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‣  Hierarchical in scale, a tight inner binary 
orbited by a tertiary on a wider orbit, 
forming the outer binary:  m < < M < < M*

‣  Hierarchical three body system: a binary system 
under the gravitational interaction of a another massive 
astrophysical object, a supermassive black hole.

‣  In the limit , extreme mass ratio 
inspirals (EMRIs)

m → 0

‣  Why EMRI?

‣   is a test particle,  is a Schwarzschild 
black hole,  is a Kerr black hole
m M

M*



ω = G
(m1 + m2)

d3

Binary system orbital frequency in the inspiral regime (Kepler)

‣  ω ∼ 0.1 ÷ 100 mHz LISA 
(Laser Interferometer Space Antenna)

Ex

 
m1 ∼ 106 M⊙

m2 ∼ 10 M⊙
⟹ ω ∼ 10 mHZ

 Why EMRI?

‣  ω ∼ 10−2 ÷ 10 kHz LIGO-VIRGO

Ex

 
m1 ∼ 50 M⊙

m2 ∼ 50 M⊙
⟹ ω ∼ 2 kHZ

‣   : a sensitivity at least 10 times better than the 
advanced detectors on a large fraction of the detection frequency 
band, a dramatic improvement in sensitivity in the low frequency 
range 

ω ∼ 10−2 ÷ 10 Hz

ET (Einstein Telescope)
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‣ EMRIs are primary target for future GWs 
observations!

‣ Abundance of sources! 
               Stellar-Mass BHs  
                   Intermediate-Mass BHs  
                   Super Massive BHs

⟶ 5 ÷ 102 M⊙
⟶ 102 ÷ 105 M⊙

⟶ 105 ÷ 109 M⊙

Coalescence of stellar mass compact objects into 
SuperMassive Black Holes

μ =
m
M

∼ 10−4 ÷ 10−6

‣ Difficult to study via Numerical Approaches

‣ Interesting dynamics!

natural perturbative  
approaches

μ =
m
M

≪ 1 ⟹

Super Massive BH Stellar-Mass Companion
SELF-FORCE

gμν = ḡμν + μ Hμν + 𝒪(μ2)

□ H̃μν + 2R̄α β
μ νH̃μν = − 16π μM∫

δ(4)(x − x̄)
−ḡ

·̄xμ
·̄xν dτ

, xμ = x̄μ + μ δxμ + 𝒪(μ)

δ··xμ =
1
2

(ḡμα ·̄xβ − 2ḡμβ ·̄xα − ·̄xμ ·̄xα ·̄xβ) ·̄xγ ∇̄αHβγ = fμ
sf

EMRI dynamics
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‣  How to construct a metric around a geodesics: Fermi normal coordinates.

‣  Tidal moments of a Kerr perturberer.

‣  Innermost Stable Circular Orbit (ISCO) shifts of conserved quantities.

‣Conclusions and perspectives.

Outline

‣  Secular Hamiltonian.

‣Geodesics.

‣  The EMRI is moving on a geodesic of a Kerr black hole.
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‣  Consider a vacuum region of spacetime in a neighborhood of a smooth time-like geodesic , 
 with proper time .

γ
xμ(τ) τ

Fermi normal coordinates

β pq

‣  The Fermi normal coordinates  for  are:    x̃μ p x̃0 = τ , x̃a = ea
μvμ , a = 1,2,3

‣  The geodesic distance between  and  as measured with the 
space-like curve  is denoted :  

q p
β s s2 = δabx̃ax̃b

‣  The velocity vector  is tangent to the world line. Construct a vectorial basis by 
adding to  an orthonormal triad  of vectors orthogonal to   and parallel 
transported on the world-line .  The orthogonal parallel transported tetrad is 
given by .

uμ =
dxμ

dτ
uμ eμ

a (τ) uμ

(a = 1,2,3)
eμ

(a) = (uμ, eμ
1 , eμ

2 , eμ
3 ), (a) = 0,1,2,3

gμνuμvν = 0  at q

‣  Event  in the neighbourhood of . To get the Fermi normal 
coordinates of  we find the unique space-like geodesic  that 
intersects  orthogonally and ends up at .  is the intersection 
point of  and .  The tangent vector  of  at  is orthogonal to 
the tangent vector  of 

p γ
p β

γ p q
γ β vμ β q

uμ γ
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‣  In terms of Fermi normal coordinates  the metric close to  isx̃μ γ

 

g̃00 = − 1 − R̃0a0bx̃ax̃b + 𝒪(s3)

g̃0a = −
2
3

R̃0bacx̃bx̃c + 𝒪(s3)

g̃ab = δab −
1
3

R̃acbdx̃cx̃d + 𝒪(s3)

 where the Riemann curvature tensor is evaluated in Riemann normal coordinates on .γ

‣  electric quadrupole moments: ℰab = R̃0a0b

‣  magnetic quadrupole moments: R̃0abc = − ϵbcdℬd
a

‣  Suppose now the background on  obeys γ Rμν = 0

 this implies:     R̃acbd = δabℰcd + δcdℰab − δadℰbc − δbcℰad Poisson (2003)Thorne, Hartle  (1985)

‣  with a further coordinate transformation 
to the Thorne-Hartle coordinates one can 
now bring the metric to the form

 

̂g00 = − 1 − ℰab ̂xa ̂xb + 𝒪(s3)

̂g0a = −
2
3

ϵabcℬb
d ̂xc ̂xd + 𝒪(s3)

̂gab = δab(1 − ℰcd ̂xc ̂xd) + 𝒪(s3)Thorne, Hartle  (1985)
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‣  Two different length scales: the mass of the intermediate black hole  and the radius of the curvature 
generated by the third body evaluated in the position of the binary system  .

M
ℛ

Tidal Scales

‣  In order to be able to study the physics on the scale of  we need to require that the tidal interaction is weak. 
This is assured by introducing the small-tide approximation:

M

M ≪ ℛ

‣  If  is the distance between the binary system and the big black hole,   is the orbital velocity                    

    and                 

d V

V ∼
M + M*

d
ℛ ∼

d3

M + M*

M
ℛ

∼
M

M + M*
V3,

‣  should be a small quantity in order to have a weak tidal interaction. To satisfy this condition we will use the 

small-hole approximation:

M
ℛ

M ≪ M*

‣ In this approximation                   independently of the orbital velocity and of the distance between the 
binary system and the source of the tidal moments.

M
ℛ

≪ 1
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‣  This allows us to study how the “external spacetime” affects the binary system, not only when  .d → ∞

Yang and Casals (2017)

‣There is another way to satisfy the condition  : the weak-field approximation the intermediate 
black hole and the source of the tidal moments can have comparable masses but the orbital velocity must 
be small. This is true when the binary system is far away from the supermassive black hole  .

M ≪ ℛ

d → ∞

‣ In the tidal approximation the metric which we use to describe the tidally deformed black hole is 
expressed as a power expansion of , with  being the distance from the black hole . This metric is 
computed near the perturbed black hole and it is valid to all orders in  .

s ≪ ℛ s Ms
M

‣Here we are only interested in the quadrupole order of the perturbed metric, meaning that we will 

consider only the quadrupole moments  and  which appears at order .ℰab ℬab 𝒪 ( s
ℛ )

2

Tidal Scales
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‣  Construction in terms of Fermi normal coordinates.

‣  The velocity vector  is tangent to the world line and we construct  a vectorial basis by adding to  
an orthonormal triad  of vectors which we assume to be orthogonal to   and parallel transported on the 
world line. .  The orthogonal parallel transported tetrad is given by .

uα :=
dxα

dτ
uα

eα
a (τ) uα

(a = 1,2,3) eα
(a) = (uα, eα

1 , eα
2 , eα

3 ), (a) = 0,1,2,3

‣  Construct a deformed metric for a Schwarzschild black hole of mass  locally in a general (external) spacetime.M

‣ The metric of any vacuum spacetime  can be constructed in the neighborhood of any geodesic world 
line and expressed in term of two sets of tidal multiple moments.

Zhang (1986) Poisson, Vlasov (2010)

Deformed metric at the EMRI

‣  The tidal deformations are sourced by a third body in the external space time: a Kerr black hole of mass .M* ≫ M

‣The Schwarzschild black hole is approximately parallel-transported along one of the Kerr geodesics and the 
locally deformed metric is that of a non-rotating black hole corrected with tidal multipole moments 
incorporating all the informations about the external spacetime.

Marck (1983)‣   for Kerr, constructed by Marck.eα
(a) = (uα, eα

1 , eα
2 , eα

3 ), (a) = 0,1,2,3
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‣  The tidal moments are defined through the Weyl tensor

Cρσμν ≡ Rρσμν − (gρ[μRν]σ − gσ[μRν]ρ) +
1
3

gρ[μgν]σR

once it is evaluated on the Kerr geodesic 

Cab ≡ Ca0b0 = Cρσμνωρ
(a)ωσ

(b)ωμ
(c)ων

(d)e(a)
a e(b)

0 e(c)
b e(d)

0

Cabc ≡ Cabc0 = ωρ
(a)ωσ

(b)ωμ
(c)ων

(d)e(a)
a e(b)

b e(c)
c e(d)

0

‣  The symmetries of the Weyl tensor imply that it posses 10 algebraically independent components and 
these can be encoded in the two symmetric-trace-free (STF) tensors

ℰab := (Ca0b0)STF

ℬab :=
1
2 (ϵacdCcd

b0)STF

‣  We refer to  and  as the tidal quadrupole moments associated with the world line  .ℰab ℬab γ

Each STF tensor contains 5 independent components

‣  where  is the Carter tetrad for the Kerr space-time.ω(a)
μ
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Tidal moments of a Kerr perturberer
Kerr metric in Boyer-Lindquist coordinates  for a black hole of 

mass  and specific angular momentum 
̂xμ = ( ̂t, ̂r, ̂θ, ̂ϕ)

M* a = J*/M*

d ̂s2 = − (1 −
2M* ̂r

Σ )d ̂t2 −
4M* ̂r

Σ
a sin2 ̂θ d ̂t d ̂ϕ +

𝒜
Σ

sin2 ̂θ d ̂ϕ2 +
Σ
Δ

d ̂r2 + Σd ̂θ2

Σ = ̂r2 + a2 cos2 ̂θ, Δ = ̂r2 − 2M* ̂r + a2, 𝒜 = ( ̂r2 + a2)2 − a2Δ sin2 ̂θ

 dimensionless spin parameter:      
α =

a
M*

, 0 ≤ α ≤ 1

  the coordinate singularities for the Kerr metric are located at the zeroes of the function Δ
Δ = ( ̂r − ̂r+)( ̂r − ̂r−) ⟶ ̂r± = M* (1 ± 1 − α2)
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Geodesics in a Kerr geometry

‣  Specified by three constants of motion: the energy per unit mass , the angular momentum per unit 
mass  and the Carter constant 

̂E
L̂ K̂

· ̂t =
𝒜 ̂E − 2M* ̂raL̂

ΔΣ
,

· ̂r2 = [
̂E( ̂r2 + a2) − aL̂

Σ ]
2

−
Δ
Σ2

( ̂r2 + K̂),

· ̂θ2 =
1
Σ2 [K̂ − a2 cos ̂θ − (a ̂E sin ̂θ −

L̂
sin ̂θ )

2

]
· ̂ϕ =

2aM* ̂r
Σ

̂E
Δ

+ (1 −
2M* ̂r

Σ ) L̂
Δ sin2 ̂θ

‣ Innermost Stable Circular Orbit (ISCO) in the Kerr equator

̂rσ
isco = M* [3 + Z2 − σ (3 − Z1)(3 + Z1 + 2Z2)] , Z1 = 1 + (1 − α)1/3[(1 + α)1/3 + (1 − α)1/3] , Z2 = 3α2 + Z2

1

‣  distinguishes two different ISCOs, one which is co-rotating  with respect to the black hole 
and the other which is counter-rotating  .
σ = ± 1 ( ̂r+

isco)
( ̂r−

isco)

L̂ =

σ (d2 + α (αM2
* − 2σ dM3

* ))
d3/4 d(d − 3M*)

M*
+ 2α M*σ

̂E =
d3/2 − 2 dM* + αM3/2

* σ

d3/4 d3/2 − 3 dM* + 2αM3/2
* σ

K̂ = (αM*
̂E − L̂)2 Bardeen, Press, Teukolsky (1972)

A particular solution is given by circular time-like geodesics in 
the Kerr equatorial plane. Set , ,  and ̂r = d · ̂r = 0 ̂θ = π/2

· ̂θ = 0
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Tidal moments in Kerr

‣  The construction of the tidal multipole moments stems from the identification of a local orthonormal 
tetrad which is designed to be an inertial frame paralleled transported along the Kerr geodesic motion.

Marck (1983)

‣  The tetrad considerably simplifies for circular equatorial geodesics in Kerr  and ̂r = d, · ̂r = 0, ̂θ = π/2
· ̂θ = 0

eμ
(0) =

1

d Δ ( ̂E(d2 + a2) − aL̂) δμ
0 +

(a ̂E − L̂)
d

δμ
3 ,

eμ
(3) =

1
K̂ (L̂ − a ̂E) δμ

2 ,

eμ
(1) = ẽμ

(1) cos Ψ + ẽμ
(2) sin Ψ,

eμ
(2) = ẽμ

(1) sin Ψ + ẽμ
(2) cos Ψ

ẽμ
(1) =

( ̂E(d2 + a2) − aL̂)
(d2 + K̂) Δ

δμ
1 ,

ẽμ
(2) =

K̂

(d2 + K̂) Δ

( ̂E(d2 + a2) − aL̂)
d

δμ
0 +

d2 + K̂
K̂

(a ̂E − L̂)
d

δμ
3

K̂ = (a ̂E − L̂)
2

‣   is an angle depending on the proper time along the Kerr geodesic, which is necessary to introduce in 
order to ensure that the tetrad  is parallel-transported by the geodesic motion 
Ψ

(eμ
(0), eμ

(1), eμ
(2), eμ

(3))

‣  This co-moving cartesian frame can be interpreted as a coordinate system centered in the Schwarzschild black 
hole of mass .M
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‣Tidal perturbations affect the motion of a test particle around the Schwarzschild black hole.  They represent the 
first order corrections to Extreme Mass Ratio binary systems in the presence of tidal fields. The metric felt by the 
test particle has the form:

‣Specializing to Kerr geodesics in the equatorial plane  the explicit expressions for the components of the 
Weyl tensor considerably simplify

̂θ = π/2

C11 = 1 − 3 (1 +
K̂
d2 ) cos2 Ψ

M*

d3
,

C22 = 1 − 3 (1 +
K̂
d2 ) sin2 Ψ

M*

d3
,

C12 = − 3 (1 +
K̂
d2 ) M*

d3
cos Ψ sin Ψ,

C33 = (1 + 3
K̂
d2 ) M*

d3

C121 = − C112 = C332 = − C323 = −
3M* K̂

d4
1 +

K̂
d2

cos Ψ,

C221 = − C212 = C313 = − C331 = −
3M* K̂

d4
1 +

K̂
d2

sin Ψ,

·Ψ =
A

d2 + K̂
, A = ̂E K̂ −

a K̂
a ̂E − L̂

Marck (1983) Alvi (1999)

‣The metric perturbations  are written in terms of the tidal multipole moments and which represent the tidal 
deformation sourced by the Kerr black hole of mass .

hμν
M*

Weyl tensor in the comoving frame

gμν = ḡμν + hμν + . . . where  is the Schwarzschild metric of the mass  black-holeḡμν M
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‣The quadrupole electric and magnetic moments in cartesian coordinates are then defined as

ℰab = C<ab>, ℬab =
1
2

ϵ<a|pqC
pq
|b>,

‣ If one aims to study a binary system around a Schwarzschild black hole influenced by the presence of 
tidal fields, the problem is more conveniently addressed in spherical coordinates.

‣The conversion from cartesian to spherical allows one to distinguish different orientations for the binary 
system with respect to the source of the tidal field. Assuming that  is the coordinate along the direction 
orthogonal to the equatorial plane of Kerr, if   we get equatorial companions whereas the 
configuration for which   is called polar companions

x3
x3 = r cos θ

x1 = r cos θ Cardoso, Foschi (2021)

‣Convert the tidal moments expressions from cartesian coordinates  to spherical coordinates 
. The latter will be later interpreted as the spherical coordinates of a Schwarzschild black hole.

(x0, x1, x2, x3)
(t, r, θ, ϕ)

Equatorial Companions β = π/2

x

z

yKerr BH

 Polar Companions β = 0

Kerr BH
x

y

z
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‣ It is convenient to introduce the unit radial vector , oriented in the -direction and written in 
Cartesian components.

Ωa ̂r

‣we define the unit radial vector  as Ωa

Ωa = R Ωa
* , Ωa

* = (cos θ, sin ϕ sin θ, − sin θ cos ϕ)

‣Our choice is such that the polar case is recovered for   whereas the equatorial case is 
for  

β = 0 (x1/r = cos θ)
β = π/2 (x3/r = cos θ)

‣A projector onto the space orthogonal to  can be defined according tôr

γab = ηab − ΩaΩb, a, b = 1,2,3

‣decompose  and  in terms of irreducible representations of Cab Cabc SO(3)

Cab = ℰqΩaΩb + 2ℰq
(aΩb) −

1
2

ℰqγab +
1
2

ℰ<ab>

R =
cos β 0 sin β

0 1 0
−sin β 0 cos β

‣ In order to study all possible orientations for the binary system around the Kerr black hole, we 
introduce a rotation angle :β

Spherical coordinates
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‣ the scalar and the transverse vector components are defined respectively as

ℰq ≡ CabΩaΩb = − Cabγab,
ℰq

a ≡ Ccdγc
aΩd,

‣   labels the STF tensor in the  subspace, defined asℰ<ab> (θ, ϕ)

ℰ<ab> ≡ 2γc
aγd

bCcd − Ccdγcdγab = 2γc
aγd

bCcd + ℰqγab

‣Once converted into spherical coordinates, these -quantities provide the tidal moments 
defining the metric  in coordinates .

ℰ
hμν xA = (r, θ, ϕ)

ℰq
adxa =

∂xa

∂xA
ℰq

adxA = ℰθ(rdθ) + ℰϕ(rdϕ),

ℰq
<ab>dxa ⊗ dxb =

∂xa

∂xA

∂xb

∂xB
ℰq

<ab>dxA ⊗ dxB = ℰθθ(rdθ)2 + 2ℰθϕr2dθdϕ + ℰϕϕ(rdϕ)2,

‣Similar considerations apply for the case of , leading to the magnetic multipole moments  and  .Cabc ℬa ℬab
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‣We now consider the effect of tidal deformation as measured in a local inertial frame which is parallel 
transported along a circular equatorial geodesic around the Kerr perturber.

‣  is a rotation angle introduced by Marck (1983) in order to parallel-transport the tetrad  along the big 
geodesic.  is a constant,  , where  is the proper time of the big geodesic around the Kerr black hole.
Ψ eμ

(a)·Ψ Ψ = const. × τ τ

‣For simplicity, we consider a Kerr equatorial geodesic  .̂θ = π/2

‣ In the static approximation we are neglecting the motion of the source of the tidal moments, the timescale 
associated to the motion of the binary system along the geodesics of the Kerr black hole is much bigger than 
the one associated to the motion of the test particle around the intermediate black hole. For this reason and 
because we are interested in the geodesics of the binary system, in the static approximation, we can set .Ψ = 0

Tidal deformations on the equatorial plane

‣  We analyze the orbital dynamics of a binary system whose secondary moves in the equatorial plane of the 
Schwarzschild black hole,  .θ = π/2

x

z

yKerr BH
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Tidal moments for θ = ̂θ = π/2

q1 = d2 − 2α dM3/2
* σ − dM* + 2α2M2

*

q2 = 2α dM3/2
* σ + d(d − 3M*)

‣Depend on , parameters in the 
Kerr spacetime and  which specify the 
binary system configuration

d, α, σ, M*
β

, , 
 and 

β ∈ [0,π/2] σ = ± 1
α ∈ [0,1] d ∈ [risco+, ∞]

ℰq =
M*

4d3 ( 6q1 cos 2β cos2 ϕ
q2

− 3 cos 2ϕ + 1)
ℰθ = −

3M*

2d3

q1 sin 2β cos ϕ
q2

ℰϕ =
3M*

4d3
sin 2ϕ (1 −

q1 cos 2β
q2 )

ℰθθ =
3M*

4d3 ( q1 cos 2β(cos 2ϕ − 3)
q2

− 2 cos2 ϕ)
ℰθϕ =

3M*

d3

q1 sin 2β sin ϕ
q2

ℰϕϕ = − ℰθθ = −
3M*

4d3 ( q1 cos 2β(cos 2ϕ − 3)
q2

− 2 cos2 ϕ)

ℬθ = −
3M*

4d3q2 (sin 2β sin 2ϕ (q1 − q2) (q1 + q2))
ℬϕ = −

3M*

2d3q2 (cos 2β cos ϕ (q1 − q2) (q1 + q2))
ℬθθ = −

3M*

d3q2 (cos 2β sin ϕ (q1 − q2) (q1 + q2))
ℬθϕ = −

3M*

4d3q2 (sin 2β(cos 2ϕ − 3) (q1 − q2) (q1 + q2))
ℬϕϕ = − ℬθθ =

3M*

d3q2 (cos 2β sin ϕ (q1 − q2) (q1 + q2))
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Tidal moments for d ≫ M*

‣ In this limit: q1

q2
= 1 + 𝒪 (

M*

d ) ,
(q1 − q2)(q1 + q2)

q2
= 𝒪 (

M*

d )
‣ all the magnetic moments are sub-leading and the tidal effects are only induced by the presence of the 

electric quadrupole moments

ℰq = ϵ ℰ̃q =
ϵ

M2
(1 − 3 sin2 β cos2 ϕ),

ℰθ = ϵ ℰ̃θ = − 3
ϵ

M2
cos β sin β cos ϕ,

ℰϕ = ϵ ℰ̃ϕ = 3
ϵ

M2
sin2 β cos ϕ sin ϕ,

ℰθθ = ϵ ℰ̃θθ = − ℰϕϕ = − 3
ϵ

M2 [1 − sin2 β(1 + sin2 ϕ)],

ℰθϕ = ϵ ℰ̃θϕ = 6
ϵ

M2
cos β sin β sin ϕ,

ℰϕϕ = ϵ ℰ̃ϕϕ = 6
ϵ

M2
cos β sin β sin ϕ

‣  disappears in this limit, there is no 
distinction between a Kerr and a 
Schwarzschild perturber for 

α

d ≫ M*

Yang and Casals (2017)
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‣The metric for a tidally deformed Schwarzschild black hole will be written in terms of the quadrupole moments.

‣ It is useful to introduce the dimensionless perturbative parameter

ϵ =
M*M2

d3

‣Under the hierarchical assumption , and noticing that  is naturally measured in units of the Kerr mass 
, this parameter is automatically small, . 

‣Make explicit the linear dependence on , so that  and . 

‣To keep track of the various order in  we can rescale the tidal moments so as to make explicit such a 
dependence and define 

M ≪ M* d
M* ϵ ≪ 1

ϵ ℰ ∼ 𝒪(ϵ) ℬ ∼ 𝒪(ϵ)

ϵ

ℰ = ϵ ℰ̃, ℬ = ϵ ℬ̃

The deformed metric



EMRI +External Tidal Fields
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‣ EMRI PERTURBED BY THE PRESENCE OF A THIRD MASSIVE BODY

ds2 ≃ − (1 −
2M
r ) dt2 + (1 −

2M
r )

−1

dr2 + r2 (dθ2 + sin2 θdϕ2)+ϵ hμνdxμdxν+𝒪(ϵ2)

Poisson and Vlasov (2009)

‣ At the leading order the Tidal Environment specified by QUADRUPOLE TIDAL MOMENTS 

htt = − r2 (1 −
2M
r )

2

ℰq

htr = (1 −
2M
r ) hrr = − r2 (1 −

2M
r ) ℰq

htA = (1 −
2M
r ) hrA = −

2
3

r3 (1 −
2M
r ) (ℰq

A − ℬq
A)

hAB = −
1
3

r4 (1 −
2M2

r2 ) ℰq
AB−(1 − 3

2M2

r2 ) ℬq
AB

ℰq , ℰq
θ , ℰq

ϕ , ℰq
θθ , ℰq

θϕ , ℰq
ϕϕ

ℬq
θ , ℬq

ϕ , ℬq
θθ , ℬq

θϕ , ℬq
ϕϕ

Tidal fields induced by the external SuperMassive BH!



Tidal ISCO shift

‣ This can also be seen by solving the geodesics equations where the solution for the  component can be 
written as , where  does not depend of  while  depends on it.

yr

yr
mean + yr

(ϕ) yr
mean ϕ yr

(ϕ)

‣ The radial correction enters the Hamiltonian only with terms of order , as a consequence it is 
possible to replace the true trajectory in the perturbed spacetime with the “mean” circular trajectory.

𝒪 (ϵ2)

‣ The tidal fields generated by the outer body deform the orbits of the unperturbed Schwarzschild metric. 

‣ In general the tidal moments depend on  ϕ ⟶ circular orbits are deformed into elliptic orbits.

‣ We want to construct the Hamiltonian per unit mass squared  of the EMRI + tidal interaction system.H
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‣ If   solves the geodesic equation in the unperturbed Schwarzschild geometry x̄μ(τ)

··̄xμ = − Γ(0)μ
νρ |x̄

·̄xν ·̄xρ ḡμν |x̄
·̄xμ ·̄xν = − 1

the effect of the tidal deformation will reflect in a deviation from the unperturbed curve x̄μ

xμ(τ) = x̄μ(τ) + ϵ yμ(τ)gμν = ḡμν + ϵhμν + 𝒪(ϵ2)
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‣ Define:
⟨𝒜⟩ =

1
2π ∫

2π

0
𝒜 |γ dϕ

where  is the mean circular orbit on  .γ G = g + ϵ h

‣ This averaging procedure allows one to consider the secular dynamics of bound orbits in the tidally 
deformed spacetime.

‣ We are interested in computing the shift in the ISCO quantities due to the tidal field.

‣ In a hierarchical three body system the tidal field generated by the third body modifies the ISCO 
frequency, energy, angular momentum and radius of a Schwarzschild EMRI

‣ Consider the Hamiltonian per unit mass squared  of the EMRI + tidal interaction systemH

H =
1
2

pμpν⟨Gμν⟩ =
1
2

pμpν (gμν + ϵ ⟨hμν⟩) + 𝒪(ϵ2) Yang and Casals (2017)



‣ The secular dynamics of every bound geodesic is captured by a mean circular orbit.
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‣ It is possible to consider an averaged total momentum  by setting pμ pr = pθ = 0

‣ To compute  the average of the equatorial tidal moments is needed⟨hμν⟩

⟨ℰq⟩ =
ϵ
r2
0 (1 + 3

q1

q2
cos 2β)

⟨ℰθ⟩ = ⟨ℰϕ⟩ = 0

⟨ℰθθ⟩ = − ⟨ℰϕϕ⟩ = − 3
ϵ
r2
0 (1 + 3

q1

q2
cos 2β)

⟨ℰθϕ⟩ = 0

⟨ℬθ⟩ = ⟨ℬϕ⟩ = 0
⟨ℬθθ⟩ = ⟨ℬϕϕ⟩ = 0

⟨ℬθϕ⟩ = 3
ϵ
r2
0

(q1 − q2) (q1 + q2)
q2

sin 2β

pμ = ( E

(1 − r0/r) − ϵ ⟨htt⟩
,0,0,

L
r2 + ϵ ⟨hϕϕ⟩ )

⟨htt⟩ = − ϵ
r2

r2
0 (1 −

r0

r )
2

(1 + 3
q1

q2
cos 2β)

⟨hϕϕ⟩ = − ϵ
r4

r2
0 (1 −

r2
0

2r2 ) (1 + 3
q1

q2
cos 2β)
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‣ the secular Hamiltonian becomes

H =
L2

r2
−

E2

1 − r0

r

− 8η
r2

r2
0

L2

r2 (1 −
r2
0

2r2 ) + E2

‣ where the effective perturbative parameter  isη

η = −
1
8

ϵ (1 + 3
q1

q2
cos 2β) q1 = d2 − 2α dM3/2

* σ − dM* + 2α2M2
*

q2 = 2α dM3/2
* σ + d(d − 3M*)

‣ Notice that all the informations regarding how the binary system is oriented, as well as where it is 
located with respect to the Kerr perturber, are contained in  .η

‣ In particular, it is readily verified that a particular orientation  for the binary system exists for which 
, and thus no corrections due to tidal moments are induced in the secular dynamics

β*
η = 0

cos 2β* = −
1
3

q2

q1

‣ The red region represents the physical region where 
, with  in the left panel and  in 

the right panel. The oblique line region shows where 
the quantity . This shows that the angle 

 can always be defined in the entire physical region 
of Kerr circular geodesics.

d > ̂rσ
isco σ = + 1 σ = − 1

1 > − 1
3

q2

q1
> − 1

β*
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‣ The ISCO can be obtained upon demanding the Hamiltonian  to be on-shell, the orbit to be circular 
and that the radial perturbations become stationary

H

H = −
1
2

,
∂H
∂r

= 0 ,
∂2H
∂r2

= 0

‣ Using these conditions and expanding at the first order in , it is possible to determine the secular shift 
caused by the tidal perturbations to the energy, angular momentum and radius of the Schwarzschild 

ϵ

r = risco + η r1 + 𝒪(η2)
E = Eisco + η E1 + 𝒪(η2)
L = Lisco + η L1 + 𝒪(η2)

‣ at the leading order one finds , , , namely the values for the radius, the energy and the angular 
momentum of the ISCO for an unperturbed Schwarzschild black hole

risco Eisco Eisco

risco = 3r0 , Eisco =
8

3
, Lisco = 3 r0

‣ At the first order in  one determines the corrections to the three quantitiesη

r1 = 1536 r0 , E1 = −
152 2

3
, L1 = − 174 3 r0

Yang and Casals (2017)
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‣ These results also follow by the geodesic approach.

‣ In the case in which the binary system is located asymptotically away from the Kerr perturber,  every 
information about the black hole spin parameter  and the  parameter are lost.

d ≫ M*
α σ

‣ Shift induced by the tidal fields on the orbital frequency of the ISCO.

‣ It is also possible to compute the shift in the ISCO orbital frequency. In general for quasi-circular orbits 
the orbital frequency can be determined by means of the ratio

Ω =
pϕ

pt
Ω = Ωisco + η Ω1 + 𝒪 (η2)

r0Ωisco =
1

3 6
, r0Ω1 = −

2
3

491
3

expanding ⟶

‣ The effective secular perturbative parameter  is new! It allows to specify not only the orientation of the 
binary system and its location with respect to a spinning tidal perturber.

η

η = −
1
8

ϵ (1 + 3
q1

q2
cos 2β) q1 = d2 − 2α dM3/2

* σ − dM* + 2α2M2
*

q2 = 2α dM3/2
* σ + d(d − 3M*)



EMRI + External Tidal Field, Geodesics
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HIERARCHICAL THREE-BODY PROBLEM!

RICHER PHENOMELOGY!  

‣ Tidal environment depends on the orientation of the EMRI! 

‣ Tidal environment depends on where the EMRI is located!

xμ(τ) = x̄μ(τ) + ϵyμ(τ)
··yμ = − 2Γ̄μ

νρ |x̄
·̄xν ·yρ − (yσ(∂σΓ̄μ

νρ) |x̄ + Γ(h)μ
νρ |x̄ ) ·̄xν ·̄xρ

gμν = ḡμν + ϵhμν + 𝒪(ϵ2)Study the EMRI motion in the tidal environment

M* ≫ M ≫ m ϵ =
M*M2

d3
≪ 1 M*

M*

 Polar Companions β = 0

Kerr BH
x

y

z

Equatorial Companions β = π/2

x

z

yKerr BH
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RICHER PHENOMELOGY!  

‣ Tidal environment depends on the orientations of the EMRI! 

‣ Tidal environment depends on where the EMRI is located!

Orientation: POLAR CONFIGURATIONS,                            Location: 

HIERARCHICAL THREE-BODY PROBLEM!

M* ≫ M ≫ m ϵ =
M*M2

d3
≪ 1

ℰq = − ϵ
1 + 3 cos(2θ)

2M2

ℰq
A = − ϵ

3
2

sin(2θ)
M2

δθ
A , ℬq

A = 0

ℰq
AB = − ϵ3

sin2 θ
M2

(δθ
Aδθ

B − δϕ
Aδϕ

B) , ℬq
AB = 0

Tidal Moments:

rISCO = 6M(1 + ϵ 256) + 𝒪(ϵ2)

θISCO =
π
2

(1 − ϵ c1 sin ϕ) + 𝒪(ϵ2)

EISCO =
2 2

3
(1 + ϵ 38) + 𝒪(ϵ2)

LISCO = 2 2M(1 + ϵ 87) + 𝒪(ϵ2)

ISCO shift:

Cardoso and Foschi (2021)
Yang and Cassals (2017)

M*

M

EMRI + External Tidal Field, Geodesics

 Polar Companions β = 0

Kerr BH
x

y

z
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RICHER PHENOMELOGY!  

‣ Tidal environment depends on the orientations of the EMRI! 

‣ Tidal environment depends on where the EMRI is located!

Orientation: EQUATORIAL CONFIGURATIONS,                            Location: 

HIERARCHICAL THREE-BODY PROBLEM!

M* ≫ M ≫ m ϵ =
M*M2

d3
≪ 1

ℰq = − ϵ
1 + 3 cos(2ϕ)

M2

ℰq
A = − ϵ

3
2

sin(2ϕ)
M2

δϕ
A , ℬq

A = 0

ℰq
AB = 3ϵ

sin2 ϕ
M2

(δθ
Aδθ

B − δϕ
Aδϕ

B) , ℬq
AB = 0

Tidal Moments:
rISCO = 6M [1 + ϵ (128 − 57 cos ϕ)] + 𝒪(ϵ2)

θISCO =
π
2

EISCO =
2 2

3
(1 − ϵ 19) + 𝒪(ϵ2)

LISCO = 2 2M(1 − ϵ
87
2

) + 𝒪(ϵ2)

ISCO now eccentric!

M*

M

EMRI + External Tidal Field, Geodesics
Equatorial Companions β = π/2

x

z

yKerr BH
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Summary
‣ We computed the ISCO shifts induced by the tidal moments of a Kerr black hole on an EMRI

‣ ISCO shifts of the energy, angular momentum, radius and angular velocity, for any value of the 
distance, the spin of the Kerr black hole and the inclination of the orbit of the test particle around the 
Schwarzschild black hole

‣ It is possible to compute the frequencies of the motion through the action angle variables.

Perspectives

‣ Non circular orbits, eccentricity, resonances! 

‣ Corrections to the orbital precession.

‣ ISCO    ISO⟶ Ωr = 0 .⟶

Camilloni, Pica (2022)

zoom-whirl orbit
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Thank you for the attention!


