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Complexity and the Volume of Maximal Surfaces

Complexity=Volume Proposal

The computational complexity of a black hole can be thought of as
the minimal number of gates required for a quantum circuit to
prepare the corresponding time evolved state in the dual CFT.
[Susskind 2014] proposed that the complexity of a black hole equals
the volume of the extremal codimension-1 surface anchored at the
boundary.
Complexity of a chaotic system is expected to grow linearly at late
times and saturate at extremely late times (t ∼ eS).
The maximal volume surfaces display the expected linear growth at
late times. However, this volume keeps growing and never saturates.
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Complexity and the Volume of Maximal Surfaces

In JT gravity, the plateau can be obtained by adding wormhole
corrections to the volume computations.
JT gravity can be realised explicitly as a random matrix theory.
Therefore, the wormhole corrections can be added systematically.
Higher dimensional gravity computations require further investigation
to make sense of such wormhole inclusions.
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Complexity and the Volume of Maximal Surfaces

Maximal Surfaces in Eternal Black Hole
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Complexity and the Volume of Maximal Surfaces

The metric in the infalling Eddington-Finkelstein coordinates is given by

v = t+ r∗(r); ds2 = −f(r)dv2 + 2dvdr + r2dΣ2
k,d−1 (1)

where
f(r) = r2 + 1− ωd−2

rd−2
(2)

The volume of a spherically symmetric spacelike codimension-1 surface is
given by

V = Ωd−1

∫
dλrd−1

√
−f(r)v̇2 + 2v̇ṙ ≡ Ωd−1

∫
dλL(v̇, r, ṙ) (3)

The integrand has a conserved quantity E:

E = −∂L
∂v̇

=
rd−1(fv̇ − ṙ)√
−fv̇2 + 2v̇ṙ

(4)
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Complexity and the Volume of Maximal Surfaces

Extremizing the action, we get the EOM

E = r2(d−1)(f(r)v̇ − ṙ)

ṙ2 + r−4(d−1)Veff = 0 where Veff = r2(d−1)f(r) + E2
(5)

The turning point rmin can be obtained by solving

Veff(rmin) = 0 (6)
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Complexity and the Volume of Maximal Surfaces

Late time behavior

The location of the constant radial surface r̃min is given by

V ′
eff(r̃min) = 0 (7)
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Complexity and the Volume of Maximal Surfaces

The End
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Complexity and the Volume of Maximal Surfaces

V = Ωd−1

∫
dλrd−1

√
−f(r)v̇2 + 2v̇ṙ
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Growth rate of geodesics

Length of Geodesics

ℓ =

∫
dλ

√
−f(r)v̇2 + 2v̇ṙ (8)

Extremizing the action, we get the EOM

E = f(r)v̇ − ṙ

ṙ2 + Ṽeff = 0 where Ṽeff = f(r) + E2
(9)

The turning point rmin can be obtained by solving

Ṽeff(rmin) = 0 (10)
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Growth rate of geodesics

Critical Points of Ṽeff

In d = 4, we have

Ṽ ′
eff(r̃min) = 0
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Growth rate of geodesics

Picking the right contour

Using the equations of motion, we can see that the volume and the
boundary time can be written as integrals over the complex contour.

ℓ =

∫
γ
dr

1√
f(r) + E2

(11)

and

tR =

∫
γ
dr

[
E

f(r)
√

f(r) + E2

]
(12)

We want to impose the boundary condition:

Im(tR) = 0 (13)
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Growth rate of geodesics

Growth of the Geodesics

Imposing the boundary conditions, we find that there are two
contours, or equivalently, two complex geodesics that satisfy
Im(tR) = 0.
The length of the geodesic along the two contours turn out to be
complex conjugates of each other.
At late times, we can explicitly show that the real part of the length
grows linearly in time!
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Growth rate of geodesics

Relation to Boundary Correlation Functions

[Fidkowsk 2003] argued that, in the geodesic approximation, the boundary
correlation function is related to the length of the complex geodesic
through the relation

⟨χL(t)χR(t)⟩ = e−∆ℓ + e−∆ℓ̄ (14)

where χL,R are probe operators acting on the heavy states of the
boundary theory. Therefore, we have

2Re{(ℓ(t))} = − lim
∆→0

∂ ⟨χL(t)χR(t)⟩
∂∆

(15)
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Growth rate of geodesics

Late-Time Behavior of Correlation Functions

We expect the probe operators χL,R acting on the heavy states of the
boundary theory to behave as random matrices. The density of states of a
RMT can be argued to have a universal correction that is non-perturbative
in eS :

ρ(E)ρ(E′) = ρ(E)ρ(E′)−
sin2

[
eS (E − E′)

]
[πeS (E − E′)]2

(16)

Using
Eigenstate Thermalization Hypothesis (ETH)
Non-perturbative correction

we can explicitly see that the correlation function saturates at t > eS .
Therefore, (real part of) the length of complex geodesics also saturate!
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Outlook

Outlook

We saw that the length of complex geodesics have a linear growth at
early late times and then it saturates when t > eS .
Therefore, complexity defined thorough the length of these complex
geodesics display the exact behavior one would expect complexity to
demonstrate.
New bulk dual for complexity?
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Outlook

The length saturated only when we added the non-perturbative
correction to the calculation.
The non-perturbative correction admits a formal topological
expansion and the gravitational dual of these corrections can be
thought of as wormhole corrections to the length computation.
We have already seen similar wormhole corrections show up in the
Page curve calculations.
These wormholes help us go beyond what one would expect
semiclassical gravity to capture.
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Thank You
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Extra Slides

Late time behavior of correlation functions
We have

⟨χL(t)χR(t)⟩ =
∫

dEmdEnρ(En)ρ(Em)e−
β
2
(Em+En)e−it(En−Em)

|⟨En|χ|Em⟩|2
(17)

We expect the probe operators χL,R acting on the heavy states of the
boundary theory to behave as random matrices.

ρ(E)ρ(E′) = ρ(E)ρ(E′)−
sin2

[
eS (E − E′)

]
[πeS (E − E′)]2

(18)

Using ETH

⟨En|χ|Em⟩ = χ(Ē)δmn + e−S/2f(Ē, ω)Rmn (19)

we can show that the correlation functions plateau at t > eS!
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