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Abstract

The most general vacuum solution to Einstein’s field equations with no incoming ra-
diation can be constructed perturbatively from two infinite sets of canonical multipole
moments, which are found to be exchanged under gravitational electric-magnetic du-
ality at the non-linear level. We demonstrate that in non-radiative regions such space-
times are completely characterized by a set of conserved celestial charges that consist
of the Geroch-Hansen multipole moments, the generalized BMS charges and additional
celestial multipoles accounting for subleading memory effects. Transitions among non-
radiative regions, induced by radiative processes, are therefore labelled by celestial
charges, which are identified in terms of canonical multipole moments of the linearized
gravitational field. The dictionary between celestial charges and canonical multipole
moments allows to holographically reconstruct the metric in de Donder, Newman-Unti
or Bondi gauge outside of sources.

Based on arXiv 2206:12597 with Geoffrey Compére and Ali Seraj
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Abstract

We transform the metric of an isolated matter source in the multipolar post-Minkowskian
approximation from harmonic (de Donder) coordinates to radiative Newman-Unti (NU)
coordinates. To linearized order, we obtain the NU metric as a functional of the mass
and current multipole moments of the source, valid all-over the exterior region of the
source. Imposing appropriate boundary conditions we recover the generalized Bondi-
van der Burg-Metzner-Sachs residual symmetry group. To quadratic order, in the case
of the mass-quadrupole interaction, we determine the contributions of gravitational-
wave tails in the NU metric, and prove that the expansion of the metric in terms of the
radius is regular to all orders. The mass and angular momentum aspects, as well as the
Bondi shear, are read off from the metric. They are given by the radiative quadrupole
moment including the tail terms.

and arXiv 2010:10000 + work in progress with Luc Blanchet, Geoffrey Compére, Guillaume Faye, Ali Seraj



MOTIVATION

Non-radiative regions 1 and 2 differ from each other
Non-radiative region 2

L' Gravitational “vacua” are degenerate

‘ Radiative region E.g., supertranslations label gravitational vacua

orCop = — 2D<an>T(9, P)

Non-radiative region 1

[Strominger, 1703.05448]

QUESTION: WHAT COMPLETELY CHARACTERISE NON-RADIATIVE STATES?
STRATEGY TO TAKE: GO DEEPER IN THE INFRARED STRUCTURE OF GRAVITY

k} Recently discovered Lw,,  algebra

[Guevara et al., 2103.03961], [Strominger, 2105.14346], [Freidel-Pranzetti-Raclariu, 2112.15573]

Combining the Bondi-Sachs with multipolar Post-Minkowskian/Post-Newtonian formalisms
[Blanchet, Compeére, Faye, RO, Seraj, 2010:10000 & work in progress]



OUTLINE

Part |:

e Einstein’s equations - local flux-balance laws;

e BMS & celestial charges.

Part |l:

e Celestial charges in the linear theory...;
e ... and in non-radiative regions;

* Physical interpretation.

Part lll:

e Connection of celestial charges with Lw,,  charges.






BONDI GAUGE AND METRIC

Bondi coordinates: {u,r, 8%}

Bondi gauge: 8»=0=&., and d,det(rg,) =0
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U* U’
Bondi metric: ds*? = — e (qu2 + 2dudr) + 8.1 (d&’“ > du) (a’é’b du)
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Asym ptOtiC expa nSion: [Bondi-van der Burg-Metzner, 1962], [Sachs, 1962], [...], [Grant-Nichols, 2109.03832]
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FOCUS OF THIS TALK!

_ mass & angular momentum aspects, shear and sub-leading E’s




LOCAL FLUX-BALANCE LAWS

In Bondi gauge, Einstein's equations reduce to a set of algebraic constraints in addition to a
countable infinite set of local flux-balance equations on future null infinity:

n=>0
n=1
n=2
n>3

I

1 N, =0,C, ==
~DyD.N* = —F(u) + 0,m, S e
4 [Compere-Fiorucci-Ruzziconi, 1810. 00377]
U
—5 DDaDy N* = —F(u) + 8uNo, No'= No = CaD.C" — —8,(CueC*) — uDPmey
2
u ed) _ ek Naa. Npou W
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(_u) Dn_3 e DO STFab[DaDCD(de)NCd] = — fab (u) - 8u Eab . [Grant-Nichols, 2109.03832]

6 n! (n) (n) also [Freidel-Pranzetti-Raclariu, 2112.15573]




CHARGES FROM THE DRESSED BONDI ASPECTS: POINCARE, BMS AND CELESTIAL CHARGES

Let 71, = STF|[n; ---n; ] be the symmetric and trace-free product of / unit directional vectors n,

 From the Bondi mass aspect (n = 0) and dressed angular momentum aspect (n = 1):

[Compere, RO, Seraj, 1912.03164]

P
‘ PL = ygan, —JL = 5

The 10 Poincare charges are recovered for £ = {0,1}. EMS charges are defined for £ > 2.

e From the dressed Bondi sub-leading field f('“)b (n > 2), we define the n > 2 celestial charges:

- e —/— O

,:’L(’U,) = f (%a)b DanﬁL,
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[Compere, RO, Seraj, 2206.12597]




TWO QUALITATIVE DIFFERENT SETS OF LOCAL FLUX-BALANCE LAWS

Recall:
n=0 :

1
~DyD.N* = —F(u) + 0,m,

4
—%DCD(an)N”C — —Fulu) + 0N,
2
u—STFab[D D.DyDy N = — Fuy () + 8y Eas,
(2) (2)
(;“3 v DoSTF4[DuDeD Dy N = — Fopy (1) + Oy Eup
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k, 0,9 1 (u) = ¢ F* D,Dyiry, + ), f i, DDYD, _3---DyD,D.DDagy N,
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MEMORY-LESS FLUX-BALANCE LAWS

O ENERGY LOSS FORMULA AND £ = 1MOMENTUM LOSS FORMULA
1 ANGULAR AND CENTER-O0F-MASS LOSS FORMUALAE

¢ < n — 1 NEWMAN-PENROSE CHARGES

n
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MEMORY-FULL FLUX-BALANCE LAWS

> 2, DISPLACEMENT MEMORY EFFECT
> 2, SPIN AND CENTER-OF-MASS MEMORY EFFECTS

> 1, SUBLEADING MEMORY EFFECTS
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CELESTIAL CHARGES - EXPLICIT EXPRESSIONS IN LINEARISED THEORY (1/3)

We wish to compute Q7 , (u) = % c‘(:a')b D, Dyny in terms of multipole moments.
b) S n

Explicit expressions in linear theory of the Bondi fields are in et compere, raye, r0, 501 2010:100001

0 d A r

near-zone: O0<r<A

exterior-zone (vacuum): d<r < o0

radiation-zone
I<<r< oo

PN/multipolar radiation-reaction

(" )

multipolar PM expansion

Bondi-Sachs

\_ Y,
[Blanchet-Damour et al, since ‘80s] [Blanchet, Compeére, Faye, RO, Seraj, 2010:10000]




CELESTIAL CHARGES - EXPLICIT EXPRESSIONS IN LINEARISED THEORY (2/3)

Explicit expressions in linear theory of the Bondi fields are in iz compere, raye, r0, 5021 2010:100001

MAIN ADVANTAGE:
+00 |
guu=—-1-C(A+2)f+26([ =+ L g+ o FULL — EXPANSION IN BONDI GAUGE AT O(G)
e T o T .(n) ’ £
" 2 Na, ' +00 1 .- i More explicitly, the Bondi mass aspect reads as
g G e Ve (REG] o £ gt )
o - the Bondi angular momentum aspect is
Cab ' s I 4 2 S (e ) 20
gab =77 |Yar + 2GD Yy + G . e’{ae{» e %:)’ + O(G7). No= 3ty e MU + 2 epaneSi Y| + 0(6)
n=2 - and finally the Bondi shear is given by
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In particular:
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I I [Blanchet, Compeére, Faye, RO, Seraj, in progress]

MASS MOMENTS SPIN MOMENTS




CELESTIAL CHARGES - EXPLICIT EXPRESSIONS IN LINEARISED THEORY (3/3)

We wish to compute u) 5('“)b D, Dyn; interms of multipole moments.
S n
In the linear theory:

u
Z QoW M) 4y (1 — —du) MD+0G) 2<f<n—1
n

p=n—I[—1
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Q,, . (u) same expression with M; — S,

SUMMARY (S0 FAR):

CELESTIAL CHARGES = POINCARE + BMS (ALSO DUAL BMS) + 72 > 2 CELESTIAL CHARGES

n > 2 CELESTIAL CHARGES ARE DIVIDED INTO TWO SETS:2 <72 <n—1ANDZ > n

WE EXPRESSED THE SET OF CELESTIAL CHARGES IN TERMS OF MULTIPOLE MOMENTS




CELESTIAL CHARGES IN NON-RADIATIVE SPACETIMES

+00

. . : ni_s | 20 i
Assuming no-radiation: 0=N_,=C,_, €<ka€,£> z! 2 MG, n lskpqnpS,((fZPz + O(G)
=2 - -

NON-RADIATIVE REGIONS:  M/“*!) = 0 = §{*+D

[ [
ML(M) — Z ML,k l/lk and SL(M) — Z SL,k l/lk
k=0 k=0

The constants M; , completely characterise non-radiative regions.

One can think of them as initial/final states of a scattering process ~ proportional to positions and velocities of initial/final states.
[Blanchet-Schaefer, CQG 1993]




CELESTIAL CHARGES - PHYSICAL INTERPRETATION

[
NON-RADIATIVE REGIONS: M, (u) = Y M, u* => @, = a,, (£ —n)!M; ,_, + O(G)
k=0

N G NON-RADIATIVE REGIONS

Hansen

GEROCH-HANSEN (k = 0O)
+

BMSCHARGES (k = £,k = — 1)
+

| rf“ CELESTIAL CHARGES (1 < k < Z — 2)

2/
Cap = 46( eb) ZnL 2 [MijL—2,£ — e_l__le'ipqnpsqu—Z,l]

£=2




PART I



CONNECTION WITH CELESTIAL HOLOGRAPRY (1/3)

Celestial charges defined earlier G+ .1 are (proportional to) gravitational multipole moments

The @—L are also proportional to the (real part of the) Lw,, ., charges proposed in ireidel-pranzetiraciari, 211215573

S + 1 [Freidel-Pranzetti, 2109.06342]
Oular-a. = Dia1Gasas) + > Clara29as...as) - s> 3 DERIVED FROM SYMMETRY ARGUMENTS
RE-ORGANIZATION OF ASYMPTOTIC DATA AS PRIMARIES
Primary fields s = {—2, — 1,0, + 1, + 2} OF THE HOMOGENEOUS SUBGROUP OF WEYL-BMS

(also proportional to Weyl scalars) evolution equations

Sy w)Oa,s) = (Ly + (A = 8)W)O(as)

1
b = _ uNab
q—2 28 ?
qt, = 1D;,N"b, 0uq’) = DbQ-Z) | | |
2 [Freidel-Pranzetti-RO-Speziale, 2104.05793]
~ab
- %A,abma,, + %ca,,Nab =m+ %ca,, N, 0uq = QDaq- + Cab WEYL-BMS GROUP
~ 1, 1 ~ 1 ~q 1 ~ 1 : :
q = §6 bma,b + g abNa'b — ZDanC b + g abN ’ auq — 2Daq_ — Ca q_2, (DIH(S) X WQYI) X RS
Jo = N,

6uQa = Uaq + 8aq + Cabq_l,
o 1 cd 3 o~
Qab = 3 gab —I_GCachdC ) . auqab — D(aQb) s §(Cabq + Cabq )



CONNECTION WITH CELESTIAL HOLOGRAPHY (2/3)

For s > 0, the dressed complex charges of helicity s read as ireider-pranzetti-Raclariu, 2112.15573;

° (_u)s—n They obey the Lw,_  algebra

Q1) = § @i (wa?), ) =Y 8 g,

TL=

(3 - n) {QS(T)’ Qy (T’)} = (3, + 1)Qs+s’—1(7"67’) — (s + 1)Qs+3'_1(787-')

We define the following real dressed charges

- - V - ) - i - - — — _
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ll (_u) (—I/l) T ompere eraj
| Q;Q(T) =<‘F T as(xa)<qal...as+ Z D, D 9g.q T Daf"Das_lquOaSb [Compere, RO, Seraj, 2206.12597]
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such that
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Q. 7) = % (Qf(f) + ZQSB(%)) za;--a, _ ealb cbay---a



CONNECTION WITH CELESTIAL HOLOGRAPHY (3/3)

It is helpful to decompose QF in its two polarisations:

Two polarisation of OFf

ai..as — pla as) A ai..as — pylar Myaz as)
T+,L = D1 D nr, T—,L = DD .. D ny,

Fors =n=20,1 and £ > n, we get the BMS charges:

QOL =2PL = ZQ(J)FU QRZ = 2P = ZQE,La
QlL =2KL = 2Q1 L Q1L = -2JL = ZQI,La

Fors =n >2and ¢ > n, we get the additional celestial charges:

in non-radiative regions!

e | I S S

( 1)! LI+ D+ ] +

| G 2(? i) Q—, 4+ non-linear terms = ( Z)(éf "y ))(” )MLif—n + non-linear terms
) n AT ’ n ?

— S =— = —_—— s —— _——_—— . —————————————— ————  —— —— = e —




REMARKS AND FUTURE PERSPECTIVES

1. Gravitational EM duality:
* Ry (M3 (), M7 (w); %) = R (M7 (w), — M (w); %)
limy 40Py =0 <> Sp,=0, VL, £>0.

2. Computation of the algebra for non-radiative multipole moments:

The Lw,, ., algebra

: 1 . ] :
{Re Qs(7), Re Qu (")} = SRe {Qs(7), Qu (')} + S Re {Qu(r), Q5(r)}™ (Qur), Qe = (5 + 1)Qurwr (87) — (54 1) Qurw (757
x M ., [Freidel-Pranzetti-Raclariu, 2112.15573] ?

3. CeleStiaI Charges at the quad ratic Order in G ? [Blanchet, Compére, Faye, RO, Seraj, 2010:10000 & work in progress]

Include tails and memory (semi-hereditary and hereditary) contributions to the celestial charges;

4. The NP charges vanish at the linear order! What are their expressions at the quadratic order?






