z") =0

# Under Carroll bOOS‘l’S(u — u + bz bZ).’ [Note: 2d Carroll boosts are translations in Mink_41

0 , O - _0 4, 0 -
(Zﬁu zau,)G(uzzu 2, 72) =0, (Zé?u zau,)G(uzzu 2,72)=0.




Carroll correlation functions: Two branches

» Gowmbining previous equations we get

0 ] — 0 ] —

(2 — 2" 6)uG(u—u z—2,z2-72)=0, (2-7') %G(u—u z—2,2—2)=0.
» This equation has two branches.
» Branch 1: Corresponds tochoice Gy — o/ 2 — 2/ 57— 7) = 0

ou
» Using invariances under other global generators we get

5 /5_ 1,/
G(u Z, Z u Z/ Zl) i, h h,h _ Bagchi, Basu, Kakkar, Mehra 2016.

(2 — 2")2h(z — Z/)Qh' —

» This is the 2-pt function of a usval 2d CFT. Also natural when thinking of limits from 3d CFTs.

» We will not be interested in this branch in this context.




Carroll correlations: Delta function branch

. 0
» The second class of solutions correspond fo 5 Glu—u 2 =2 2= 7)o« 6® (2 = 2)

o Thus: G(u, z, 2,4, 2/, 7)) = f(u—u)6*(z — 7).

» Dewmanding invariance under the subalgebra{Lo +1, Lo +1} of BMS;. we get

A+A"-2)flu—u)+ (u—u)of(u—u)=0, (c+)f(u—u")=0.

Here A = (h + h) is the scaling dimension and ¢ = (h — h) is spin.

» Solvingweget: | G
The constraint equation coming from M1 is trivially satisfied.
(See also Lde Boer, Hartong, Obers, Sybesma, Vandoren 211)

» Notice that the correlation does not require equal weights to be non-zero. Very different
from a usual CFT. Not obtainable as a limit (7).



Connection to 4d Scattering

» Of course in case of the 2 point function, the scattering amplitude is trivial.

» Two point function is given by the inner product(p:, o11p2, 02) = (27)°2E,,6° (51 — 52) Go1402,0

Notation is standard except we label helicity of external particle as if it were outgoing.

35 (wl — wg) 52 (21 — ZQ)
!

o With our earlier parametrisation: (i, o1lp2, 02) = 4w Oy +02,0

Mellin fransformed 2 point function:

0 (w1 — wg) 52 (21 — 2’2)

P _ _ Aq1—1 A 1 — W
M (ul,Zl,Zl,UQ,ZQ,ZQ,hl,hl,hz,h2,€1 — 1,62 — — — 4‘713501+020/ dw1/ dwgw 1= 2 v 1u162w2u2
W1

» Spatial delta function has dval interpretation that momentuwm direction of a free particle.



More on Scattering and Carroll

» In the same way as above, we can compute the three-point function and show
that in the time-dependent branch this is zero.

» This has the dual interpretation that in Minkowski signature the scattering
amplitude of three massless particles vanishes due to momentum conservation.

» Sowe see that the peculiarities of the delta-function branch of correlations of a

Carroll CFT are exactly what is required to connect to scattering amplitudes in
the bulk Minkowski spacetime.



4

'

4

4

Example: Carroll Massless Scalar

- Simplest of examples to illustrate our findings: the Carroll massless scalar.

S = /dudza:i ™7r70,20,P

1
Flat Carroll backgrounds: 7 = (1,0) and g;; = 6;;. S0, S = / dud? x" 5(aucb)?

Green’s funetion: 02G(u—u,z' —2") =8> (u — ', 2* — 2.

- Solved in the usual way by going to Fourier space: G(k.. k) =——.

ks
Position space: G(u— o,z — 2%) = _/ kgdjf_uMQ ik (u—u') /dzz Jiki(zi—2") _ % % ~(u—u)| 6D — )
Requlating: G(u — o/, 2* — 2/*) = —i(u — )6 (2 — 2,2 - %))

Scaling dimensions: » =

1
4

2
- 1 8 8 [ ]
. h=17 Answer exactly matches with previous symmetry analysis.



- Large radivs limit: G(u,u', 2", 2") =

Example: Carroll Massless Scalar

Can also use canonical methods. Put the Carroll scalar on a sphere times the null line.

Action: S = /dudQZ\/a %(6{“(1))2

EOM: @ + £°®* =0 , Generic real solutions:

_ k2<I>2_

Here k is related to the radius of the sphere R by k =

1

P(u, z,z) = NG

1

Comwmutation relations: [C(z,z),CT(2,Z)] = 552(z — 2

. . 1
Hawiltonian: H =k / d*z\/q (20T(z, 2)C(z,2z) + 552(O)> . Unphysical zero point energy. Negleet.

Ground state: C(z,2)|0) =0, for (z,2) € S*

Use usual methods to calculate correlation functions: G(u,v’, 2%, 2"%) =

1

') 1z

2 point function: Guv', 2", 2") = ——

cosk(u —u) +isink(u—u)]d%(z — 2,2 —7)

(u—u)| 6%(z—2,2— %)

(0|T®(u, z,2)D(

1
2R "

(C’T(z, 2)e'™ + C(z, Z)e_ik“) .

! =/
UZZ

)10).



What have we learnt so far?

Carrollian physics emerges in the vanishing speed of light limit of Lorentzian physics.

Carrollian CFTs are natural holographic dvals of flat spacetimes as they inherit the
asymptotic symwetries of the bulk theory.

Over the years, a lot of evidence has been gathered about especially the duality
between 3d flatspace and 2d Carroll CFTs.

In particular, a BMS-Cardy formvula in a 2d Carroll CFT reproduces the entropy of the
cosmological horizon of Flatspace Cosmologies, providing one of the most important
checks of the holographic analysis in flatspace.

A stumbling block was the formulation of scattering in Carroll CFTs.



What have we learnt so far?

* The S-wmatrix is the most important observable for Quantum gravity in
flatspace.

* Oarroll CFT correlation functions have two branches. One of thew is time-
independent and gives correlations of a 2d CFT. The other one gives spatial delta
functions and depends on the null time direction.

* Using modified Mellin transformations, can show this delta-function branch has
the correct properties for reproducing scattering amplitudes in the bulk.

* S0 scattering amplitudes are connected to Carroll CFT correlations in a rather
non-trivial and non-obvious way.



Open questions: Flat Holography

* Why is the ‘electric” leg important for scattering?

* Going beyond 2 and 3 point functions. 4 point? Can we construet an interacting
theory and make the connection concrete? lnput from gravity?

* Limit from AdS/CFT for flatspace scattering? Does not seem to work at first sight.
* Bootstrap for Carroll CFT for d>2. [Bootstrap for d=2 (AB Gary, Zodinmawia 2016)]

* (onnection to the picture of Donnay et al.
Celestial Holography as a “restriction” of Carrollian Holography?

* Addressing the question of S=A/4G for d=4.

* Vacuum degeneracy and memory in Carroll CFTs.



Tensionless Strings



Null Strings?! What? Why?

* Massless point particles move on null geodesics. Worldlines are null.

* Null strings: extended analogues of massless point particles.
Massless point particles => Tensionless strings.

* Tensionless or null strings: studied since Schild in 1970°.

* Tension T = 2730/ > 0: point particle limit of string theory => Classical gravity.
1

2o

> 0o Ultra-high energy, ultra-quantum gravity!

* Tensionless regime: T =

Null strings are vital for:
A. Strings at very high temperatures: Hagedorn Phase.
B. Strings near spacetiwme singularities: Strings near Black holes, near the Big Bang.

C. Cownnections to higher spin theory.



Sumwmary of Results

* 2d Conforwmal Carrollian (or BMS3) and its supersymwetric cousins arise
on the worldsheet of the tensionless string replacing the two copies of
the (super) Virasoro algebra.

* (lassical fensionless strings: properties can be derived intrinsically or as
a limit of usval tensile strings.

* Quantuwm tensionless strings: many surprising new results.



Classical Tensionless Strings

Isberg, Lindstrom, Sundborg, Theodoridis 1993
AB 2013: AB Chakrabortty, Parekh 2015.



Going tensionless

Start with Nambu-Goto action:

‘Isberg,Lindstrom, Sundbo,c;ri uh W
| N

S:—T/dzﬁ\/—detvag. (1)

To take the tensionless limit, first switch to Hamiltonian framework.
» Generalised momenta: P, = T\/TWVOO‘ 0o X
» Constraints: P? + T>4~4" =0, P,,0,X™ = 0.
» Hamiltonian: Hr = He + p'(constraints); = A(P* + T?°~~v") 4+ p P8, X™.

Action after integrating out momenta:

1 1 [. .
5= / d*¢ = X* — 20X 0, Xy + p° 05 X" 05 Xy — AN" Ty~ (2)
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action takes the familiar Weyl-invariant form

T 8% m n
S=—> /dzg\/—gg B 0aX" 05X N (3)

Identifying



Going Tensionless ...

!

L

Tensionless limit can now be taken systematically.

T — 0=

Metric is degenerate. det ¢ = 0.

Replace degenerate metric density T+/—g¢“” by a rank-1 matrix V*V* where V is a vector

density

L1
Ve = ﬁ/\(l,p) (4)

Actionin T — 0 limit

S — /dz.g VOVP 9, X" 05X . (5)

Starting point of tensionless strings.

Need not refer to any parent theory. Treat this as action of fundamental objects.



Cowmpleting the square?

Fundamentally Tensionless Theory

o — 0, T — €T

Usual Tensile String Theory 4 Tensionless String Theory

ey Your corresponding favourite
4 thing in Tensionless String
Theory

Your favourite thing in Tensile

String Theory




Gauge and Residval Gauge Symmetries

Tensionless action is invariant under world-sheet diffeomorphisms.

Fixing gauge: “Conformal” gauge: V= = (v, 0) (v: constant).

Tensile: Residual symmetry after fixing conformal gauge = Vir ® Vir. Central to understanding string theory.
Tensionless: Similar residual symmetry left over after gauge fixing.

For world-sheet diffeomorphism: £ — £ + £, change in vector density: §. V" = —V - 9e® + & - 9V + %(8 - e)V*®

Tensionless residual symmetries: for V™ = (v, 0), e = {f'(o)r +g(0),f(0)}

Define: L(f) = f'(0)707 + f(0)0s, M(3) = g(0)d,. Expand:f=37ae"”, g=3 bue"”

L(f) = Zaneina (05 +inT0;) = ZanLn, M(g) = anein"c’% = anMn.

e —————

| Lm, Ln] — (Tl’l — n)Lm+n




Tensionless Limit from the Worldsheet

- ———— e — —

Tensile string: Residual symmetry in conformal gauge go.3 = e¢na g: J
(L, Ly] = (m—n)Lyin A 1C2m(m2 — 1)dm+n.0
Lois Cnl = 0, [Lm,Ln] = (m — 1) Lo 1C2m(m2 1) Smn o

World-sheet is a cylinder. Symmetry best expressed as 2d conformal generators on the
cylinder.

. MW . 1IN
L, =16 "0,, Ly,=1 0Oz

where w, w = 7 £ o. Vector fields generate centre-less Virasoros.

Tensionless limit = length of string becomes infinite (o — o0).

Ends of closed string identified = limit best viewed as (¢ — o, 7 — €7, — 0).
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Tensionless Limit from the Worldsheet

A Bagchi 2013

» Define ) )
Ln — Ln — L_n, Mn — G(Ln _I_ L:_n).

» New vector fields (L,, M, ) well-defined in limit and given by:
L, = ie" (8, + inTd;), M, =ie"°d,.

» These are exactly the generators defined previously . Close to form BMSs.

e ——— e - B R _ e _
[Lm7 Ln] — (m — n)Lm_|_n [Lm, Mn] — (m - Yl)Mm_|_n [Mm, Mn] — O. |

» Tensionless limit on the worldsheet: 0 — o, 7 — e, — 0

» Worldsheet velocities v = 2 — oo. Effectively, ¢ — oo

» Hence worldsheet speed of light — 0. Carrollian limit.

» Degenerate worldsheet metric.

P Riemannian tensile worldsheet — Carrollian tensionless worldsheet.




Tensionless EM Tensor and constraints

Spectrum of tensile string theory (in conformal gauge in flat space)

P Quantise worldsheet theory as a theory free scalar fields.
P Constraint: vanishing of EOM of metric (which is fixed to be flat).
P Op form: Physical states vanish under action of modes of E-M tensor.

C

. C o C — > Inw
EM tensor for 2d CFT on cylinder: Ty = z° Lpiane Y Z Le” 24 Loy = Z Lne” 24
n n

e —0

. _ | o
Ultra-relativistic EM tensor (1) = lim <Tcyl — Tcyl> = (Ly — inTMy)e" -
n

. — Mo CM
T(z) — lim € (Tcyl -+ Tcyl> — Z Mnem Y
n

e —0

» Classical constraint on the tensionless string: T(;y = 0, Ty = 0.

» Quantum version: physical spectrum of tensionless strings restricted by

(phys|T1y|phys’) = 0, (phys|T|phys’) = 0.



Intrinsic Analysis: EOM and Mode Expansions

. AB, Chakrabortty, Parekh 201

e e e — - = -

» Equation of motion in V* = (v, 0) gauge: X* = 0.

. <1 .
> Solution: X*(o,7) = x* + V20'Affo + V20'Bi T +iV2¢" Y | — (A} — inTB}) "7
n
n=%0

» Closed string b.c.: X" (o, 7) = X* (0 4+ 27, 7) = Af =0.

» Constraints: X* = 2¢’ > B_u - Bugn " =0, X-X =2 > (A —inTB_y) - Buys e’ = 0
m.,n

m,n

> Define: Ly = » A_u - Bugn, My = B_y - Bugn
m m

» (lassical constraints in terms of modes: Z (L, — inTMy) e =0 = T(l), Z M, e = () = T(2>,
n

n
Familiar form obtained earlier from purely algebraic considerations.

» The algebra of the modes
{AZ,ATZ} p— O, {BZ, BZ} p— O, {AZ, B;:} — —im5m+n,0 ’I’]'L“/.

» The worldsheet symmetry algebra of tensionless strings, now constructed from the quadratics of the modes:
{Lm, Ln} — _i<m - n)Lm_|_n7 {Lm, Mn} — _i(m - n)Mm+n, {Mm, Mn} - O.

Quantization: {, }pg — — £ [, ] leads to the BMS; Algebra.



Limiting Analysis: EOM and Mode Expansws

> Tensile string mode expansion: x* (45, 7) = x* + 2v2a o/ ot T+ iV2a L ahe=MTHo) | qHemin(T— 0)]
n;éO
» The limiting procedure: 7 — €7, 0 = 0, &' =¢' /e withe — 0

2c’ 2c’
X (o, 1) = x" 4+ 24/ — - Qbfﬂ'%—l\/ - j{: FL_ﬂna(l——zneT)—%cx“ema(l-—zneT)]

n;éO
1 [ a* —a* 1 .
= x" 4+ 2vV2 (Ve)ah T + iv2c! Z — | = NG — —intve(at +a* )| ",
€
n;éO _ _

» Thus we get a relation between the tensionless and tensile modes:

1 T
'ATZL:%(O{;:;— "), B = e(a : h

_— e —— — — — . -

» The equivalent of the Virasoro contraints | _ - — - |



Quantum Tensionless Strings



A sumwary of quantum results

* Novel closed to open string transition as the tension goes to zero.
LAB Banerjee, Parekh (PRL) 20191

* Careful canonical quantisation leads to not one, but three different vacua which give rise to

different quantum wmechanical theories arising out of the same classical theory.
LAB Banerjee, Chakrabortty, Dutta, Parekh 20201

* Lightcone analysis: spacetime Lorentz algebra closes for two theories for P=26. No restriction

on the other theory. All acceptable limits of quantum tensile strings.
LAE Mandlik, Sharma 20211

* |nterpretation in terms of Rindler physics on the worldsheet.
LAB Banerjee, Chakrabortty (PRL) 2021]

* Carroll limit on spacetime induces tensionless limit on worldsheet. Strings become tensionless
near blackhole event horizons. LAB Banerjee, Chakrabortty, Chatterjee 20211



Tensionless Path From Closed to Open Strings

AB Banerjee, Parekh,



BMS Induced Representations

» An important class of BMS representations: Massive modules.

» The Hilbert space of these modules contains a wavefunction |M, s) satisfying:

Mo|M,s) = M|M,s), Lo|M,s) =s|M,s), M,|M,s) =0, vn#0.| (33

P This defines a 1-d rep spanned by { Lo, M, cr, cpm }. Can be used to define an induced BMS
module with basis vectors
| W) = LpyLn, ... Ly [M,s).

» Limit from Virasoro X VirasorotoBMSs: L, = £, — L_,,, M,, = (L, + L_,).

P Virasoro primary conditions:
Lylh,h) =0= L,|h,h) (n > 0); Lo|h, h) = h|h,h), L,|h,h) = h|h,h).

» This translates to

1 — 1 _
(Ln _I_ _Mn) |h, h> — O, <_L_n _I_ _M_n> ‘h, h> — O, Yl > O.
€ €

» In the limit, this gives (33), along with the identification: M = e(h + h), s = h — h.



Induced Reps and Tensionless String

\ 4

In term of oscillator modes, the induced modules: B,,|M,s) = 0, Vn # 0.

\ 4

We are interested in the vacuum module. Hence we have B, |I) = 0 where |I) is the induced vacuum.

» Wish to return to harmonic oscillator basis for the tensionless string. Define:

1 ~ 1
Cly = E(AZL B,), C= 5(—14571 BZ,

n

> The algebra: [C*, CY] = mSyuan”?, [CH,CY] = mSupan™”.

P The tensile and tensionless raising and lowering operators are related by

Cl(e) = Bral + B_a" , where: B4+ = = <\/_ + %)

Cl(e) =p_a"” + Bira).
> |0)c: CX|0), =0 = CH|0), Vn > 0. Different from tensile vacuum: mixing of tensile raising & lowering op in C, C.
P In the C basis, the induced vacuum is given by (Cf;“ 1+ C “_n) 1) =0, Vn.

~

> This is precisely the condition of a Neumann boundary state  |[) = AN exp <— E 1C_,,lC n) 10) ¢
n
n



Worldsheet Bogolivbov Transformations

» The relation between operators is a Bogoliubov transformation

84

M =¢“Che™" =cosh0C! —sinh0C",, G=i)» 0 [C_n.é_n = Cn.én]

~

Qb = ¢“Cpe”'“ = —sinh 0 C" + cosh @ és’, tanh § = =

» Relation between the two vacua:

— | | exp[tanh 6C_,C_,]|0).

n=1

0)o = expliG]|0). = ( 1 >1+1+... o_o

» Using the regularisation: 1 + 14+ 1+ ...00 = {(0) = —%

0) o = \/COShQIIexp ‘tanh @ C_,C_,]|0).
n=1

» From the point of view of |0),, |0) ., is a squeezed state.



From Closed to Open Strings

» When e =1, tanh 8 = 0, and we have |0), = |0).. This is the closed string vacuum.

» As e changes from 1, from the point of view of the C observer, the vacuum evolves. It becomes
a squeezed state as shown before.

» In the limit where ¢ — 0, we have tanh 8 = —1. The relation is thus:
0)o = N | [ exp[— C_,C_.]|0).
n=1

This is precisely the Induced vacuum |I) that we introduced before.
> As we said, this is a Neumann boundary state.

» This is thus an open string free to move in all dimensions (or a spacefilling D-brane).

— I - _

We have thus obtained an open string by taking a tensionless limit on a closed string theory. W
| "
|

| — — — _— e = —




d P-branes

From Closed to Open Strings an

Closed tensile string

String grows long
> and floppy as

tension decreases

Decreasing String Tension

Emergent open string in the tensionless limit

Tensile closed string The string grows longer and longer and fills out spacetime as the tension decreases Space-filling D-brane

0 @ Ly &

tension =
2ra’

tension =0

Decreasing string tension




Bose-Einstein like Condensation on Worldsheet

» Consider any perturbative state in the original tensile theory |V) = £,,a" &"  ]0), where
€,,v 1s a polarisation tensor. Let us attempt to understand the evolution of the state as e — 0.

> Close to € = 0, the alpha vacuum can be approximated as follows: |0}, = |I) + €|[;) + € L) + ...

P In this limit, the conditions on the alpha vacuum translate to:
an|0)o = ay|0)q =0, 1 >0
= B,|I) =0,Vn; Au|l) +By|LL) =0, A_,|I) —B_,|I;) =0, n>0.

» One can now take this limit on the state:

A p@_p|0) o = (%B_n +- \/EA_n> (\%Bn — \/EAn> (|I) + e|lLl) +...). = K|I)

All perturbative closed string states condense on the open string induced vacuum.

Usual tensile

string spectrum
Bose-Einstein

condensate in
the tensionless
limit

Spacing decreases with tension, but no qualitative change

>

Decreasing String Tension

(Smaller lines indicate states at different levels)



Quantum Tensionless Strings Il

« AB Banerjee, Chakrabortty,

# AB Banerjee, Chakrabortty, Dutta, Parekh,
# AB Mandlik, Sharwma,

# AB Banerjee, Chakrabortty, Chatterjee,



Tension and Acceleration

AP Banerijee, Chakrabortty,



Tension as Acceleration

e ——

One of the most common occurrences of Bogoliubov transformations
is in the physics of accelerated observers vis-a-vis inertial observers.

Minkowski spacetime <-> Rindler spacetime.

By identifying our Bogolivbov transformations to Rindler Bogolivbov
transformations, we can recast the decrease of tension to the
increase of acceleration.

So, tensionless limit of string theory can be modelled as a series of
worldsheet observers with increasing acceleration.

The tensionless or null string emerges where the accelerated observer
hi;ris the Rindler horizon. This is where the acceleration goes to
infnity.

”i‘ AB, Banerjee, Chakrabortty [PRL 2021] k

e — .

& \\V\e)(ﬁaA

obsexuen

Cavzo)

?‘ ‘;/\Crwqa'u.g Lﬁ'
accelonohed

Oboev-ue v,




A quick Rindler tour

+ 2d Rindler wetrie: ds% = €% (—dn? + d&?).

: : : 1 . 1
« From Minkowski to Rindler 1 = —¢% sinh an, x = —e® cosh an

a a
% EK)“V‘: t;xqb :::() — nﬂfqb°

+ Minkowski mode expansion

P(0,7) = g + V2d gt + VZna’Z:[anun + a_,u, + a,it, + a_,i)]
n>0

u, = lie”™ ) /\/Azxn, i, = [ie”")]/\/4zn.
+ Rindler mode expansion

B(En) = o + V2 pof +V21d S (BU, + f_yUs + BTy + By U

n>0

0’ _ie—in(€+f1) 7 _ie—in(f—n)
" Varn o Vann .

+ The oscillators {5,3} act onanew vacuum |0)r .
% U’s act only in one wedge. To continue between them one defines smearing

functions. Combinations for both wedges: U® — e-(w/a xR

+ Relation between oscillators:

n2

na

na

LEFT

N2

ns

FIG. 1.

RIGHT

Equal time slices in Rindler spacetimes.




Evolution in Acceleration

+ String equivalent of Rindler observer hitting the horizon = increasingly accelerated world sheets.

String world sheets with increasing acceleration

: —_ . ) . .
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increasing acceleration —

+ Rindler Bogolivbov transformation at large accelerations:
L1 N 2a 1 N 2a\ _ - L[ jan  [2a 1/ [2a N\
P :§<\/%+\/E)“”+E(\/%‘\/n_n>“‘”’ & ‘zw; vnn)“-”z(vnana)“"'

nmn

+ ldentification: C, = =, C, =p>, €=

% The limit of zero tension is thus the limit of infinite acceleration: ¢ - 0 = a - .

« Evolution: a =0: {£,.5,} = {an &}, 0 <a<oo: {B,(a).B,(a)}. a—oo: {B,.B,} = {C,.C,}. Complete interpolating solution.



Hitting the Horizon: Evolution in Rindler Time

<+ We explored hitting the Rindler horizon by evolving in acceleration.
% The horizon can also be hit by evolving in Rindler time at constant acceleration.

% S0 the infinite time limit on the Rindler worldsheet would also generate the null string.

Increasing n

o) |

FIG. 3. Equal time slices of a Rindler worldsheet.




Hitting the Horizon: Evolution in Rindler Time

+ Mathewmatically, this is the limit 7 = oco. Or equivalently,

n—n, E — €, e — 0.

l‘l’l

+ Conformal generators in Rindler: £, L, = __56’”‘(5"”’)(5’,7 F 0¢).

+ Inthelimitweget: [ — g — 2 = ine=(d, — nédy),

M,=c¢e(L,+L_,)=—i"e™0;.

+ These close to form the BMS algebra as expected and the null string emerges.



A Tale of Three

AB Banerijee, Chakrabortty, Dutta, Parekh,




A e r"y‘f‘*j
1& AB Baner]ee Chakrabortty Dutta Parekh 2001 00354 ”

— _

A Tale of Three

From a single classical theory, several inequivalent quantum theories may emerge. This happens when
we consider canonical quantisation of tensionless string theories.

As we saw earlier Classical constraint on the tensionless string: T(1y =0, T3y = 0.

Quantum version: physical spectrum of tensionless strings restricted by (phys|T(1)|phys’) =0, (phys|T(2)|phys’) = 0.

This amountsto  (phys|L,|phys’) =0, (phys|M,|phys") = 0.

For each type of oscillator F obeying (phys|F,|phys’) = 0, there can be three types of solutions.

phys) =0 (n>0),
phys) =0 (n#0),
phys) # 0, but (phys'|F,|phys) = 0.

w o=
SRR




A Tale of Three o

| AB Baner]ee Chakrabortty Dutta Parekh 2001 00354 ?‘

e e — = = S —

+ Here I, = (Ln, M,) .Hence seemingly nine conditions:

M, |phys) =0, (n > 0) My, |phys)
L |phys) = 0, (m > 0), < M,|phys) =0, (n#0) ;; L |phys) = 0, (m #0), < M,|phys)

My |phys) # 0, (V n) M, |phys) #

0, (n>0) M, |phys) =0, (n > 0)
0, (n#0) ¢35 Lilphys) # 0, (Y m), { My|phys) =0, (n # 0)
0, ( ) My |phys) # 0, (V n)

+ But the underlying BMS algebra also has to be satisfied. It turns out that only three of the nine choices lead to
consistent solutions.

+ These are three inequivalent vacua, leading to three inequivalent quantum theories.
e Induced vacuum: Theory obtained from the limit of usual tensile strings.
o Flipped vacuum: Leads to ambitwistor strings. (See e.g. Casali, Tourkine, (Herfray) 2016-17)

e (scillator vacuum: Interesting new vacuuwm. Contains hints of huge underlying gauge symmetry.



Critical Dimensions

==
i

2 |
|

i

' AB, Mandlik, Sharma. 2105.0968

e — —

Oscillator

/  Tensile Bosonic ™\ _
/ Closed String Theory

Flipped
or
Ambitwistor

Induced

Tensionless corners of Quantum Tensile String Theory



A sumwary of quantum results

* Novel closed to open string transition as the tension goes to zero.
LAB Banerjee, Parekh (PRL) 20191

* Careful canonical quantisation leads to not one, but three different vacua which give rise to

different quantum wmechanical theories arising out of the same classical theory.
LAB Banerjee, Chakrabortty, Dutta, Parekh 20201

* Lightcone analysis: spacetime Lorentz algebra closes for two theories for P=26. No restriction

on the other theory. All acceptable limits of quantum tensile strings.
LAE Mandlik, Sharma 20211

* |nterpretation in terms of Rindler physics on the worldsheet.
LAB Banerjee, Chakrabortty (PRL) 2021]

* Carroll limit on spacetime induces tensionless limit on worldsheet. Strings become tensionless
near blackhole event horizons. LAB Banerjee, Chakrabortty, Chatterjee 20211



Other results

* Tensionless superstrings: Two varieties depending on the underlying
Superconformal Carrollian algebra.

* Homogeneous Tensionless Superstrings: Fermions scale in same way.
Previous construction: Lindstrom, Sundborg, Theodoridis 1991.
Limiting point of view: AB Chakrabortty, Parekh 2016.

* lnhomogeneous Tensionless Superstrings: Fermions scale differently.
New tensionless string! AB Banerjee, Chakrabortty, Parekh 2017-18.

* Possible counting of BTZ microstates with winding null strings on the
horizon. AB Gruwiller, Sheikh-Jabbari (in progress)



Open questions: Tensionless Strings

Analogous calculation of beta-function=0. Consistent backgrounds?

Linking up to Gross-Mende high energy string scattering from worldsheet
symmetries.

Attacking the Hagedorn transition from the Carroll perspective. Emergent
degrees of freedom?

Strings near black holes, strings falling into black holes?
Extend “Tale of Three” to superstrings. Different superstring theories?

Intricate web of tensionless superstring dualities?



Black hole Microstates from Null Strings

AB Gruwiller, Sheikh-Jabbari 2210.10794



Black holes from Null Strings?

@

Black hole Null String Wrapping Horizon

* Event horizon of black holes are null surfaces.
* In d=3 consider BTZ black holes. Event horizown is a null cirele.

* Proposal: A null string wrapping the event horizon contains in its spectrum the wmicro
states of a BTZ black hole.

* We can reproduce the Bekenstein-Hawking entropy as well as its logarithmic corrections!

* Possible generalisations to higher dimensions.



Horizon Strings

* Proposal motivated by symwetries. Symwmetries of event horizon same as symmetries of
the null string worldsheet.

* Pynawic horizon on which d.of. live is then equivalent to a null string.
* Quantize the null string in Oscillator Yacuum. Use Lightcone gauge for convenience.
* Black hole states: a band of states with sufficiently high level.

* Mass is proportional to the radius of the horizon. Motivated by Near Horizon first law.
[Donnay et al 2015 Afshar et al 20161].

* Complicated combinatorics leads to entropy and amazing the correct logarithmic
corrections.

* Can be thought of as a precise formulation of the membrane paradigm.

* Generalization to d=4 with null membranes in progress and showing interesting signs.



Concluding remarks






We have just begun to serateh the surface of what seems to be an
amazingly rich subject.

New physics, new mathematics. New ways at looking at old problems.

Things that were previously discarded as “singular” make sense if we use
correct structures and follow singular limits carefully.

Only spoke of two applications. Many other things are afoot!



Thank you!



