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➙ AdS5 / CFT4  duality
Charting the (many) phases of N = 4 SYM

Jorge E. Santos

DAMTP

Fundamental Aspects of Gravity

Type IIB supergravity theory on AdS5xS5 with radius L and N units of F(5) flux on S5 

Large N and strong t’Hooft coupling                     limit of              Super Yang-Mills 
(SYM) theory with  gauge  group  SU(N)  &  YM coupling  gYM
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Asymptotically global AdS5⇥S
5
BHs with Hawking temperature T and chemical potentials µi

of IIB supergravity

Consequently, finding the full phase space of black hole solutions of IIB is mandatory to

understand the dynamics and thermodynamics of thermal phases of N = 4 SYM.
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      Finding the full phase space of BHs of IIB is mandatory to understand the   




• We should find all the BHs and map them into thermal states in the dual SYM

   => identify the dominant phases (as saddle points) in the thermodynamic ensembles.


• Necessary to reproduce microscopically the Bekenstein-Hawking entropy of AdS BHs.


• Contribute to understand a puzzle of SO(6) gauged supergravity: its most general 
SUSY BH known so far — Kunduri-Lucietti-Reall BH — has only 4 independent 
parameters. 


   However, asymptotically AdS5xS5 BHs are characterized by 6 conserved charges  


   with the BPS relation constraint E= Q1+Q2+Q3+J1+J2 


             => the most general SUSY BH should be a 5-parameter solution. 

   From dual CFT perspective, most general SUSY states also expected to be  

   characterized by 5 parameters. 


   So, what is the missing gravitational parameter?

➙ Motivations

➙ AIM of this Talk: identify new thermal phases with a finite chemical potential 

                        that can dominate some thermodynamic ensembles.

[ See Benini’s review talk at Strings 2022] 

[ Gutowski, Reall ’04 ]

[ Kunduri, Lucietti, Reall ’06 ] 



• The massless bosonic fields of type IIB supergravity:

    metric tensor gab, dilaton Φ, axion C, NS-NS antisymmetric 2-tensor B(2), 

    RR 2-form potential C(2), and RR 4-form C(4) with a 5-form field strength F(5) =dC(4)   

    satisfying a self-duality condition.                                                                 . 

    Fermionic superpartners: complex Weyl gravitino &  complex Weyl dilatino.


• Known solutions of IIB supergravity with only { gab,F(5) }:


• Global AdS5xS5 Schwarzschild & its rotating black hole (BH) partners.  

Everywhere (not only at bdry) the direct product of two base spaces M5xS5 and 

have horizon topology S3xS5. 


• Asymptotically globally AdS5 x S5 BHs that break the SO(6) symmetry of S5  
down to SO(5): 


            — lumpy BHs with polar deformations along the S5  and 

            — localized BHs on the S5  (with S8 horizon topology). 
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Figure 1: A pictorial representation of the S5 for some black hole solutions that asymptote to
global AdS5⇥S5 (the last three are conjectured solutions). The first one is the familiar
AdS5-Schw⇥S5 that is smeared over the S5. The second is a ` = 1 BH localized on
the north pole of the S5. The third is a ` = 2 localised BH solution and the fourth is a
` = 2 black belt. In this manuscript, we construct the ` = 1, 2 “lumpy” BH solutions,
with horizon topology S3⇥S5 that we conjecture to be connect to these localised BH
solutions in a phase diagram.

Of course, the ` = 1 zero mode is only the first mode that appears. There are an infinite
number of such modes, with higher modes appearing at ever smaller horizon radii. For example,
the ` = 2 mode appears at

r+
��
`=2

' 0.3238898L . (1.6)

We note, however, that there are important di↵erences between the even ` modes and odd `
modes. If �g is a linear perturbation, then ��g is also a linear perturbation. In the odd `
modes, these can be mapped to each other via a Z2 symmetry of the S5, and so are equivalent.
For example, among the ` = 1 solutions, the choice of sign merely selects whether the localised
S8 black hole will develop on the north or south pole of the S5. In the even ` modes, however,
these perturbations map to themselves under this symmetry. The �g and ��g perturbations
are not equivalent, which means we have two branches of solutions emanating from the even `
zero modes. In the ` = 2 modes, we expect one branch to lead to two disconnected S8 black
holes localised on the poles of the S5; see Fig. 1.c. We expect the other branch to lead to an
s4⇥S4 black hole (the s4 being a smaller sphere than the S4); see Fig. 1.d. The larger S4 wraps
around (coincides with) the S4 equator of the S5, so we call these conjectured solutions “black
belts” (the s4 gives the transverse directions of the belt). Higher ` modes lead to various other
multi-horizon solutions with some combination of S8 holes and s4⇥S4 belts.

In this paper, we construct these lumpy black holes connected to the ` = 1 and ` = 2 zero
modes and study their thermodynamic properties. We detail our numerical construction in
section 2, and compute the phase diagram in section 3. In appendix A, we give the technical
details of Kaluza-Klein holography necessary to interpret our results on the CFT4 [40] (see also
[35–39,41,42]). Numerical checks are in appendix B.
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➙ Known SYM phases

[ OD, Santos, Way 1501.06574 & 1605.04911]

[ Witten ’98 ] 



➙ Towards finding more SYM phases

Cvetic-Lü-Pope-Sadrzadeh-Tran [hep-th/0003103]  


Gunaydin, Romans, Warner (1986)

• Explore even further the phase space of thermal states (to identify all the relevant 
saddle points for the thermodynamic partition functions of the theory).


• Useful: dimensional reduction of IIB along S5 yields 5d N=8 gauged supergravity. 


   It’s believed (not proven) to be a consistent reduction of IIB on AdS5xS5. 


• 10d fields gab,Φ,C,B(2),C(2),C(4) are equivalently encoded in the 5d field content of 

gauged N =8 SUGRA: graviton gab, fifteen SO(6) gauge fields Aij, twelve 2-form 
gauge potentials in the              representations of SO(6), 42 scalars in the                                             


                                         representations of SO(6) & the fermionic superpartners.


• But IIB with only gab,F(5) (relevant for AdS/CFT: source D3’s) can be consistently 

dim reduced along the S5 to yield 5d SO(6) gauged supergravity. 


  

 This is itself is a consistent truncation of gauged N =8 SUGRA where we set the                               

                              scalars and the             2-form potentials to zero. The bosons that  

  survive descend from {gab,F(5)} of IIB: 


    the graviton gab, the 15 gauge fields Aij   &  the       scalars.
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Consistent truncation of SO(6) gauged SUGRA down to the Cartan subgroup of 
SO(6) with associated gauge fields {A(1)K}  (K=1,2,3): U(1)3 gauged supergravity. 


The field content: 

        Graviton gab + 2 neutral scalars {φ1, φ2} + 3 U(1)’s gauge fields {A(1)K}, 

      + 3 complex scalar fields {ΦK} minimally coupled to {A(1)K} with charge qL =2. 


All 5 scalars have mass m2L2 =-2 => saturate AdS5 Breitenlöhner-Freedman (BF) bound. 

➙ U(1)3 gauged supergravity:

effective action

S “ 1

16⇡G5

ª
d5x

?´g

"
R ´ V ´ 1

2
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K“1

pr'Kq2 ´ 1

4

3ÿ
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1

X2
K

`
FK

p2q
˘2

´ 1

8
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„
pDa�KqpDa�Kq: ´ pr�Kq2

4p4 ` �Kq

⇢*
´ 1

16⇡G5

ª
F 1

p2q ^ F 2
p2q ^ A3

p1q ,

(2.8)

where we have defined (with no Einstein summation convention over K “ 1, 2, 3)

Da�K ” Ba�K ´ i
2

L
AK

a �K ,

FK
ab ” BaAK

b ´ BbAK
a ,

�K ” �K�
:
K ,

(2.9)

and the scalar potential for the truncation (2.6) is

V “ 1
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1�1 ` X2
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3�3 ´ 2

X1

a
4 ` �2

a
4 ` �3

´ 2

X2

a
4 ` �1

a
4 ` �3 ´ 2

X3

a
4 ` �1

a
4 ` �2

⇢
.

(2.10)

Extremization of the action (2.8) yields the field equation for the graviton
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ab ` 1

2
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ab ` 1

8
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2
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,

(2.12)
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Charting the (many) phases of N = 4 SYM

Static solutions

The scalar sector

We want the bulk theory to be dual to N = 4 SYM and not a
double trace deformation thereof.
All scalar fields must have standard boundary conditions.

The potential V (ÏK̃ , �K) is fairly complicated

V (ÏK̃ , �K) = 1
2L2

5 3ÿ

K=1

X2
K(ÏK̃)⁄K ≠

3ÿ

I ”=J ”=K=1

Ô
4 + ⁄J

Ô
4 + ⁄K

XI(ÏK̃)

6
.

Near ˆM we can read o� the mass of all scalars and find
m2

ÏK̃
= m2

�K
= ≠

2
L2 .

In Fe�erman-Graham coordinates this in turn implies
ÏK̃ ≠æ

zæ0
ÈOÏK̃

Íz2 + . . .

�K ≠æ
zæ0

ÈO�K Íz2 + . . .

Our boundary conditions demand V K̃ = V K = 0.

8 / 8

Charting the (many) phases of N = 4 SYM

The action

U(1)3 - action - DMS ’22

S = 1
16fiG5

⁄
dx5


≠g

Ó
R ≠ V (ÏK̃ , ⁄K ) ≠

1
2

2ÿ

K̃=1

(ÒÏK̃ )2 ≠
1
4

3ÿ

K=1

!
F K

(2)

"2

X2
K(ÏK̃)

≠
1
8

3ÿ

K=1

Ë
(Da�K )(Da�K)† ≠

(Ò⁄K)2

4(4 + ⁄K )

ÈÔ
≠

1
16fiG5

⁄
F 1

(2) · F 2
(2) · A3

(1)

where F
K
(2) = dA

K
(1), ⁄K = �K�†

K and L is the AdS5 length scale.

Comments:

Field content: metric g, three Maxwell field strengths F
K
(2), two

neutral scalars ÏK̃ and three charged scalars �K .

The charged scalars �K minimally couple to the Maxwell fields

D�K © Ò�K ≠ i e AK �K with e ©
2
L

.

6 / 8

AdS/CFT dictionary: these fields are dual to operators of conformal dimension ∆. 

[ OD, Mitra, Santos ’22 ] 



• Three special cases of U(1)3 gauged supergravity where the EoM simplify: 


   1. Truncation with three equal charges => 


     2. Truncation with a single charge => 


     3. Truncation with two equal charges => 


and the equations of motion for the other fields
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„pF 1
p2qq2
X2
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´
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p2qq2
X2

2
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´ BV

B'2
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p2q

˙
` F 2

p2q ^ F 3
p2q “ ´ ‹ J1

p1q,

d

ˆ
1

X2
2

‹ F 2
p2q

˙
` F 3

p2q ^ F 1
p2q “ ´ ‹ J2

p1q, (2.13)

d

ˆ
1

X2
3

‹ F 3
p2q

˙
` F 1

p2q ^ F 2
p2q “ ´ ‹ J3

p1q,

DaDa�K `
„
ra�Kra�K

4
`
4 ` �K

˘2 ´ l�K

2
`
4 ` �K

˘ ´ 8

�K

BV
B�:

K

⇢
�K “ 0, pK “ 1, 2, 3q,

DaDa�
:
K `

„
ra�Kra�K

4
`
4 ` �K

˘2 ´ l�K

2
`
4 ` �K

˘ ´ 8

�:
K

BV
B�K

⇢
�:

K “ 0, pK “ 1, 2, 3q,

with l “ gabrarb and JK
p1q “ i

4Lr�:
KpD�Kq ´ �KpD�Kq:s is the electric current,

d is the exterior derivative, ‹ is the Hodge dual and we use the differential form
conventions listed in appendix of [61].

There are three special cases of the consistent truncation (2.8) of SOp6q gauged
supergravity where the field equations simplify considerably, namely:

I) Truncation with three equal charges: The action (2.8) admits a S3 per-
mutation symmetry which acts on K index of all the fields. The most general
S3-invariant field configuration satisfies A1 “ A2 “ A3 ” A, �1 “ �2 “ �3 ” �

and X1 “ X2 “ X3 “ 1 or equivalently '1 “ '2 “ 0. This truncation can also
be obtained directly from (2.1) by restricting to SOp3q-invariant field configu-
rations (instead of Z3

2).13

II) Truncation with a single charge: The action (2.8) has a Z2 ˆZ2 symmetry
where the first factor is the permutation group of K “ 1, 2 and the second
factor is a discrete Up1q transformation on K “ 1 (or equivalently on K “ 2),
namely a rotation by ⇡ which maps �1 Ñ ´�1. Field configurations which are
invariant under this symmetry satisfy �1 “ �2 “ 0, �3 ” �, A1 “ A2 “ B,

13 More precisely, think of Tij as a 3 ˆ 3 matrix where each entry is a 2 ˆ 2 matrix. Consider the
SOp3q Ä SOp6q which acts on this 3ˆ3 matrix. SOp3q-invariant field configurations are proportional
to the identity (Schur’s Lemma) so we can decompose Tij “ T2ˆ2 b I3ˆ3. The unimodularity
condition on T then implies that T is a unimodular 2ˆ 2 symmetric matrix and such a matrix can
be parameterized in terms of one complex field �. The same restriction on the gauge field implies
A

ij “ A2ˆ2 b I3ˆ3 and the antisymmetric 2 ˆ 2 matrix A is parameterized by one d.o.f. A.
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From (2.16)–(2.18a) we can also straightforwardly compute the Gibbs free energy
which is useful to study the grand-canonical ensemble

G “ E ´ TS ´ µQ . (2.20)

3 Consistent truncation with A1 “ A2 ” 0, A3 ” A

3.1 Setup the problem: Ansatzë and boundary conditions

We will denote this theory with A1
p1q “ A2

p1q ” 0, A3
p1q ” Ap1q and �1 “ �2 ” 0,�3 ” �

as the truncation with a single charge of action (2.8). Motivated by the ansatz (2.14)
we used for the CLP black hole, to find the static and spherically symmetric hairy
solutions of this sector we find convenient to use the ansatz:

ds2 “ h1{3
ˆ

´f

h
dt2 ` dr2

g
` r2d⌦2

3

˙
;

'1 “ ´
c

2

3
lnh , '2 “ 0;

A1
p1q “ 0 , A2

p1q “ 0 , A3
p1q “ Ap1q “ Atdt ;

�1 “ 0 , �2 “ 0 , �3 “ �:
3 “ � ;

(3.1)

where d⌦2
3 is the line element of a unit radius S3 and we have chosen the gauge

where h1{3r2 measures the radius of the S3. Moreover, we have fixed the Up1q gauge
freedom by taking �3 “ � to be real, which implies that the gauge field vanishes on
the horizon r “ r` (given by the largest root of f), i.e. At|r“r`“ 0. Note that the
neutral scalar is determined by h. The full solution is determined in terms of five
functions of the radial coordinate, namely thprq, fprq, gprq, Atprq,�prqu. Plugging
this ansatz into the field equations (2.11)–(2.13) we find that the system closes if the

– 15 –

A3 “ A and X1 “ X2 or equivalently '1 ” ', '2 “ 0. In this sector, the action
has an enhanced Z2 symmetry under which B Ñ ´B and we can further
consistently truncate to B “ 0. This truncation can also be obtained directly
from (2.1) by restricting to SOp4q-invariant field configurations.14

III) Truncation with two equal charges: The action (2.8) has a Z2 ˆ Z2 sym-
metry where the first Z2 corresponds to the permutation group of K “ 1, 2 and
the second Z2 is a discrete Up1q transformation on K “ 3, namely a rotation
by ⇡ which maps �3 Ñ ´�3. Field configurations which are invariant under
this symmetry satisfy A1 “ A2 “ A, A3 “ B, �1 “ �2 ” �, �3 “ 0 and
X1 “ X2 or equivalently '1 ” ', '2 “ 0. This truncation can also be obtained
directly from (2.1) by restricting to SOp2q-invariant field configurations.15

Static solutions (which is the topic of this manuscript) have an additional time-
reversal symmetry which sets the Chern-Simons term in (2.8) to zero. In this
case, the action has an enhanced Z2 symmetry under which B Ñ ´B and we
can further consistently truncate to B “ 0.

Static asymptotically AdS5 ˆ S5 hairy black hole and solitonic solutions of the first
theory where already studied in detail using perturbation theory in [52] and a full
numerical analysis was done in [53]. This has been further extended to include
angular momenta J1 “ J2 in [52, 54]. In this manuscript, we construct the static
asymptotically AdS5 ˆ S5 hairy black hole and solitonic solutions in the second and
third truncations (in future work, we plan to extend this study to include angular
momenta J1 “ J2 [58]) using perturbation theory and a full numerical analysis.
Truncation II) is studied in section 3 and truncation III) is studied in section 4.
Altogether, the case studied in [52–54] along with the two cases discussed in this
manuscript provides us with a good overview of the full phase space of hairy solutions
for the case with three arbitrary charged fields �1,2,3.

Before discussing the hairy solutions of our consistent truncations II) and III),
it will be useful to review the known static black hole solutions of the theory (2.8)
without the charged condensate: the “bald” CLP black holes. We do this in the next
subsection.

2.2 Cvetic-Lü-Pope black hole solutions of SOp6q gauged supergravity

When the charged scalar fields vanish, �K “ 0 pK “ 1, 2, 3q, the consistent truncation
of SOp6q gauged supergravity described by the action (2.8) reduces to Up1q3 gauged
five-dimensional N “ 2 supergravity coupled to two vector multiplets. The static

14 Here, SOp4q Ä SOp6q acts on the top left 4 ˆ 4 minor matrix of the 6 ˆ 6 matrix Tij .
15 In the language of footnote 13, SOp2q Ä SOp6q acts on the top left 2 ˆ 2 minor matrix of the
3 ˆ 3 matrix Tij .
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interacting mix as

ECLPL “ EL ´ EsolL

“ EL ´ QL ` N2

6L

˜
2

„
1 ` 3

ˆ
EL ´ QL

N2

˙⇢ 1
2

` 1

¸

“ 1

2
` 3r2`

2L2
` 9r4`

8L4
´ 3r6`

32L6

ˆ
5 ` ln

r2`
2L2

˙
` O

ˆ
r8`
L8

˙
.

(3.77)

This also matches – to leading order in r` – the energy of the “bald” CLP black hole
(3.28) at rq “ 1

2 .

4 Consistent truncation with A1 “ A2 ” A,A3 ” 0

4.1 Setup the problem: Ansatzë and boundary conditions

We will denote this theory with A1 “ A2 ” A,A3 ” 0 and �1 “ �2 ” �,�3 ” 0 as
the truncation with two equal charges. Again motivated by the ansatz (2.14) we used
for the CLP black hole, to find the static and spherically symmetric hairy solutions
of this sector, we find convenient to use this time the ansatz:

ds2 “ h2{3
ˆ

´ f

h2
dt2 ` dr2

g
` r2d⌦2

3

˙
;

'1 “
c

2

3
lnh , '2 “ 0;

A1 “ Atdt , A2 “ Atdt , A3 “ 0;

�1 “ �:
1 “ � , �2 “ �:

2 “ �, �3 “ 0 ;

(4.1)

where d⌦2
3 is again the line element of a unit radius S3 and we have selected the gauge

where h2{3r2 measures the radius of the S3. Moreover, we have fixed the Up1q gauge
freedom by taking �1 “ �2 “ � to be real, which implies that At “ 0 at the horizon
location, r “ r`. Inserting this ansatz into the field equations (2.11)–(2.13) we find
that the system closes if the following five equations for thprq, fprq, gprq, Atprq,�prqu
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• EoM of U(1)3 gauged SUGRA are complicated. 

A3 “ A and X1 “ X2 or equivalently '1 ” ', '2 “ 0. In this sector, the action
has an enhanced Z2 symmetry under which B Ñ ´B and we can further
consistently truncate to B “ 0. This truncation can also be obtained directly
from (2.1) by restricting to SOp4q-invariant field configurations.14

III) Truncation with two equal charges: The action (2.8) has a Z2 ˆ Z2 sym-
metry where the first Z2 corresponds to the permutation group of K “ 1, 2 and
the second Z2 is a discrete Up1q transformation on K “ 3, namely a rotation
by ⇡ which maps �3 Ñ ´�3. Field configurations which are invariant under
this symmetry satisfy A1 “ A2 “ A, A3 “ B, �1 “ �2 ” �, �3 “ 0 and
X1 “ X2 or equivalently '1 ” ', '2 “ 0. This truncation can also be obtained
directly from (2.1) by restricting to SOp2q-invariant field configurations.15

Static solutions (which is the topic of this manuscript) have an additional time-
reversal symmetry which sets the Chern-Simons term in (2.8) to zero. In this
case, the action has an enhanced Z2 symmetry under which B Ñ ´B and we
can further consistently truncate to B “ 0.

Static asymptotically AdS5 ˆ S5 hairy black hole and solitonic solutions of the first
theory where already studied in detail using perturbation theory in [52] and a full
numerical analysis was done in [53]. This has been further extended to include
angular momenta J1 “ J2 in [52, 54]. In this manuscript, we construct the static
asymptotically AdS5 ˆ S5 hairy black hole and solitonic solutions in the second and
third truncations (in future work, we plan to extend this study to include angular
momenta J1 “ J2 [58]) using perturbation theory and a full numerical analysis.
Truncation II) is studied in section 3 and truncation III) is studied in section 4.
Altogether, the case studied in [52–54] along with the two cases discussed in this
manuscript provides us with a good overview of the full phase space of hairy solutions
for the case with three arbitrary charged fields �1,2,3.

Before discussing the hairy solutions of our consistent truncations II) and III),
it will be useful to review the known static black hole solutions of the theory (2.8)
without the charged condensate: the “bald” CLP black holes. We do this in the next
subsection.

2.2 Cvetic-Lü-Pope black hole solutions of SOp6q gauged supergravity

When the charged scalar fields vanish, �K “ 0 pK “ 1, 2, 3q, the consistent truncation
of SOp6q gauged supergravity described by the action (2.8) reduces to Up1q3 gauged
five-dimensional N “ 2 supergravity coupled to two vector multiplets. The static

14 Here, SOp4q Ä SOp6q acts on the top left 4 ˆ 4 minor matrix of the 6 ˆ 6 matrix Tij .
15 In the language of footnote 13, SOp2q Ä SOp6q acts on the top left 2 ˆ 2 minor matrix of the
3 ˆ 3 matrix Tij .
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➙ ‘Bald’ BHs (Cvetic-Lü-Pope 2004):  ΦK =0  (K=1,2,3)

• Parameterized by an energy E and three electric charges {Q1,Q2,Q3} <—> A(1)K


  Can be viewed as the “Reissner-Nordström-AdS5” (RNAdS) BHs of the theory. 

  But, also have non-trivial neutral scalar fields {φ1, φ2} supporting them.
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Thermal states of N = 4 SYM with temperature T , chemical potentials µi and energies of

order N
2
living on the Einstein static universe Rt ⇥ S

3

Asymptotically global AdS5⇥S
5
BHs with Hawking temperature T and chemical potentials µi

of IIB supergravity

Consequently, finding the full phase space of black hole solutions of IIB is mandatory to

understand the dynamics and thermodynamics of thermal phases of N = 4 SYM.
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Charting the (many) phases of N = 4 SYM

Single-charge sector

Results - 1/2

The most general solution depends on two parameters:

E and Q © Q3 .

Black hole solutions with �K = 0 are known analytically - Cvetič,
Lü, Pope ’04 - CLP (in fact they are known for Q1 ”= Q2 ”= Q3).

Smooth CLP BH: E > Q.
CLP BH are singular at E = Q.

Fixed LQ/N2
Ø 0.5: CLP BHs

are unstable Q < E < Ec(Q).
Find Ec(Q) as a function of Q.
BHs with �3 ”= 0 exist in red
region and S > SCLP:
dominante microcanonical.
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Charting the (many) phases of N = 4 SYM

Two-charge sector

Results - 1/2

The two-charge sector is reminiscent of the three-equal Q:

E and Q1 = Q2 © Q and Q3 = 0 .

Black hole solutions with �K = 0 are known analytically - Cvetič,
Lü, Pope ’04 - CLP (in fact they are known for Q1 ”= Q2 ”= Q3).

Smooth CLP: E > Qext < 2Q.
CLP are singular at E = Qext.

Fixed LQ/N2
Ø 0: CLP BHs

are unstable Qext Æ E < Ec(Q).
Find Ec(Q) as a function of Q.
BHs with �1 = �2 ”= 0 exist in
red region and S > SCLP:
dominante microcanonical.
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Charting the (many) phases of N = 4 SYM

Two-charge sector

Results - 1/2
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E and Q1 = Q2 © Q and Q3 = 0 .

Black hole solutions with �K = 0 are known analytically - Cvetič,
Lü, Pope ’04 - CLP (in fact they are known for Q1 ”= Q2 ”= Q3).

Smooth CLP: E > Qext < 2Q.
CLP are singular at E = Qext.

Fixed LQ/N2
Ø 0: CLP BHs

are unstable Qext Æ E < Ec(Q).
Find Ec(Q) as a function of Q.
BHs with �1 = �2 ”= 0 exist in
red region and S > SCLP:
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Smooth CLP: 

CLP are singular (S=0) at E = Qext 

Smooth CLP: E > Q


CLP are singular (S=0) at E = Q 

• Single charge truncation • Two equal charge truncation
(equal 3-charge truncation is similar) 


BP
S 
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, E
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➙ Truncation of U(1)3 gauged supergravity with a single charge 

From (2.16)–(2.18a) we can also straightforwardly compute the Gibbs free energy
which is useful to study the grand-canonical ensemble

G “ E ´ TS ´ µQ . (2.20)

3 Consistent truncation with A1 “ A2 ” 0, A3 ” A

3.1 Setup the problem: Ansatzë and boundary conditions

We will denote this theory with A1
p1q “ A2

p1q ” 0, A3
p1q ” Ap1q and �1 “ �2 ” 0,�3 ” �

as the truncation with a single charge of action (2.8). Motivated by the ansatz (2.14)
we used for the CLP black hole, to find the static and spherically symmetric hairy
solutions of this sector we find convenient to use the ansatz:

ds2 “ h1{3
ˆ

´f

h
dt2 ` dr2

g
` r2d⌦2

3

˙
;

'1 “ ´
c

2

3
lnh , '2 “ 0;

A1
p1q “ 0 , A2

p1q “ 0 , A3
p1q “ Ap1q “ Atdt ;

�1 “ 0 , �2 “ 0 , �3 “ �:
3 “ � ;

(3.1)

where d⌦2
3 is the line element of a unit radius S3 and we have chosen the gauge

where h1{3r2 measures the radius of the S3. Moreover, we have fixed the Up1q gauge
freedom by taking �3 “ � to be real, which implies that the gauge field vanishes on
the horizon r “ r` (given by the largest root of f), i.e. At|r“r`“ 0. Note that the
neutral scalar is determined by h. The full solution is determined in terms of five
functions of the radial coordinate, namely thprq, fprq, gprq, Atprq,�prqu. Plugging
this ansatz into the field equations (2.11)–(2.13) we find that the system closes if the
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A3 “ A and X1 “ X2 or equivalently '1 ” ', '2 “ 0. In this sector, the action
has an enhanced Z2 symmetry under which B Ñ ´B and we can further
consistently truncate to B “ 0. This truncation can also be obtained directly
from (2.1) by restricting to SOp4q-invariant field configurations.14

III) Truncation with two equal charges: The action (2.8) has a Z2 ˆ Z2 sym-
metry where the first Z2 corresponds to the permutation group of K “ 1, 2 and
the second Z2 is a discrete Up1q transformation on K “ 3, namely a rotation
by ⇡ which maps �3 Ñ ´�3. Field configurations which are invariant under
this symmetry satisfy A1 “ A2 “ A, A3 “ B, �1 “ �2 ” �, �3 “ 0 and
X1 “ X2 or equivalently '1 ” ', '2 “ 0. This truncation can also be obtained
directly from (2.1) by restricting to SOp2q-invariant field configurations.15

Static solutions (which is the topic of this manuscript) have an additional time-
reversal symmetry which sets the Chern-Simons term in (2.8) to zero. In this
case, the action has an enhanced Z2 symmetry under which B Ñ ´B and we
can further consistently truncate to B “ 0.

Static asymptotically AdS5 ˆ S5 hairy black hole and solitonic solutions of the first
theory where already studied in detail using perturbation theory in [52] and a full
numerical analysis was done in [53]. This has been further extended to include
angular momenta J1 “ J2 in [52, 54]. In this manuscript, we construct the static
asymptotically AdS5 ˆ S5 hairy black hole and solitonic solutions in the second and
third truncations (in future work, we plan to extend this study to include angular
momenta J1 “ J2 [58]) using perturbation theory and a full numerical analysis.
Truncation II) is studied in section 3 and truncation III) is studied in section 4.
Altogether, the case studied in [52–54] along with the two cases discussed in this
manuscript provides us with a good overview of the full phase space of hairy solutions
for the case with three arbitrary charged fields �1,2,3.

Before discussing the hairy solutions of our consistent truncations II) and III),
it will be useful to review the known static black hole solutions of the theory (2.8)
without the charged condensate: the “bald” CLP black holes. We do this in the next
subsection.

2.2 Cvetic-Lü-Pope black hole solutions of SOp6q gauged supergravity

When the charged scalar fields vanish, �K “ 0 pK “ 1, 2, 3q, the consistent truncation
of SOp6q gauged supergravity described by the action (2.8) reduces to Up1q3 gauged
five-dimensional N “ 2 supergravity coupled to two vector multiplets. The static

14 Here, SOp4q Ä SOp6q acts on the top left 4 ˆ 4 minor matrix of the 6 ˆ 6 matrix Tij .
15 In the language of footnote 13, SOp2q Ä SOp6q acts on the top left 2 ˆ 2 minor matrix of the
3 ˆ 3 matrix Tij .
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➙ Truncation of U(1)3 gauged supergravity with a single charge 
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Thermal states of N = 4 SYM with temperature T , chemical potentials µi and energies of

order N
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Asymptotically global AdS5⇥S
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BHs with Hawking temperature T and chemical potentials µi

of IIB supergravity

Consequently, finding the full phase space of black hole solutions of IIB is mandatory to

understand the dynamics and thermodynamics of thermal phases of N = 4 SYM.
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Perturb CLP BH with charged 


scalar field Φ3 = Φ :


& solve the associated “Klein-Gordon” eqn 


   with appropriate BCs. 


=> Unstable when Im (ω L) >0 

• We can also solve directly for the  


  onset of the instability, Qo(E), where ω = 0.

  CLP unstable above onset.  

Charting the (many) phases of N = 4 SYM

Single-charge sector

Results - 1/2

The most general solution depends on two parameters:

E and Q © Q3 .

Black hole solutions with �K = 0 are known analytically - Cvetič,
Lü, Pope ’04 - CLP (in fact they are known for Q1 ”= Q2 ”= Q3).

Smooth CLP BH: E > Q.
CLP BH are singular at E = Q.
Fixed LQ/N2

Ø 0.5: CLP BHs
are unstable Q < E < Ec(Q).
Find Ec(Q) as a function of Q.

BHs with �3 ”= 0 exist in red
region and S > SCLP:
dominante microcanonical.
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SUSY

Soliton, 

Q=E

[ Liu, Lü, Pope, Vazquez-Poritz ’07] 

[ OD, Mitra, Santos ’22 ] 

• There is also a supersymmetric Soliton  
with Q=E  and                  (analytical soln)    

N = 4
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2
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understand the dynamics and thermodynamics of thermal phases of N = 4 SYM.
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which was determined using a strategy that we will outline in Section 3.6. The
agreement between the code that searches for the onset directly, and our calculation
of the quasinormal mode spectrum tp�!,!u is reassuring. Note that in order for an
onset to exist for a static solution, it must be the case that Rep!q “ Imp!q “ 0 at
the onset. Fig. 1 shows that the CLP black hole is unstable (since Imp!Lq ° 0) in
the region ESUSYpQq † EpQq † EonsetpQq for fixed Q. This is the region of moduli
space where we expect the hairy black holes to play a role. We will confirm this
picture shortly. Finally, we note that Rep!q is really not a gauge invariant quantity.
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Figure 1. The real (blue disks) and imaginary (orange squares) of ! as a function of the
energy LE{N2 for LQ{N2 “ 0.75 (left panel) and LQ{N2 “ 1 (right panel). The inverted
red triangle pinpoint the supersymmetric bound for given value of LQ{N2 and the black
disk describes the onset of the instability.

Indeed, under Up1q transformations A Ñ A ` d�, with � a smooth function, the
charged scalar transforms as � Ñ e

2 i
L � �. In particular, if we choose � as in (3.33)

and consider a class gauge transformations of the form � “ �p0qt with �p0q constant
and real, these induce a change in ! as ! Ñ ! ´ 2

L�
p0q . We often choose to regard

A as a smooth one-form, in which case this gauge freedom is chosen to that At “ 0

at the black hole event horizon. This is the gauge we used when computing ! shown
in Fig. 1.

3.6 Onset of scalar condensation instability

Having shown that the scalar is unstable, we now turn out attention to the systematic
study of the instability onset as a function of the CLP energy E and charge Q. Our
starting point is still (3.32)), but we now choose � to be spherically symmetric and
exhibit no time dependence. We still perform the same change of variable as in
(3.37) (with ! “ 0) and introduce a compact coordinate as in (3.38). The resulting
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Fixed LQ/N2

Onset of CLP 

    instability

• Scalar condensation instability 


  of ‘Bald’ CLP BHs (Φ = 0):

α

α

β

β



• CLP BHs are linearly unstable to condensation of charged  scalar Φ.  

     => beyond leading order in perturbation theory,    

         there should exist hairy BHs with charged hair Φ 

         bifurcating (in a 2nd order phase transition) from the onset of the CLP instability,   

      in a phase diagram of static solutions.

• Thermodynamic quantities computed using Holographic Renormalization 

• Solve EoM (5 coupled nonlinear ODEs) either numerically (at full nonlinear level) or 
within perturbation theory (matched asymp expansion) with boundary conditions:


  — Regularity at horizon (hairy BH) or at origin (supersymmetric soliton)

  — Asymp global AdS5 BCs for metric: bdry is Einstein Static Universe


      Leave the homogeneous chemical potential (source of U(1) gauge field) free :


      NO sources for the charged & neutral scalar fields  (all saturate the BF bound).


Charting the (many) phases of N = 4 SYM

Static solutions

La Règle du jeu

The rules of the game are simple: map all static solutions of the
EOM derived from the action.
Before doing so we must discuss what boundary conditions we
want to consider.

We want to consider solutions whose conformal boundary ˆM
approaches a four-dimensional Einstein static Universe

ds2
ˆM = ≠dt2 + L2 d�2

3 .

We seek static solutions: k © ˆ
ˆt is hypersurface orthogonal.

Furthermore, we want the solutions to be electrically charged and
to have homogeneous chemical potentials, i.e.

lim
zæ0

AK = µK dt ,

with µK a constant and z a Fe�erman-Graham coordinate.
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( z is FG coordinate with bdry at z=0)

Charting the (many) phases of N = 4 SYM

Static solutions

The scalar sector

We want the bulk theory to be dual to N = 4 SYM and not a
double trace deformation thereof.
All scalar fields must have standard boundary conditions.

The potential V (ÏK̃ , �K) is fairly complicated

V (ÏK̃ , �K) = 1
2L2

5 3ÿ

K=1

X2
K(ÏK̃)⁄K ≠

3ÿ

I ”=J ”=K=1

Ô
4 + ⁄J

Ô
4 + ⁄K

XI(ÏK̃)

6
.

Near ˆM we can read o� the mass of all scalars and find
m2

ÏK̃
= m2

�K
= ≠

2
L2 .

In Fe�erman-Graham coordinates this in turn implies
ÏK̃ ≠æ

zæ0
V K̃ z2 log z + ÈOÏK̃

Íz2 + . . .

�K ≠æ
zæ0

V K z2 log z + ÈO�K Íz2 + . . .

Our boundary conditions demand V K̃ = V K = 0.

8 / 8

Charting the (many) phases of N = 4 SYM

Static solutions

The scalar sector

We want the bulk theory to be dual to N = 4 SYM and not a
double trace deformation thereof.
All scalar fields must have standard boundary conditions.

The potential V (ÏK̃ , �K) is fairly complicated

V (ÏK̃ , �K) = 1
2L2

5 3ÿ

K=1

X2
K(ÏK̃)⁄K ≠

3ÿ

I ”=J ”=K=1

Ô
4 + ⁄J

Ô
4 + ⁄K

XI(ÏK̃)

6
.

Near ˆM we can read o� the mass of all scalars and find
m2

ÏK̃
= m2

�K
= ≠

2
L2 .

In Fe�erman-Graham coordinates this in turn implies
ÏK̃ ≠æ

zæ0
ÈOÏK̃

Íz2 + . . .

�K ≠æ
zæ0

ÈO�K Íz2 + . . .

Our boundary conditions demand V K̃ = V K = 0.
8 / 8

1) f̃2, f̃4, f̃6 are fns of {⇢, ⇠} (other fj’s transform as scalars). {f̃2 = f̃4 = 1, f̃6 = 0}reference.

2) Map uniquely fixes G1, G2, and relates M and G3 directly with H1.

3) Blackening factor : (⇢
7 � ⇢

7
0)

2
/(⇢

7
+ ⇢

7
0)

2 ) horizon at ⇢ = ⇢0 .

4) Set H2 = (1 + ⇢
7
0/⇢

7
)
4/7

(consistent with H2 = 1 at y = 1 i.e. ⇢ ! 1).

5) At small ⇢, ⇢0 : G1 ⇡ G2 ⇡ 1, so if M ⇡ 1, reference metric ⇠ Schw10

��
isotropic coord

) suggests choosing H1 s.t. H1

��
y=1

= 1 (⇢ ! 1) and M is + definite with M
��
⇢=⇢0

= 1.

6) M
��
⇢=⇢0

= 1 also fixes T and ensures regularity on the horizon

horizon ⇢ = ⇢0

asymptotic infinity y = 1 (⇢ ! 1)

S
3 axis y = 0 (⇠ = 0)

S
5 North pole

x = 1 (⇠ = 1)

S
5 South pole x = 0

)

� At infinity, global AdS5 ⇥ S
5
asymptotics ) f1,2,3,4,5,7 = 1, f6 = 0.

� Remaining BCs fixed by regularity: fi and f̃i to remain finite bdries

AdS/CFT dictionary: G10 =
⇡4

2
L8

N2 , G5 =
G10
⇡3L5 [ number of colours N of N = 4 SYM ]

⇢
EL

N2
,
S

N2

�
⇡ {0.225, 0.374}

ds
2
��
H
= c d✓

2
+R

2
⌦3

cos
2
✓ d⌦

2
3 +R

2
⌦4

sin
2
✓ d⌦

2
4

RMN � 1

48
FMPQRSFN

PQRS �r(M⇠N) = 0 ,

rMF
MPQRS

= 0 ,

F(5) = ?F(5) .

(5)

3



➙ Microcononical  phase diagram  (of truncation with a single charge) 

Fix energy E and charge Q:   dominant phase is the one with highest entropy S 


CLP BHs exist for                      

Hairy BHs exist for Onset<Q<E

(Both Singular — S=0 — in BPS lim)


and hairy black holes have the same E, Q and S and the transition between the two
families is second order21 (see solid blue line curve in Fig. 2).

In Fig. 2 we plot the phase diagram of the solutions we found. The horizontal
axis is LE{N2, whereas the vertical axis is labeled by LQ{N2. We draw the su-
persymmetric bound Q “ E as a thick black dashed line. The regular 1-parameter
supersymmetric soliton (3.22) is described by this line, starting at Q “ E “ 0 and
extending for arbitrarily large values. The singular 2-parameter supersymmetric soli-
ton is also described by this line but we can choose one of its parameters ´ namely,
C2 “ 4 in (3.25) ´ to have it starting at pLE{N2, LQ{N2q “ p1{2, 1{2q (the red
inverted triangle) and extending for arbitrarily large E “ Q. The CLP black holes
exist for any 0 § Q † E i.e. below the supersymmetric thick black dashed line (at
the BPS line the CLP black hole approaches a singular solution with S “ 0 that, in
the E´Q diagram of Fig. 2 coincides with the supersymmetric solitons). It is impor-
tant to note that single charge CLP black holes can get arbitrarily close to saturating
the BPS bound. This is unlike the two charge CLP black holes that we will analyse
later in section 4. The limiting single charge CLP black hole family that saturates
the BPS bound is, of course, singular. Still in Fig. 2, the scalar condensation onset
curve (determined using the method outlined in section 3.6) is represented as a solid
blue line; CLP black holes above this line are unstable. Hairy black holes exist in
the dark red region between the supersymmetric bound and the onset curve, which
is precisely where the CLP black holes are unstable (see section 3.5). Unlike the two
charge case that we will discuss later in section 4, in the single charge system the
hairy solutions always coexist with the CLP black holes, i.e. the dark red region is
on top of a green region in Fig. 2.

Interestingly enough, the hairy black holes do not exist for arbitrarily small
values of Q or E (unlike the two equal charge case of section 3.5). Indeed, we
find that all hairy single charged black hole solutions must have LQ{N2 ° 1{2 and
LE{N2 ° 1{2; see the inverted red triangle with pLE{N2, LQ{N2q “ p1{2, 1{2q in
Fig. 2. This peculiarity along with the fact that the supersymmetric limit of the CLP
black hole is a singular soliton makes the perturbative scheme presented in section
3.9 considerably more intricate than the two charge case (that will be discussed in
section 4.9).

We now address the issue of phase dominance in the microcanonical ensemble. In
Fig. 3 we show a three-dimensional plot of the entropy S{N2 as a function of LQ{N2

and LE{N2 using the same colour coding as in Fig. 2. We find that in E ´Q region
where the hairy black holes coexist with the CLP black holes, the hairy black holes
always have a larger entropy and are thus dominant in the microcanonical ensemble.

21 That is to say, the entropy (or Gibbs free energy) has continuous first derivative across the
transition, but the second derivative jumps discontinuously.
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Figure 2. Phase diagram of singly charged solutions. The supersymmetric bound E “ Q

is represented as a black dashed curve. The regular 1-parameter supersymmetric soliton is
described by this curve. The CLP black holes exist below this BPS line in the 0 § Q † E

region. The inverted red triangle at the BPS curve marks the point pLE{N2
, LQ{N2q “

p1{2, 1{2q. The onset curve of the scalar condensation instability of the CLP is represented
as the solid blue line that starts at the inverted red triangle. The hairy black holes exist
in the dark red region between the onset and the BPS curves. This phase diagram is also
reproduced analytically (for small E and Q) by a non-interacting model discussed in section
3.9.2.

This suggests that, as expected, the hairy black holes should be the endpoint of the
dynamical instability of CLP black holes uncovered in section 3.5.

It is important to investigate the hairy black hole solutions near the BPS bound
Q “ E. This is the region of moduli space where our numerical schemes struggle
the most to find solutions. We have managed to reach y` “ 0.1, but found very
hard to lower y` below this (solutions should exist all the way down to y` Ñ 0).
Nevertheless, with enough resolution, there are a number of striking features that we
can infer. First, we find that the hairy black hole temperature tends to LT “ 1{⇡ as
one approaches the supersymmetric bound Q “ E. This is best seen in Fig. 4 where
we plot the hairy black hole temperature as a function of E and Q. To aid the reader
we also plot the plane LT “ 1{⇡ in purple. Actually, the temperature LT “ 1{⇡
also plays an important role in the singly charged CLP black hole. Namely, one can
ask what is the smallest temperature one can reach with the CLP black holes. This
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BH Onset of 


CLP instability

SUSY Soliton, 

Q=E

A

• Hairy BHs always have higher S than CLP BH with same E,Q


• Hairy BH temperature approaches T L=1/π (& µ=1) in the singular (S=0) BPS lim ! ! 

   This is also min T that CLP can reach (at A) in the singular BPS limit. 



Figure 4. The temperature LT of the single charge hairy black holes as a function
of LQ{N2 and LE{N2 using the same colour coding as in Fig. 2. For reference, we also
plot the plane LT “ 1{⇡ in purple: the hairy black hole temperature approaches it in the
supersymmetric limit (dashed black line).
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Figure 5. Expectation values L
2xO�y{N2 (left panel) and L

2xO'y{N2 (right panel) as
a function of LE{N2 for the family of single charged hairy black holes with y` “ 0.1 (the
closest family we have to the supersymmetric limit). The blue disks are the numerical data,
and the solid red lines are given by (3.25) with C2 • 4 and C1 “ 3.

3.8 Phase diagram in the grand-canonical ensemble

We now turn out attention to the grand-canonical ensemble. The state variables
are now the temperature T and chemical potential µ. The relevant thermodynamic
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Figure 4. The temperature LT of the single charge hairy black holes as a function
of LQ{N2 and LE{N2 using the same colour coding as in Fig. 2. For reference, we also
plot the plane LT “ 1{⇡ in purple: the hairy black hole temperature approaches it in the
supersymmetric limit (dashed black line).
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2xO'y{N2 (right panel) as
a function of LE{N2 for the family of single charged hairy black holes with y` “ 0.1 (the
closest family we have to the supersymmetric limit). The blue disks are the numerical data,
and the solid red lines are given by (3.25) with C2 • 4 and C1 “ 3.

3.8 Phase diagram in the grand-canonical ensemble

We now turn out attention to the grand-canonical ensemble. The state variables
are now the temperature T and chemical potential µ. The relevant thermodynamic
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Limit E—>Q of Hairy BHs ? Singular limit (S=0) coincides with soliton at E=Q.


Charged and neutral scalar field VEVs for the line of Hairy BH solutions 

closest to the supersymmetric bound (blue disks)

Solid red lines are analytical results for for the SUSY soliton. 


➙ Microcononical  phase diagram  (of truncation with a single charge) 

Line at fixed 
very small r+/L

Line at fixed 
very small r+/L

[ Liu,Lü,Pope,Vazquez-Poritz ’07] 

[ OD, Mitra, Santos ’22 ] 



➙ Truncation of U(1)3 gauged supergravity with two equal charges 

A3 “ A and X1 “ X2 or equivalently '1 ” ', '2 “ 0. In this sector, the action
has an enhanced Z2 symmetry under which B Ñ ´B and we can further
consistently truncate to B “ 0. This truncation can also be obtained directly
from (2.1) by restricting to SOp4q-invariant field configurations.14

III) Truncation with two equal charges: The action (2.8) has a Z2 ˆ Z2 sym-
metry where the first Z2 corresponds to the permutation group of K “ 1, 2 and
the second Z2 is a discrete Up1q transformation on K “ 3, namely a rotation
by ⇡ which maps �3 Ñ ´�3. Field configurations which are invariant under
this symmetry satisfy A1 “ A2 “ A, A3 “ B, �1 “ �2 ” �, �3 “ 0 and
X1 “ X2 or equivalently '1 ” ', '2 “ 0. This truncation can also be obtained
directly from (2.1) by restricting to SOp2q-invariant field configurations.15

Static solutions (which is the topic of this manuscript) have an additional time-
reversal symmetry which sets the Chern-Simons term in (2.8) to zero. In this
case, the action has an enhanced Z2 symmetry under which B Ñ ´B and we
can further consistently truncate to B “ 0.

Static asymptotically AdS5 ˆ S5 hairy black hole and solitonic solutions of the first
theory where already studied in detail using perturbation theory in [52] and a full
numerical analysis was done in [53]. This has been further extended to include
angular momenta J1 “ J2 in [52, 54]. In this manuscript, we construct the static
asymptotically AdS5 ˆ S5 hairy black hole and solitonic solutions in the second and
third truncations (in future work, we plan to extend this study to include angular
momenta J1 “ J2 [58]) using perturbation theory and a full numerical analysis.
Truncation II) is studied in section 3 and truncation III) is studied in section 4.
Altogether, the case studied in [52–54] along with the two cases discussed in this
manuscript provides us with a good overview of the full phase space of hairy solutions
for the case with three arbitrary charged fields �1,2,3.

Before discussing the hairy solutions of our consistent truncations II) and III),
it will be useful to review the known static black hole solutions of the theory (2.8)
without the charged condensate: the “bald” CLP black holes. We do this in the next
subsection.

2.2 Cvetic-Lü-Pope black hole solutions of SOp6q gauged supergravity

When the charged scalar fields vanish, �K “ 0 pK “ 1, 2, 3q, the consistent truncation
of SOp6q gauged supergravity described by the action (2.8) reduces to Up1q3 gauged
five-dimensional N “ 2 supergravity coupled to two vector multiplets. The static

14 Here, SOp4q Ä SOp6q acts on the top left 4 ˆ 4 minor matrix of the 6 ˆ 6 matrix Tij .
15 In the language of footnote 13, SOp2q Ä SOp6q acts on the top left 2 ˆ 2 minor matrix of the
3 ˆ 3 matrix Tij .
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interacting mix as

ECLPL “ EL ´ EsolL

“ EL ´ QL ` N2

6L

˜
2

„
1 ` 3

ˆ
EL ´ QL

N2

˙⇢ 1
2

` 1

¸

“ 1

2
` 3r2`

2L2
` 9r4`

8L4
´ 3r6`

32L6

ˆ
5 ` ln

r2`
2L2

˙
` O

ˆ
r8`
L8

˙
.

(3.77)

This also matches – to leading order in r` – the energy of the “bald” CLP black hole
(3.28) at rq “ 1

2 .

4 Consistent truncation with A1 “ A2 ” A,A3 ” 0

4.1 Setup the problem: Ansatzë and boundary conditions

We will denote this theory with A1 “ A2 ” A,A3 ” 0 and �1 “ �2 ” �,�3 ” 0 as
the truncation with two equal charges. Again motivated by the ansatz (2.14) we used
for the CLP black hole, to find the static and spherically symmetric hairy solutions
of this sector, we find convenient to use this time the ansatz:

ds2 “ h2{3
ˆ

´ f

h2
dt2 ` dr2

g
` r2d⌦2

3

˙
;

'1 “
c

2

3
lnh , '2 “ 0;

A1 “ Atdt , A2 “ Atdt , A3 “ 0;

�1 “ �:
1 “ � , �2 “ �:

2 “ �, �3 “ 0 ;

(4.1)

where d⌦2
3 is again the line element of a unit radius S3 and we have selected the gauge

where h2{3r2 measures the radius of the S3. Moreover, we have fixed the Up1q gauge
freedom by taking �1 “ �2 “ � to be real, which implies that At “ 0 at the horizon
location, r “ r`. Inserting this ansatz into the field equations (2.11)–(2.13) we find
that the system closes if the following five equations for thprq, fprq, gprq, Atprq,�prqu
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Figure 9. Scalar condensation instability growth rate for the two charged CLP. The real
(blue disks) and imaginary (orange squares) parts of the frequency ! as a function of the
energy LE{N2 for LQ{N2 “ 0.5 (left panel) and LQ{N2 “ 1 (right panel). The dashed
red lines show the singular extremal limit of the two charged CLP black hole for a given
value of LQ{N2 and the black triangle describes the onset of the instability with ! “ 0.

We take ! “ 0 and rewrite (4.25) just as in (3.39a), but this time with

L2py; r�q “
´
1 ` 2 rQ

¯
p1 ´ yqy

”
1 ` 2

´
1 ` 2 rQ

¯
r� ´ y

´
1 ` r� ` 4 rQr�

¯ı2
, (4.31a)

L1py; r�q “
´
1 ` 2 rQ

¯ ”
1 ` 2

´
1 ` 2 rQ

¯
r� ´ y

´
1 ` r� ` 4 rQr�

¯ı "
1 ` 2

´
1 ` 2 rQ

¯
r�

` 3y2
´
1 ` r� ` 4 rQr�

¯
´ 2y

”
2 `

´
3 ` 8 rQ

¯
r�

ı *
, (4.31b)

and

L0py; r�q “ ´16 rQ3p1 ´ yqp1 ´ 2yqr�2 ´ p1 ´ yqp1 ` r�q
”
1 ´ y ` p2 ´ yqr�

ı

´ 4 rQ2r�
”
3 ` 6r� ´ y

´
7 ´ 4y ` 8p2 ´ yqr�

¯ı
´ 2 rQ

"
r1 ` 6r�p1 ` r�q

` y2p1 ` r�qp1 ` 5r�q ´ y
”
2 ` 13r�p1 ` r�q

ı *
, (4.31c)

where we again defined r� “ y2` and rQ “ rq{y2`. The above provides a quadratic
eigenvalue problem in r� for a given value of rQ. Again, boundary conditions can be
found at y “ 0 and y “ 1 by demanding that q0pyq admits a regular Taylor expansion
at such regular singular points. The onset curve presented as a solid blue line in the
figures of the subsections that follow is computed following the approach outlined in
this section.
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Fixed LQ/N2

Charting the (many) phases of N = 4 SYM

Two-charge sector

Results - 1/2

The two-charge sector is reminiscent of the three-equal Q:

E and Q1 = Q2 © Q and Q3 = 0 .

Black hole solutions with �K = 0 are known analytically - Cvetič,
Lü, Pope ’04 - CLP (in fact they are known for Q1 ”= Q2 ”= Q3).

Smooth CLP: E > Qext < 2Q.
CLP are singular at E = Qext.
Fixed LQ/N2

Ø 0: CLP BHs
are unstable Qext Æ E < Ec(Q).
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➙ Microcononical  phase diagram  (of truncation with two equal charges) 

Fix energy E and charge Q:   dominant phase is the one with highest entropy S 


CLP BHs exist for 0<Q<Qext                      

Hairy BHs exist for Onset<Q<E/2

(Singular — S=0 — in BPS lim)


Onset of 

CLP instability

Figure 11. Phase diagram in the microcanonical ensemble for the two equal charge
system. The green region indicates where CLP black holes with two equal charges exist,
with the limiting upper boundary (the black solid thin curve) being the extremal line (where
CLP black holes become singular); the black dashed line shows the supersymmetric bound,
along which the supersymmetric solitons exist with no apparent upper bound on E; the
blue disks describe the onset of the hairy black holes and the red disks (region) that extends
from this onset all the way up to the BPS dashed black line represent the hairy black holes
of the system.

E and Q in Fig. 13 where we use the same colour coding as in Fig. 11. In particular,
this plot shows that the entropy of the hairy solutions is always larger than that of a
CLP black hole with the same E and Q, where the two families of black holes coexist.
This fact, together with the results for the linear stability in section 4.5 provide very
strong evidence that the hairy solutions we just found are should be the endpoint
of the scalar condensation instability of the two charge CLP black hole uncovered in
section 4.5.

Finally, we discuss the fate of the temperature of the hairy solutions as we
approach the supersymmetric bound. One might think that the temperature will
drop to zero as we approach this boundary. However, this turns out not to be the
case. Indeed, we observe that, irrespectively of E “ 2Q, the temperature approaches
the value LT “ 1{p2⇡q when we approach the supersymmetric bound E “ 2Q. At
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• Hairy BHs always have higher entropy S than CLP BH with same E,Q


• Hairy BH temperature approaches T L=1/(2π) & µ=1 in the singular (S=0) BPS lim ! !  

  This is also min T that CLP can reach in the singular extremal limit.

Physics of equa
l three charge 




truncation is si
milar 


   Bhattacharyya, Minwalla, Papadodimas (2011)  

   Markeviciute  Santos (2016, 2018) 



Charged scalar VEVs for 

the line of Hairy BH 

at fixed Q L/N2=0.5 (blue disks).


Red triangle is the SUSY soliton 

result at E=2Q=1.

➙ Microcononical  phase diagram  (of truncation with two equal charges) 
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Figure 12. Expectation value xO�1y “ xO�2y as a function of EL{N2 computed for a
hairy black hole with fixed QL{N2 “ 0.5. The solitonic red inverted triangle was retrieved
from Fig. 10 and the blue disks were computed directly using our novel hairy black holes.
Clearly, the hairy black holes approach the supersymmetric soliton when the BPS limit is
approached.

the moment, we have no understanding why this is the case.29 To back up our
claim, we plot in Fig. 14 the temperature of the hairy solutions as a function of their
energy, for a particular value of LQ{N2 “ 1{10. We can clearly see the temperature
reaching TL “ 1{p2⇡q (represented as the dashed black line) as we approach the
supersymmetric bound. We should also note that the perturbative scheme detailed
in Section 4.9 also predicts such a limiting value for the temperature: see (4.55) and
(4.74).

4.8 Phase diagram in the grand-canonical ensemble

Having discussed the microcanonical ensemble, we now turn out attention to the
grand-canonical ensemble. The relevant thermodynamic potential is now the Gibbs
free energy G “ E ´ TS ´ 2µQ, and the state variables are µ and T . Dominant
phases will minimise the Gibbs free energy at constant µ and T .

29 Static supersymmetric solutions in four dimensions exhibit a similar property wherein by taking
two supercharges to zero simultaneously, it is possible to obtain a supersymmetric solution with
finite temperature and zero entropy [74]. Our result seems to be the five dimensional analogue of
this phenomenon. We hope to explore this further in future work.
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Limit E—>2Q of Hairy BHs ? Singular limit (S=0) coincides with soliton at E=2Q

that we constructed numerically.

• Soliton ∃ for any E = 2Q ≥ 0! 


   Unlike when Q1=Q2=Q3, 

           where soliton ∃ for E < Emax 


• The Q1=Q2=Q3 behaviour 

          is believed to be generic.

Liu, Lü, Pope, Vazquez-Poritz ’07
Bhattacharyya, Minwalla, Papadodimas (2011)  
Markeviciute  Santos (2016, 2018) 

[ Liu, Lü, Pope, Vazquez-Poritz ’07] 

[ OD, Mitra, Santos ’22 ] 



➙ What happens when we add rotation?
     

   Example: U(1)3 gauged supergravity with two equal charges 



Charting the (many) phases of N = 4 SYM

Adding rotation

Results - 1/2

Known SUSY black holes - Gutowski, Reall ’04 - form a one-
parameter family of solutions.
Are there other solutions that can generalise Gutowski, Reall ?

Smooth CLP: E Ø Qext(E, J).
CLP are non-singular and
extremal at E = Qext.
At fixed J , there is a single
point where extremal CLP
becomes SUSY.
Hairy black holes condense just
as for the static case!

BHs with �1 = �2 ”= 0 exist in
red region and S > SCLP!
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➙ Microcononical  phase diagram  (of truncation with two equal Q’s): adding rotation 

• ∃ CLP also with J1=J2 = J 


• Smooth CLP: E ≥ Qext(E,J). 


• CLP are non-singular and extremal 

       at E = Qext(E,J). 


• At fixed J, ∃ a single point A where 

   extremal CLP is SUSY: 

       the (1-parameter) Gutowski, Reall ’04 BH. 

• When J1=J2 = J, we can keep co-homogeneity one (10 coupled nonlinear ODEs)

• BPS relation is now  E = 2Q + 2J. 

• Work at finite temperature and approach T → 0: want to find novel SUSY BHs!

A

(Kunduri-Lucietti-Reall BH: arbitrary Q1,2,3 ,J1,2)
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➙ Microcononical  phase diagram  (of truncation with two equal Q’s): adding rotation 

• At fixed J, ∃ a single point where 

   extremal CLP is SUSY: 

       the Gutowski, Reall ’04 BH.


• Hairy BHs condense with Φ1=Φ2 

   (as in the static case) & have higher entropy S than CLP for given {E,Q,J} ! 

• Hairy BHs have a non-singular lim (where T → 0, µ →1) in the BPS lim: 

   novel SUSY BHs (this time with hair)! => can be missing grav parameter!


• Work at finite temperature and approach T → 0: want to find novel SUSY BHs!



➙ Our hairy BHS with O(N2) entropy are dominant in the microcanonical ensemble         

     => should be important for the microstate counting of the entropy of SUSY BHs: 


• Static hairy BHs do not have a (smooth) BPS limit with O(N2) entropy. 


• However, rotating hairy BHs have smooth BPS limit with O(N2) entropy. 


• Microstate counting should compute the entropy of bald and hairy BHs! 


➙ Future work:

•Complete Rotation study.


• In the absence of charged scalar hair (ΦK =0), all SUSY BHs are 1/16-BPS.

       However, recent computations of a twisted SYM index in the so-called Macdonald   

       limit (Q3 +J2=0) suggest an O(N2) entropy for 1/8-BPS states   

                                                                       [ Choi, Kim, Kim, Nahmgoong, 1810.12067 ]


       It is unclear what solutions this index corresponds to in gauged supergravity. 

       Can we have 1/8-BPS hairy BHs ?


• Classification scheme for SUSY BHs ?


• Generalizes to AdS4xS7 ?


➙ Conclusions & Future work

[ See Benini’s review talk at Strings 2022] 


