#### Non-relativistic corners of $\mathcal{N} = 4$ super Yang-Mills

Stefano Baiguera Ben Gurion University of the Negev

Based on works with T. Harmark, Y. Lei and N. Wintergerst [arXiv: 2009.03799, 2012.08532, 2111.10149]

10 August 2022

Stefano Baiguera

Non-relativistic corners of  $\mathcal{N} = 4$  SYM

10 August 2022 1 / 18

Black holes and quantum information

- Holographic complexity (shock waves in dS space...) [SB, Bermar, Chapman]
- Rényi entropies and deformations [SB, Bianchi, Chapman, Galante, 2022]

Non-Lorentzian theories

- Non-relativistic limits of  $\mathcal{N} = 4$  SYM [SB, Harmark, Lei]
- Supersymmetric Galilean Electrodynamics [SB, Cederle, Penati, 2022]
- Conformal Carroll scalars [SB, Oling, Sybesma, Søgaard, 2022]

イロト イヨト イヨト イヨト

# Non-relativistic corners of $\mathcal{N} = 4$ super Yang-Mills

Stefano Baiguera

Non-relativistic corners of  $\mathcal{N}=4$  SYM

10 August 2022 3 / 18

▲ 同 ▶ ▲ 三 ▶ ▲ 三 ▶

#### Motivations

AdS/CFT duality

 $\mathcal{N}=4$  SYM with gauge group  $\mathrm{SU}(N)\leftrightarrow$  type IIB string theory on  $\mathrm{AdS}_5 imes S^5$ 

Great successes:

- Planar limit  $N = \infty$  and integrability [Minahan, Zarembo, 2002][Beisert, Kristjansen, Staudacher, 2003]
- BMN limit [Berenstein, Maldacena, Nastase 2002]
- Supersymmetric localization [Pestun, 2007]

Problem:

- $\bullet\,$  Planar limit: gravity enters as 1/N perturbative corrections
  - $\Rightarrow$  No access to black holes and D-branes

(日) (四) (日) (日) (日)

#### Spin Matrix Theories (SMT)

Controlled finite N effects: Spin Matrix Theory limits [Harmark, Orselli, 2014]

- Decoupling limits of N = 4 SYM on ℝ × S<sup>3</sup> ⇒ the theory reduces to a subsector with only one-loop contributions of the dilatation operator [Harmark, Orselli, 2006][Harmark, Kristjansson, Orselli, 2006-07]
- Unique extension from  $N = \infty$  to finite  $N \Rightarrow$  generalization of spin chains



5 / 18

#### Non-relativistic nature of SMT

- Emergent U(1) global symmetry  $\Rightarrow$  mass conservation
- Bulk duals are non-relativistic string theories [Harmark, Hartong, Obers, 2017][Harmark, Hartong, Menculini, Obers, Yan, 2018][Harmark, Hartong, Menculini, Obers, Oling, 2019]



A B A B A B A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

#### Decoupling limits

- Grand-canonical ensemble: approach zero-temperature critical points
- Micro-canonical ensemble: zoom-in close to a unitarity (BPS) bound

$$E \ge J = \sum_{i} \left( a_i S_i + b_i Q_i \right) \tag{1}$$

 $(S_i \text{ isometries on } S^3, Q_i \text{ Cartan generators of } SU(4) \text{ R-symmetry})$ 

SMT limit ( $\lambda = gN^2$ )

$$\lambda \to 0$$
,  $\frac{E-J}{\lambda}$  finite,  $N$  fixed (2)

(I) < (I)

#### List of Spin Matrix Theories with scalars

| Spin group | Combination of Cartan charges $J$               |
|------------|-------------------------------------------------|
| SU(2)      | $Q_1 + Q_2$                                     |
| SU(1 1)    | $\frac{2}{3}S_1 + Q_1 + \frac{2}{3}(Q_2 + Q_3)$ |
| SU(1 2)    | $\frac{1}{2}S_1 + Q_1 + Q_2 + \frac{1}{2}Q_3$   |
| SU(2 3)    | $Q_1 + Q_2 + Q_3$                               |
| SU(1,1)    | $S_1 + Q_1$                                     |
| SU(1,1 1)  | $S_1 + Q_1 + \frac{1}{2}(Q_2 + Q_3)$            |
| SU(1,1 2)  | $S_1 + Q_1 + Q_2$                               |
| SU(1,2 2)  | $S_1 + S_2 + Q_1$                               |
| PSU(1,2 3) | $S_1 + S_2 + Q_1 + Q_2 + Q_3$                   |

- 2

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

#### Goal of the talk

## Compute the effective Hamiltonian $\lambda \to 0, \qquad H_{\text{int}} = \frac{H - J}{\lambda} \text{ finite }, \qquad N \text{ fixed}$ (3)

### Focus on SU(1,1|1) sector

Non-relativistic corners of  $\mathcal{N}=4$  SYM

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

#### Techniques to compute the SMT Hamiltonian

Methods to compute  $H_{\text{int}}$ :

- Loop corrections to the dilatation operator, then zoom in towards the BPS bound [Minahan, Zarembo, 2002][Beisert, Kristjansen, Staudacher, 2003]
- Dimensional reduction along S<sup>3</sup>, then quantize [Harmark, Wintergerst, 2019][SB, Harmark, Wintergerst, 2020]



(I) < (I)

- Algebraic structure determines quadratic blocks, then build the Hamiltonian based on symmetries [SB, Lei, Harmark, Wintergerst, 2020]
- Find fermionic generators such that [Beisert, Zwiebel, 2007][SB, Harmark, Lei, 2021]

$$\{\mathcal{Q}, \mathcal{Q}^{\dagger}\} = H_{\text{int}} \tag{4}$$

・ロト ・ 同ト ・ ヨト ・ ヨト

### SU(1,1|1) SMT Hamiltonian

BPS bound

$$E \ge S_1 + Q_1 + \frac{1}{2}(Q_2 + Q_3) \tag{5}$$

Classical Hamiltonian

$$H_{\text{limit}} = H_0 + \tilde{g}^2 H_{\text{int}} \tag{6}$$

$$H_0 = \sum_{n=0}^{\infty} \left[ (n+1)\operatorname{tr}\left(\Phi_n^{\dagger}\Phi_n\right) + \left(n + \frac{3}{2}\right)\operatorname{tr}\left(\psi_n^{\dagger}\psi_n\right) \right]$$
(7)

$$H_{\rm int} = \frac{1}{2N} \sum_{l=1}^{\infty} \frac{1}{l} \operatorname{tr}\left(\hat{q}_l^{\dagger} \hat{q}_l\right) + \frac{1}{2N} \sum_{l=0}^{\infty} \operatorname{tr}\left(F_l^{\dagger} F_l\right)$$

Blocks

$$\hat{q}_{l}^{\dagger} = \sum_{n=0}^{\infty} \left( [\Phi_{n+l}^{\dagger}, \Phi_{n}] + \frac{\sqrt{n+1}}{\sqrt{n+l+1}} \{\psi_{n+l}^{\dagger}, \psi_{n}\} \right)$$
(9)

$$F_{l}^{\dagger} = \sum_{n=0}^{\infty} \frac{1}{\sqrt{n+l+1}} [\Phi_{n}, \psi_{n+l}^{\dagger}]$$
(10)

Stefano Baiguera

Non-relativistic corners of  $\mathcal{N}=4$  SYM

10 August 2022 12 / 18

(8)

#### Properties of the effective Hamiltonian

$$H_{\rm int} = \frac{1}{2N} \sum_{l=1}^{\infty} \frac{1}{l} \operatorname{tr} \left( \hat{q}_l^{\dagger} \hat{q}_l \right) + \frac{1}{2N} \sum_{l=0}^{\infty} \operatorname{tr} \left( F_l^{\dagger} F_l \right)$$

• Positive definite

- Measure of the distance from the saturation of the BPS bound
- Admits a (semi)local superfield formulation

(I) < (I)

(11)

#### Semi-local formulation of the SU(1, 1|1) sector

Surviving fields of the SU(1,1|1) near-BPS limit

$$\Phi(t,x) = \sum_{n=0}^{\infty} \Phi_n(t) e^{i(n+\frac{1}{2})x}, \qquad \psi(t,x) = \sum_{n=0}^{\infty} \frac{1}{\sqrt{n+1}} \psi_n(t) e^{i(n+1)x}$$
(12)

Equal-time (anti)commutators

$$[\Phi(t,x),\Phi(t,x')] = 0 , \quad [\Phi(t,x),-i\Phi^{\dagger}(t,x')] = iS_{\frac{1}{2}}(x-x')$$
(13)

$$\{\psi(t,x),\psi(t,x')\} = 0 , \quad \{\psi(t,x),\partial_{x'}\psi^{\dagger}(t,x')\} = iS_1(x-x')$$
(14)

$$S_j(x) = \sum_{n=0}^{\infty} e^{i(n+j)x}$$
(15)

A □ ▶ A □ ▶ A □ ▶

Non-relativistic corners of  $\mathcal{N}=4$  SYM

#### Superfield formulation of the SU(1, 1|1) sector

• (Anti)chiral fermionic superfield

$$\Psi(t,x,\theta,\theta^{\dagger}) = \psi + \theta \Phi + \frac{i}{2} \theta \theta^{\dagger} \partial_x \psi \,, \quad \Psi^{\dagger}(t,x,\theta,\theta^{\dagger}) = \psi^{\dagger} + \theta^{\dagger} \Phi^{\dagger} - \frac{i}{2} \theta \theta^{\dagger} \partial_x \psi^{\dagger}$$

• (Anti)chiral bosonic superfield:

$$\begin{split} \mathcal{A}(t,x,\theta,\theta^{\dagger}) &= A(t,x) + \theta\lambda(t,x) + \frac{i}{2}\theta\theta^{\dagger}\partial_{x}A(t,x) \\ \mathcal{A}^{\dagger}(t,x,\theta,\theta^{\dagger}) &= A^{\dagger}(t,x) - \theta^{\dagger}\lambda^{\dagger}(t,x) - \frac{i}{2}\theta\theta^{\dagger}\partial_{x}A^{\dagger} \end{split}$$

#### $A,\lambda$ residual gauge field and gaugino

Action:

$$S = \int dt dx \int d\theta^{\dagger} d\theta \operatorname{tr} \left( i \Psi^{\dagger} (\mathcal{D}_0 - \mathcal{D}_x) \Psi + \mathcal{A}^{\dagger} \mathcal{A} \right)$$
(16)

with  $\mathcal{D}_0 \equiv \partial_0$ ,  $\mathcal{D}_x \equiv \partial_x - ig_0 \mathcal{A} - ig_0 \mathcal{A}^{\dagger}$ .

#### Conclusions

- $\bullet\,$  Non-relativistic theories from near-BPS limits of  $\mathcal{N}=4$  SYM
- Positivity of the interactions
- Block structure
- Semi-local interpretation as QFT
- Superfield formulation

3

#### Future developments

- Local formulation of SU(1,2) theories as 2+1 dimensional QFTs
- PSU(1,2|3) SMT limit [SB, Harmark, Lei, in progress]
- Relation to black holes in the PSU(1,2|3) sector [Gutowski, Reall, 2004]
- Holographic investigations: TNC and SNC strings [Bergshoeff, Gomis, Gürsoy, Harmark, Hartong, Oling, Rosseel, Simsek, Yan, Zinnato, ...]

## Thank you!

Stefano Baiguera

Non-relativistic corners of  $\mathcal{N}=4$  SYM

10 August 2022 18 / 18

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト