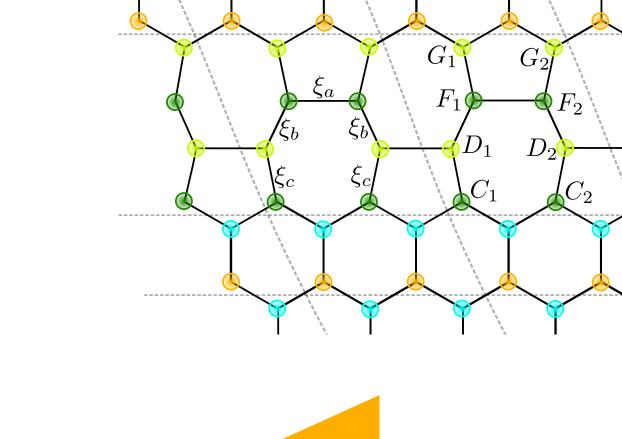
Weyl Anomalies of 4d Conformal **Boundaries and Defects** Adam Chalabi, Niels Bohr Institute Based on 2111.14713


31st Nordic Network Meeting, 16 November 2022

Motivation

Boundaries and defects in the lab

Defects in QFT

Boundaries and defects in string theory

 $\mathbb{Z}^{(1)}$

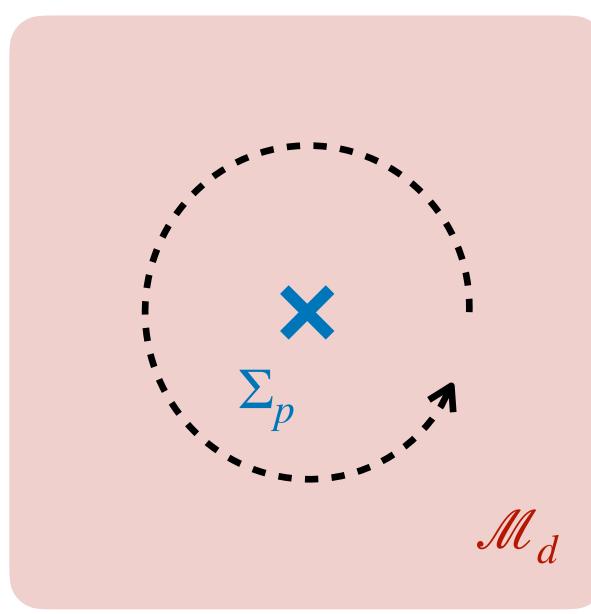
 W_R

Weyl Anomaly in Standard CFT

- On a curved background Weyl symmetry $g \rightarrow e^{2\omega}g$ is anomalous
- Anomaly is captured by $T^{\mu}_{\ \mu} \neq 0$ as a function of g

Central charges

• E.g. for CFT₄: $T^{\mu}_{\mu} \propto a E_4 - c W_{\mu\nu\rho\sigma} W^{\mu\nu\rho\sigma}$

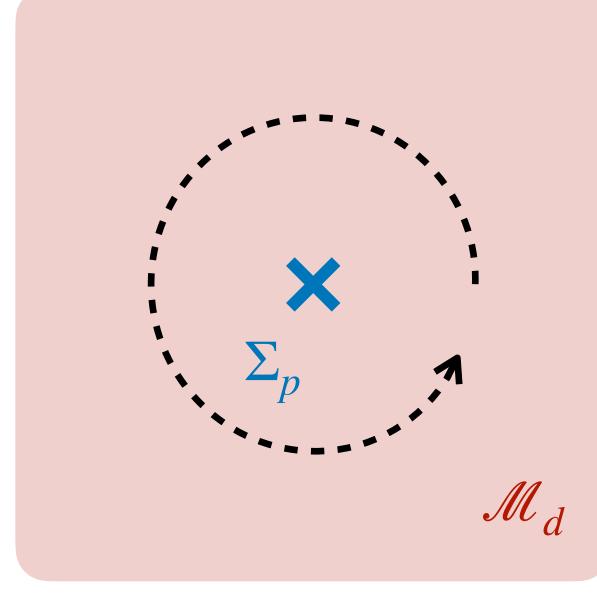

4d Euler density

Weyl tensor

Conformal Defects

- A p-dim conformal defect in CFT_d breaks conformal group $SO(d+1,1) \rightarrow SO(p+1,1) \times SO(d-p)$
- Residual symmetry still strongly constrains correlators

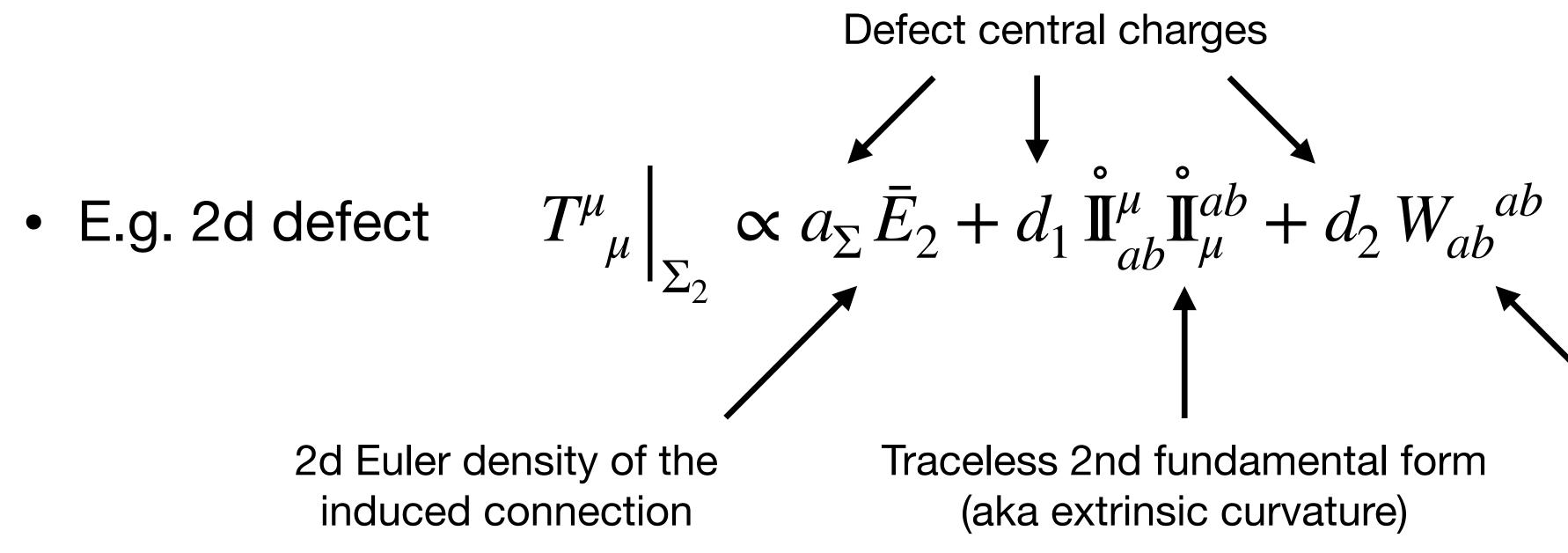
• E.g.
$$\langle \mathcal{O}_{\Delta}(x_{\perp}, x_{\parallel}) \rangle = \frac{a_{\mathcal{O}}}{|x_{\perp}|^{\Delta}}$$



Conformal Defects

- \nexists conserved defect stress tensor \hat{T}_{Σ}^{ab}
- Full stress tensor $T^{\mu\nu} = T^{\mu\nu} |_{\mathcal{M}} + T^{\mu\nu} |_{\Sigma}$

satisfies $\partial_{\mu}T^{\mu a} = 0$ everywhere


- Ward identity $\partial_{\mu}T^{\mu i} = \delta^{(d-p)}(x_{\perp}) \hat{D}^{i}(x_{\parallel})$
- Displacement operator \hat{D}^i is universal

Weyl Anomaly in DCFT

Defect contribution is captured by 7

$$T^{\mu}_{\mu}\Big|_{\Sigma} \neq 0$$
 as a function of $g, X^{\mu}(x_{\parallel})$

Defect central charges

Traceless 2nd fundamental form (aka extrinsic curvature)

Pullback of ambient Weyl tensor

Weyl Anomaly of 4d Conformal Defects Based on 2111.14713 — Chalabi, Herzog, O'Bannon, Robinson, Sisti

- For a 4d defect \exists 23 parity-even terms!
 - $T^{\mu}{}_{\mu}|_{\Sigma_{A}} \propto -a_{\Sigma}\overline{E}_{4} + d_{1}\mathcal{J}_{1} + d_{2}\mathcal{J}_{2} + d_{3}\overline{W}_{abcd}\overline{W}^{abcd} + d_{4}(W_{ab}{}^{ab})^{2}$ $+ d_{13}W_{ab}{}^{ab}\mathring{\Pi}_{cd}{}^{i}\mathring{\Pi}_{i}{}^{cd} + d_{14}W^{a}{}_{bij}\mathring{\Pi}_{ac}{}^{i}\mathring{\Pi}^{jbc} + d_{15}W^{a}{}_{ibj}\mathring{\Pi}^{i}{}_{ac}\mathring{\Pi}^{jbc}$ $+ d_{16}W^{abcd} \mathring{\Pi}^{i}_{ac} \mathring{\Pi}^{i}_{bd} + d_{17}W_{a}^{\ bac} \mathring{\Pi}^{i}_{bd} \mathring{\Pi}^{i}_{bc} d + d_{18}W^{c}_{icj} \mathring{\Pi}^{i}_{ab} \mathring{\Pi}^{jab}$

 $+ d_5 W_{aibj} W^{aibj} + d_6 W^{b}_{iab} W^{iac}_{c} + d_7 W_{ijkl} W^{ijkl} + d_8 W_{aijk} W^{aijk}$ $+ d_9 W_{abjk} W^{abjk} + d_{10} W_{iabc} W^{iabc} + d_{11} W^c{}_{acb} W_d{}^{adb} + d_{12} W^a{}_{iaj} W_{L}^{ibj}$ $+ d_{19} \text{Tr} \, \mathring{\Pi}^{i} \mathring{\Pi}_{i} \mathring{\Pi}^{j} \mathring{\Pi}_{j} + d_{20} \text{Tr} \, \mathring{\Pi}^{i} \mathring{\Pi}^{j} \mathring{\Pi}_{i} \mathring{\Pi}_{j} + d_{21} (\text{Tr} \, \mathring{\Pi}^{i} \mathring{\Pi}_{i})^{2} + d_{22} (\text{Tr} \, \mathring{\Pi}^{i} \mathring{\Pi}^{j}) (\text{Tr} \, \mathring{\Pi}_{i} \mathring{\Pi}_{j})$

Weyl Anomaly of 4d Conformal Defects Based on 2111.14713 — Chalabi, Herzog, O'Bannon, Robinson, Sisti

- For a 4d defect \exists 23 parity-even terms!
 - $T^{\mu}{}_{\mu}|_{\Sigma_{\mathcal{A}}} \propto -a_{\Sigma}\overline{E}_4 + d_1\mathcal{J}_1 + d_2\mathcal{J}_2 + d_3\overline{W}_{abcd}\overline{W}^{abcd} + d_4(W_{ab}{}^{ab})^2$ $+ d_{13}W_{ab}{}^{ab}\mathring{\Pi}_{cd}^{i}\mathring{\Pi}_{i}^{cd} + d_{14}W^{a}{}_{bij}\mathring{\Pi}_{ac}^{i}\mathring{\Pi}^{jbc} + d_{15}W^{a}{}_{ibj}\mathring{\Pi}^{i}{}_{ac}\mathring{\Pi}^{jbc}$ $+ d_{16}W^{abcd} \mathring{\Pi}^{i}_{ac} \mathring{\Pi}^{i}_{bd} + d_{17}W_{a}^{\ bac} \mathring{\Pi}^{i}_{bd} \mathring{\Pi}^{i}_{bc} d + d_{18}W^{c}_{icj} \mathring{\Pi}^{i}_{ab} \mathring{\Pi}^{jab}$

 $+ d_5 W_{aibj} W^{aibj} + d_6 W^{b}_{iab} W_c^{iac} + d_7 W_{ijkl} W^{ijkl} + d_8 W_{aijk} W^{aijkl}$ $+ d_9 W_{abjk} W^{abjk} + d_{10} W_{iabc} W^{iabc} + d_{11} W^c{}_{acb} W_d{}^{adb} + d_{12} W^a{}_{iaj} W_{L}^{ibj}$ $+ d_{19} \text{Tr} \, \mathring{\Pi}^{i} \mathring{\Pi}_{i} \mathring{\Pi}^{j} \mathring{\Pi}_{j} + d_{20} \text{Tr} \, \mathring{\Pi}^{i} \mathring{\Pi}^{j} \mathring{\Pi}_{i} \mathring{\Pi}_{j} + d_{21} (\text{Tr} \, \mathring{\Pi}^{i} \mathring{\Pi}_{i})^{2} + d_{22} (\text{Tr} \, \mathring{\Pi}^{i} \mathring{\Pi}^{j}) (\text{Tr} \, \mathring{\Pi}_{i} \mathring{\Pi}_{j})$

Weyl Anomaly of 4d Conformal Defects Based on 2111.14713 — Chalabi, Herzog, O'Bannon, Robinson, Sisti

- For a 4d defect \exists 23 parity-even terms!
 - $T^{\mu}{}_{\mu}|_{\Sigma_{\mathcal{A}}} \propto -a_{\Sigma}\overline{E}_4 + d_1\mathcal{J}_1 + d_2\mathcal{J}_2 + d_3\overline{W}_{abcd}\overline{W}^{abcd} + d_4(W_{ab}{}^{ab})^2$ $+ d_{13}W_{ab}{}^{ab}\mathring{\Pi}_{cd}^{i}\mathring{\Pi}_{i}^{cd} + d_{14}W^{a}{}_{bij}\mathring{\Pi}_{ac}^{i}\mathring{\Pi}^{jbc} + d_{15}W^{a}{}_{ibj}\mathring{\Pi}^{i}{}_{ac}\mathring{\Pi}^{jbc}$ $+ d_{16}W^{abcd} \mathring{\Pi}^{i}_{ac} \mathring{\Pi}^{i}_{bd} + d_{17}W_{a}^{\ bac} \mathring{\Pi}^{i}_{bd} \mathring{\Pi}^{i}_{bc} d + d_{18}W^{c}_{icj} \mathring{\Pi}^{i}_{ab} \mathring{\Pi}^{jab}$

 $+ d_5 W_{aibj} W^{aibj} + d_6 W^{b}_{iab} W^{iac}_{c} + d_7 W_{ijkl} W^{ijkl} + d_8 W_{aijk} W^{aijk}$ $+ d_9 W_{abjk} W^{abjk} + d_{10} W_{iabc} W^{iabc} + d_{11} W^c{}_{acb} W_d{}^{adb} + d_{12} W^a{}_{iaj} W_{L}^{ibj}$ $+ d_{19} \text{Tr} \, \mathring{\Pi}^{i} \mathring{\Pi}_{i} \mathring{\Pi}^{j} \mathring{\Pi}_{j} + d_{20} \text{Tr} \, \mathring{\Pi}^{i} \mathring{\Pi}^{j} \mathring{\Pi}_{i} \mathring{\Pi}_{j} + d_{21} (\text{Tr} \, \mathring{\Pi}^{i} \mathring{\Pi}_{i})^{2} + d_{22} (\text{Tr} \, \mathring{\Pi}^{i} \mathring{\Pi}^{j}) (\text{Tr} \, \mathring{\Pi}_{i} \mathring{\Pi}_{j})$

Weyl Anomaly of 4d Conformal Defects Based on 2111.14713

Two non-trivial Weyl invariants

$$\begin{aligned} \mathcal{J}_{1} &= \frac{1}{d-1} R \mathring{\Pi}_{ab}^{i} \mathring{\Pi}_{ab}^{ab} - \frac{1}{d-2} N^{\mu\nu} R_{\mu\nu} \mathring{\Pi}_{ab}^{i} \mathring{\Pi}_{a}^{ab} - \frac{2}{d-2} R^{a}{}_{b} \mathring{\Pi}_{ac}^{i} \mathring{\Pi}_{a}^{bc} - \frac{1}{2} W^{c}{}_{acb} \Pi_{i} \mathring{\Pi}_{i}^{i} \mathring{\Pi}_{ab} \\ &+ \frac{4}{9} W^{c}{}_{ica} \overline{D}^{b} \mathring{\Pi}_{ab}^{i} + \mathring{\Pi}^{iab} D_{i} W^{c}{}_{acb} - \frac{1}{2} \Pi^{i} \mathrm{Tr} \, \mathring{\Pi}_{i} \mathring{\Pi}^{j} \mathring{\Pi}_{j} + \frac{1}{16} \Pi^{i} \Pi_{i} \mathrm{Tr} \, \mathring{\Pi}^{j} \mathring{\Pi}_{j} + \frac{2}{9} \overline{D}^{b} \mathring{\Pi}_{ab}^{i} \overline{D}^{c} \mathring{\Pi}_{ab} \end{aligned}$$

- d_1 determined by $\langle \hat{D}\hat{D} \rangle$
- Unitarity $\implies d_1 \leq 0$

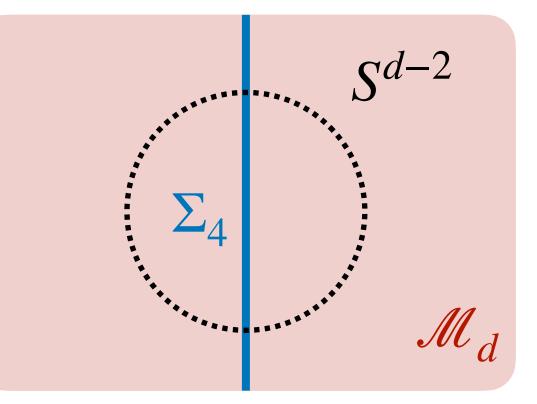
Weyl Anomaly of 4d Conformal Defects Based on 2111.14713

• Two non-trivial Weyl invariants

$$\begin{aligned} \mathcal{J}_{2} &= \frac{d-4}{d-2} W_{ab}{}^{ab} N^{\mu\nu} R_{\mu\nu} - \frac{d-4}{d-1} R W_{ab}{}^{ab} + \frac{4(d-5)}{3(d-2)} R_{ab} W_{c}{}^{acb} \\ &- \frac{5(d-4)}{48} W_{ab}{}^{ab} \Pi^{i} \Pi_{i} + \frac{2(d-5)}{3} W^{c}{}_{ica} \overline{D}^{b} \mathring{\Pi}_{ab}^{i} + \frac{4(d+1)}{9} \mathring{\Pi}^{iab} D_{i} W^{c}{}_{acb} \\ &- \frac{1}{3} W_{ic}^{ac} \overline{D}_{a} \Pi^{i} - \frac{2(d-5)}{3} \Pi^{i} \operatorname{Tr} \mathring{\Pi}_{i} \mathring{\Pi}^{j} \mathring{\Pi}_{j} + \frac{(d-10)}{12} \Pi^{i} D_{i} W_{ab}{}^{ab} + \frac{1}{3} D^{i} D_{i} W_{ab}{}^{ab} \end{aligned}$$

• d_2 determined by $\langle T \rangle$

• ANEC
$$\int_{\gamma} du \langle T_{uu} \rangle \ge 0 \implies d_2 \le$$


0

Weyl Anomaly of 4d Conformal Defects Based on 2111.14713

$$\begin{split} T^{\mu}{}_{\mu}|_{\Sigma_{4}} \propto &-a_{\Sigma}\overline{E}_{4} + d_{1}\mathcal{J}_{1} + d_{2}\mathcal{J}_{2} + d_{3}\overline{W}_{abcd}\overline{W}^{abcd} + d_{4}(W_{ab}{}^{ab})^{2} \\ &+ d_{5}W_{aibj}W^{aibj} + d_{6}W^{b}{}_{iab}W_{c}{}^{iac} + d_{7}W_{ijkl}W^{ijkl} + d_{8}W_{aijk}W^{aijk} \\ &+ d_{9}W_{abjk}W^{abjk} + d_{10}W_{iabc}W^{iabc} + d_{11}W^{c}{}_{acb}W_{d}{}^{adb} + d_{12}W^{a}{}_{iaj}W_{b}^{ibj} \\ &+ d_{13}W_{ab}{}^{ab}\mathring{\Pi}^{i}{}_{cd}\mathring{\Pi}^{icd} + d_{14}W^{a}{}_{bij}\mathring{\Pi}^{i}{}_{ac}\mathring{\Pi}^{jbc} + d_{15}W^{a}{}_{ibj}\mathring{\Pi}^{i}{}_{ac}\mathring{\Pi}^{jbc} \\ &+ d_{16}W^{abcd}\mathring{\Pi}^{i}{}_{ac}\mathring{\Pi}^{i}{}_{bd} + d_{17}W_{a}{}^{bac}\mathring{\Pi}^{i}{}_{bd}\mathring{\Pi}_{ic}{}^{d} + d_{18}W^{c}{}_{icj}\mathring{\Pi}^{i}{}_{ab}\mathring{\Pi}^{jab} \\ &+ d_{19}\mathrm{Tr}\,\,\mathring{\Pi}^{i}\mathring{\Pi}_{i}\mathring{\Pi}^{j}\mathring{\Pi}_{j} + d_{20}\mathrm{Tr}\,\,\mathring{\Pi}^{i}\mathring{\Pi}^{j}\mathring{\Pi}_{i}\mathring{\Pi}_{j} + d_{21}(\mathrm{Tr}\,\,\mathring{\Pi}^{i}\mathring{\Pi}_{i})^{2} + d_{22}(\mathrm{Tr}\,\,\mathring{\Pi}^{i}\mathring{\Pi}^{j})(\mathrm{Tr}\,\,\mathring{\Pi}_{i}\mathring{\Pi}_{j}) \end{split}$$

• Entanglement entropy $S_{EE}^{def}\Big|_{log}$

$$a_{\Sigma} + \frac{(d-5)(d-4)}{4(d-1)}d_2$$

Take-Home Messages

- Conformal defects contribute to the Weyl anomaly
- 23 parity even defect central charges for 4d conformal defects
- Defect central charges encode various physical quantities E.g. $\langle \hat{D}\hat{D} \rangle$, $\langle T \rangle$, S_{EE}^{def} , ...
- Bounds on defect central charges

Outlook

- Other physical quantities controlled by 4d defect central charges?
- Constraints on central charges, e.g. conformal collider or bootstrap?
- Parity-odd central charges? Non-vanishing examples?
- Does SUSY impose relations between 4d defect central charges?
- Examples of 4d defects in interacting CFTs, e.g. M5 brane intersection?