

Lucia Anna Tarasovičová Westfälische Wilhelms-Universität Münster **NBI** heavy-ion seminar 23.06.2022

Di-hadron correlations of identified particles at high p_T in pp collisions at the LHC

Differences between electrical and strong field

Jets

- Gluon self-interaction \Rightarrow tube-like field lines by increasing energy
- Creation of new $q\overline{q}$ pairs

ATLAS event display with marked jets [1]

Jets

- Gluon self-interaction \Rightarrow tube-like field lines by increasing energy
- Creation of new $q\overline{q}$ pairs
- In detectors showers of hadrons in one direction
- Can be used to study the properties of the original parton

ratio of relative production

Ratio of relative produc Vº in gluon to quark jets [3]

Quark/gluonjets

ons	

OPAL	
OPAL data LETSET 7.4	
HERWIG 5.9	
* +•+	
•*	
1.2 1.4	
ction of	
4a [a]	

- Gluon jets in contrast to quark jets:
 - Higher multiplicity
 - Wider
 - Higher production of Λ baryons, equal production of K⁰_S mesons

How does the jet-peak yield depend on the trigger particle selection?

Strangeness enhancement

- Enhanced relative strangeness production in high multiplicity small collision systems
- Steeper increase for more strange hadrons also in small collision systems

What is the contribution to the enhancement in small systems from hard and soft processes?

Different model descriptions

low mult pp

- Problems by modelling of strangeness in small systems
- Big differences between models in hadron production:
 - PYTHIA mainly hadronisation
 - EPOS core / corona
 - PYTHIA Shoving strings become additional kicks in the overlap regions

comparison with different models bring more light to

Di-hadron correlations

• Trigger particle - high p_T

- The original jet parton included
- Associated particle lower p_T

Di-hadron correlations

• Trigger particle - high p_T

- The original jet parton included
- Associated particle lower p_T
- Difference $\Delta \varphi = \varphi_{trigg} \varphi_{assoc}$ $\Delta \eta = \eta_{trigg} - \eta_{assoc}$
- Correlation function:

L.A. Tarasovičová, WWU

Di-hadron correlations

- Trigger particle high p_T
 - The original jet parton included
- Associated particle lower p_T
- Difference $\Delta \varphi = \varphi_{trigg} \varphi_{assoc}$ $\Delta \eta = \eta_{trigg} - \eta_{assoc}$

- Correlation function: $d^2 N_{pair}^{corr}$ 1 $d^2 N_{pair}^{raw}$ 1 1 - C $\frac{\mathrm{d}\Delta\varphi\mathrm{d}\Delta\eta}{\mathrm{d}\Delta\eta} = \frac{1}{N_{trigg}^{corr}} \frac{\mathrm{d}\Delta\varphi\mathrm{d}\Delta\eta}{\mathrm{d}\Delta\varphi\mathrm{d}\Delta\eta} \varepsilon_{trigg} \varepsilon_{assoc} \varepsilon_{pair}(\Delta\varphi\Delta\eta)$
- $\Delta \phi$ projection
- $\Delta \varphi_2 \, \mathrm{d}N$ • Yield calculation: $Y_J^{\Delta \varphi} =$ $J_{\Delta \varphi_1} d\Delta \varphi$

In this analysis: Vo-h ,hh and h-Vo correlations

L.A. Tarasovičová, WWU

 $\Delta \varphi$

ALICE detector

ITS - tracking, pile-up rejection, PV reconstruction, $|\eta| < 0.9$

TPC - tracking, PID, $|\eta| < 0.9$

TOF - pile-up rejection, PID, $|\eta| < 0.9$

V0 - multiplicity estimation in forward and backward directions V0A 2.8 < η < 5.1 VOC $-3.7 < \eta < -1.7$

- pp collisions at $\sqrt{s} = 13$ TeV
- Minimum bias trigger (kINT7)
- Primary vertex position within 10 cm from IP
- Pile-up rejection with help of PhysicsSelectionTask and fAliEventCuts->SetupRun2pp(); fAliEventCuts->AcceptEvent(fEvent);
- Multiplicity estimation with MultSelection->GetMultiplicityPercentile("VOM")

Event selection

- $|\eta| < 0.8$
- FilterBit 256 and special tune
- Pairs with invariant mass of a hadron rejected

Track and V⁰ selection

V⁰ invariant mass

— Signal fit — Background fit Signal region $\mu \pm 3\sigma$

Side-bands region

 $\Lambda + \Lambda$

Corrections

$$N_{trigg}^{corr} = \frac{1 - C_{trigg}}{\varepsilon_{trigg}} N_{trigg}^{raw}$$

Corrections

 $C = \frac{N_{secondaries}^{survived}}{N_{particles}^{survived}}$

L.A. Tarasovičová, WWU

Corrections

 $\underline{C_{trigg}} N_{trigg}^{raw}$ $N_{trigg}^{corr} =$ ε_{trigg}

Corrections

$$N_{trigg}^{corr} = \frac{1 - C_{trigg}}{\varepsilon_{trigg}} N_{trigg}^{raw}$$

$$^{g} < 4 \text{ GeV/c}$$

 $c < p_{T}^{assoc} < p_{T}^{trigg}$
 $a = 1$
 $a = 1$
 $a = 1$
 $a = 1$
 $a = 0.5$
 $b = 0$
 $b = 1$
 $b =$

 $\varepsilon_{pair} = \frac{1}{\alpha} M(\Delta \eta \Delta \varphi)$

1 T **4** T 50000 Correction for the contribution of misidentified V⁰ 20000 10000 1.08 1.15 1.09 1.1 1.11 1.12 1.13 1.14 $\mathsf{m}_{_{\pi\Lambda}}$

1.08	1.09	1.1	1.11	1.12	1.13	1.14

L.A. Tarasovičová, WWU

÷	
1.15	

 $\mathsf{m}_{_{\pi\Lambda}}$

L.A. Tarasovičová, WWU

Feed-down correction

$$\Lambda = \Lambda_{prim} + \Lambda_{sec} \quad \text{Corrected}$$

$$\Lambda_{sec}(p_{\mathrm{T},i}) = F_{ij} \int_{p_{\mathrm{T},j}} \frac{\mathrm{d}N}{\mathrm{d}p_{\mathrm{T}}} (\Xi) \mathrm{d}p_{\mathrm{T}} \quad (\Xi) \int_{\mathfrak{G}}^{20} 18$$

$$F_{ij} = \frac{N_{rec}(\Lambda)_{from \Xi in bin j}}{N_{gen}(\Xi)^{in bin j}} \quad (IA)$$

1

Feeddown matrix $\Lambda + \overline{\Lambda}$

L.A. Tarasovičová, WWU

Feed-down correction

$$\Lambda = \Lambda_{prim} + \Lambda_{sec} \quad \text{Corrected}$$

$$\Lambda_{sec}(p_{\mathrm{T},i}) = F_{ij} \int_{p_{\mathrm{T},j}} \frac{\mathrm{d}N}{\mathrm{d}p_{\mathrm{T}}}(\Xi) \mathrm{d}p_{\mathrm{T}}$$

$$F_{ij} = \frac{N_{rec}(\Lambda)_{from \ \Xi \ in \ bin \ j}}{N_{gen}(\Xi)^{in \ bin \ j}}$$

$$N_{trigg}^{final}(p_{\mathrm{T},i}) = C_{purity}^{\Lambda}(p_{\mathrm{T},i}) * (N_{\Lambda}^{measured}(p_{\mathrm{T},i}) - \frac{1}{\varepsilon_{\Lambda}}(p_{\mathrm{T},i}) * F_{ij} *$$

 $\frac{1}{\varepsilon_{\Lambda}}(p_{\mathrm{T},i}) * F_{ij} * C_{purity}^{\Xi}(p_{\mathrm{T},j}) * N_{\Xi}^{measured}(p_{\mathrm{T},j}))$

 $(p_{\mathrm{T},i}) * F_{ij} * (N_{\Xi-h}^{measured}(p_{\mathrm{T},j}) - N_{\Xi-h}^{side-band}(p_{\mathrm{T},j})) - \frac{N_{\Lambda-h}^{side-band}(p_{\mathrm{T},i})}{N_{\Lambda-h}^{side-band}(p_{\mathrm{T},i})}$

MC closure Test

L.A. Tarasovičová, WWU

MC closure Test

2.5

Residual non-closure yielding to additional systematical uncertainty:

Hausseminar, 04.02.2022

L.A. Tarasovičová, WWU

Results

Increasing $p_{\rm T}^{\rm assoc}$

2D correlation function

Increasing $p_{\rm T}^{\rm assoc}$

Increase of the peak size with increasing p_{T}^{trigg} more available energy

- Increase of the peak size with increasing p_{T}^{trigg} more available energy
- Decrease of the peak size with increasing $p_{\rm T}^{\rm assoc}$

2D correlation function

• Increase of the peak size with increasing p_{T}^{trigg} - more available energy

• Decrease of the peak size with increasing $p_{\rm T}^{\rm assoc}$

• Collimated peaks for high $p_{\rm T}$ - hard fragmentation

2D correlation function

- Increase of the peak s with increasing p_{T}^{trigg} more available energy
- Decrease of the peak with increasing $p_{\rm T}^{\rm assoc}$
- Collimated peaks for $p_{\rm T}$ - hard fragmentati
- Broader peaks for low $p_{\rm T}^{\rm assoc}$ or $p_{\rm T}^{\rm trigg}$ - softer fragmentation

<u>+</u>
size
_
y
size
high
ion
V

$\Delta \phi$ projection with model comparison

Published in [5]

- No model can give a proper description
- EPOS underestimates both peaks for all trigger particles except for K_S^0 at higher $p_{\rm T}$
- Bigger difference between PYTHIA8 models (Monash and Shoving) at higher $p_{\rm T}$

$\Delta \phi$ projection with model comparison

- No model can give a proper description
- Monash fits the underlying event for hh good tuning on spectra, but underestimates
 - $h (\Lambda + \Lambda)$
- Shoving fits $h (\Lambda + \overline{\Lambda})$ - improvement
- **EPOS** overestimates the peak widths

L.A. Tarasovičová, WWU

L.A. Tarasovičová, WWU

- caused by more available energy
- Clear multiplicity ordering in h-h, a ridge-like structure, other effects?

L.A. Tarasovičová, WWU

- not detected by the V0 detector

L.A. Tarasovičová, WWU

L.A. Tarasovičová, WWU

Integrated yields (p_T^{trigg} and multiplicity) Underlying event

L.A. Tarasovičová, WWU

L.A. Tarasovičová, WWU

L.A. Tarasovičová, WWU

PYTHIA8 - the deviation from data depends weakly on multiplicity

L.A. Tarasovičová, WWU

- PYTHIA8 the deviation from data depends weakly on multiplicity
 - Monash tune better for hard processes

L.A. Tarasovičová, WWU

- PYTHIA8 the deviation from data depends weakly on multiplicity
 - Monash tune better for hard processes
 - Shoving better for intermediate $p_{\rm T}$

- PYTHIA8 the deviation from data depends weakly on multiplicity
 - Monash tune better for hard processes
 - Shoving better for intermediate p_{T}
- EPOS LHC strong dependence on multiplicity

- No dependence on the event multiplicity
- Different trends of the ratio for different trigger particles:

- No dependence on the event multiplicity
- Different trends of the ratio for different trigger particles:
 - K_S^0 rather flat with p_T^{trigg} and below unity

- No dependence on the event multiplicity
- Different trends of the ratio for different trigger particles:
 - K_S^0 rather flat with p_T^{trigg} and below unity
 - Λ increasing with p_{T}^{trigg}

Jet-like particle-yield ratios to h-h yields

Published in [5]

- Different trends of the ratio for different trigger particles:
 - K_S^0 rather flat with p_T^{trigg} and below unity
 - Λ increasing with p_{T}^{trigg}
- No dependence on the event multiplicity

Triggering with high- $p_{\rm T} \Lambda$ causes a bias towards gluon jets

- No clear increase with multiplicity in each region
- Biggest difference in the first bin
- High multiplicity trigger new point
- $h \pi$ should be used as proper basis

Best described by the PYTHIA8 Shoving model

• The underlying event measurement - in agreement with inclusive measurement

measurement

selection) \Rightarrow usable in Pb-Pb collisions

• The underlying event measurement - in agreement with inclusive

Consistency with jet-finder method (difference caused by kinematic

- $^{\circ}$ V⁰-h, h-h and h-V⁰ correlations analysis performed within different pT and multiplicity intervals in pp collision at 13 TeV
- Per-trigger yield extracted and compared with MC models
- A difference between jet-like particle yields triggered with K_S^0 and Λ with respect to charged hadron was observed in pp collisions at 13 TeV
 - Explanation (through PYTHIA8): triggering with Λ causes a bias towards gluon jets
- $^{\circ}$ No clear multiplicity dependence of V⁰ in or outside of jets
- The enhancement in $\Lambda + \overline{\Lambda}/2K_{S}^{0}$ ratio visible only for the outside of jet region

Summary

Thank you for your attention!

References

[1] <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EventDisplayRun2Physics</u> [2] ACTA PHYSICA POLONICA B, No 2, Vol. 36 (2005), page 433 [3] K. Ackerstaff et al. "Production of K_S^0 and Λ in quark and gluon jets from Z^0 decay". arXiv: hep-ex/9805025 [4] ALICE Collaboration "Enhanced production of multi-strange hadrons in high-multiplicity proton-proton collisions". arXiv: 1606.07424 [n ex].

[5] ALICE Collaboration " K_S^0 - and (anti-) Λ -hadron correlations in pp collisions at $\sqrt{s} = 13$ TeV". arXiv: 2107.11209 [nucl-ex].

Hausseminar, 04.02.2022

Track and V⁰ selection

• $|\eta| < 0.8$

- FilterBit 256 and special tune
- Pairs with invariant mass of a hadron rejected

Selection Online or On-Th Rapidity |y| V⁰ decay radius DCA Neg to PV DCA Pos to PV DCA V⁰ daughter $V^0 \cos(\theta_{PA})(K)$ $V^0 \cos(\theta_{PA})(\Lambda)$ Proper lifetime K_{c}^{0} Proper lifetime Λ Competing V^0 rejection Competing V⁰ rejection dE/dx (N σ)

Table 1: Selection criteria for V⁰ candidates

 $3 < p_{T}^{\text{trigg}} < 20 \text{ GeV/}c$

	Value
e-fly	only offline
	< 0.5
(cm)	>0.5
(cm)	>0.06
(cm)	>0.06
rs (σ)	<1
(S_{S}^{0})	>0.97
۱)	>0.995
$\frac{1}{2}$ (cm)	<20
(cm)	<30
K_S^0 (GeV/c ²)	< 0.005
$\Lambda (\text{GeV/c}^2)$	< 0.01
	<3

Selection	
Pseudorapidity $ \eta $	
Number of TPC Crossed Rows	
TPC Refit Flag	k
Number of Findable Clusters	
TPC Crossed Rows / Findable Ratio	

Table 2: Selection criteria for V⁰ daughter tracks

 $1 \text{GeV}/c < p_{\text{T}}^{\text{assoc}} < p_{\text{T}}^{\text{trigg}}$

Systematic Uncertainties Study

Systematic Uncertainties Study

Yield (p_T^{assoc})- model comparison

L.A. Tarasovičová, WWU

Jet-like particle-yield ratios to h-h yields

- Different trends of the ratio for different trigger particles:
- K_S^0 below unity for all p_T^{trigg} intervals $p_{\mathrm{T}}^{\mathrm{trigg}}$ and $p_{\rm T}^{\rm assoc}$ bins
 - Λ higher than K_S^0 and above unity for low $p_{\rm T}^{\rm assoc}$ at high $p_{\rm T}^{\rm trigg}$

The bias towards gluon jets is more pronounced at the soft part of hard jets

