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A overview

o The main character: 1/2-B?S Wilson looyp (WL) maximally
supersymmetric Yang-mills (MSYM) on S°. Iks vev can be

compuled at large N and for all “A” (t Hooft coupling) via
Localisation,

@ Our main goal is to compute its vev bv means of its

kolagrapmt dual at large N and up ko omewtaop i a large “1”
exyamsimw

o The key words here: precision, holography, non-conformal
setting, MSY M,



Motivations
On the field theory side:
> D MSYM on S°
o 1/2-BPS WL
On the string theory side:
o the dual
o preparing for the computations
o the computations
The wmatching

Cubtloolke



Mokivabions and declarakion onf ke

o Why precision holography in a non-conformal setting? We want ko
umgers&am& top-dowin holography bevond the conformal paradigm but
still in a mathematically detailed level.

o Why WL operators? These are among the simgtes& gauge-invariant nown-
local observables we can study in a gauge theory Their holographic
dual is knowin and their vev can be computed via localisation.

o I will focus on 2 aspects here:
o the role and the nature of UV/IR divergences,

o the role of the dilaton.,

o I will underline what is W common and what nobk ko AASS/CFT 4
(AdS4/CFT3). NB, Long btradition of study WL n AAS/CFT!



On the field theory side: §D MSYM on § L)

o The Lagrangian [Blau ‘oo][Minahan, Zabzine ‘18]

1 2 b 1 2yl
P = Tr( |F|°— |D®,|” —¥YDI'Y — — [®,®,|" + PT" |®,, V|
2832(M 2

o The Lagrangian is obtained via dimensional reduction from 10D SYM on a flat
spacetrminimal coupling of the S+ other terms to preserve 16 real supercharges.

@ Scalar indices 1,3=96,...9. A, (u=1,...5), ©, ¥ transform in the adjoint of the gauge
group SU(N).

> ¥ have 16 real components and obey I'}¥ =V,

® Euclidean: the above Lagrangian needs to be Wick-rotated (p” — ip").



On the field theory side: 5D MSYM on S°

® The symwmetries: The global symmetry supergroup is SU(4|1,1). The R-
svmm&rv group is SU(1,1) X SO(2). The space Eransformation group:
50(6).

® The parameters: R is the radius of the s-sphere where the theory lives on,

N is the rank of the qauqe group, giy, is the coupling constant which has
dimension [L]. The t Hooft coupling constant is

il 832(MN

S

o 8§D SYM is not renormalizable, at high energies it is UV completed in
the (2,0) SCFT [Douglas ‘10][Lambert, Papageorgakis, Schmidb=Sommerfeld ‘10]



O the FT side: 1/2-BPS WL on 8§D SYM

o The &ké.()r:j can b@. localised [Pestun ‘o7 Minahan, Zabzine ‘18] Minahan ‘18] Gorantis, Minahan, Naseer '17] O Q4
locus where: A, =0 and ¢; =0 when I # 0. @ is used to construct a Hermitian N XN makrix M.

o The vev of 1/2-BPS WL [Maldacena 9% [Bobev, Bomans, Gautason, Minahan, Nedelin
'19] which wraps the equator of S° is

(W) = <Tr (PeiﬁgAﬂdx”+i95dS¢O)>

For us: A, = 0 (5-dimensional gauge field)

o It can be computed from the matrix model:

N 1
<W>=—(€§—1)+@ Sies
& N
at large N but for any t Hooft coupling ¢




O the FT side: 1/2-BPS WL on 8§D SYM

° The vev of 1/2-BPS WL which wraps the equator of S° at large t Hooft coupling £ and large N

Ao (1>
(W) = p +0(e°)+0 7

o What are we looking at? classical L@.&ding conkribution n the
large & Limik

(Wl;:@eﬂ@( )+@(;)

This is the subleading contribution in the larqge & Limit which we want
te compute



On the string theory (ST) side: the dual 10D geom I

® The holographic dual of MSYM on S° is a stack of N D4-branes with

sterE;ﬂai worldvolume in 10D [Bobev, Bomans, Gautason ‘1¥]. The 10D
mebric is

4(do? HdQ 120080
( ; + dO? + cos? Halsjs2 + ! ?

ds2 = £2(NreP)2/3 RS ST R R e
10 S ( ) sinh? & [P % tanh? ¢ sinZ 6

and the non-constant dilaton is (# ALS case!)

e g (coth2 6 — — sin? 6’)

~ Nr 4
o The radial direction is 0<o< oo (UV is at 6 5 0 and IR 6 - )

o The backqground symmelry: SO(6) x SO(1,2) x SO(2)



On the ST side: the dual 10 qeom 11

o The dimensionless Fvarame&ers here are: N, ¢

@ At 6 - 0 (IR) {sek r=¢77); the §-sphere smoothly shrinks to zero

1 —dgn2e |’ ® — —log

dsjo — £ (Nre®)™ [16(er + r?dQ2) + d6* + cos® O dsZ +
: 2N

sin? 0 dgp> ] 1 23

o At 6 — 0 (UV) (set U=sinh0): the metric of flat-space D4 brane sol

1 §3U3/2
O - —1lo
2 5 N?r?

dU* + U?ds
ds Sy £ [4U3/2dQ§ + dS“]



On the ST side: the dual 10 geom II (*)

o The gauge potentials are

£f iINTEL
B, = 525 cos> Hvoldsz, €, = ; S(Nﬂeq’)_4/3sin29d¢, Cy =— iNm”S3 cos> Adgp N V()ldS2

and so the NSNS and RR fields:



On the ST side: the dual of 1/2-87PS WL I

o The holographic dual of a circular WL is a fundamental skring in this 10D
background, whose worldsheet ends on the loop at the boumdarj [ Maldacena 9% ]

o The vev of the circular WL is then given bv the string partition function

(W) =7,

(ring
o and at strong coupling (&> 1)

T SFT & F[K — = Pclassical SFT + lOg Sdet_l/zK
e W

s s N2k W ok to a::N\‘vai‘.

log N —

string ™ classical



On the ST side: the dual of 1/2-BPS WL 1I

o For us: the classical solution is [Bobey, Bomans, Gaukason, Minahan,
Nedelin '19]

equator of 5%, 0=0, any fixed point on the tnternal space

-

@ In static qauqe the ws coordinates are (7,0): the equator of S° is parame%er&sed
bfj T and o is the radial coordinate
447

ds? = €2p<d62 + de) , — ¢ = :
2 \/}_/ tanh o sinh? ¢




On the ST side: The classical contribution
o The vev of the circular WL is then given bj the string partition function

lOg Z o cales SFT T lOg Sdet_l/2K — T Pclassical — SFT T FK

Strmg classical

o The classical contribution is the area of the minimal ws, The classical
reqular ised action is [Robev, Bomans, Graubason, Minahan, Nedelin 19];

Sclassical + 5 5 R 272'f2 j\/}_/ dodt + Sct = 5

and it matches the leading contribution of (W) at strong coupling.



O the ST side: the OMQ“LOOP ws skring action 1
o The omeﬂtmop ackion aomprekemds two ktermws:

1. The ﬁr&dw‘imﬂ"sejﬂim actlon [Fradkin, Tseytlin ‘¥s, ‘56].

]
S e d R® +—J ® Kds
& 47rJ \/7_/ 27 ) 50y

|
Ik is ‘classical”: in terms of the ‘bare’ string tension T = o, it is of order T, but
3 1

it conkributes to the quantum corrections (see also [Chen-Lin, Medina-Rincon,
Zarembo '17])

- If the dilatown is constant then we qeb S = y®, (it would conbribute as ~ g7 to the

vev ).

- It classically violates the Weyl invariance of the ws theory and has UV divergences:
nobt when considered toqgether with the rest of the one-loop term (fluctuations).



O the ST side: the QMQ“LOQF-‘ ws skring action 11

2. The effective action from the omemi.oap fluctuations of the string ws

% | £
L= log[ \D{DODO|e % = — log Sdet K wikh S = e [\/7 (EF "+ 0°D 0% d°o .
/4 \)

- The action Si can be computed by expanding the Polyakov action at quadratic order
and the GS string action (e.q. [Drukker, Gross, Tseytlin ‘00]). For us: Type IIA.

- These are second order fluctuations around the classical string solution: ¥ bosownic
fluctuations transverse to the ws ((%a =1,...,8) and ¥ &S fermionic fluctuations

(69,

- The path integral for the fluctuations is Gaussian, and it can be evaluated bj Means
of functional determinants (Sdet™?K).



O the ST side: the Qv\emloop ws skring action 111

S = ey J\/}_, (Ca%abgb + éd@abeb) d%c

@ The bosownic operators arve: Ay =dag( K, K K Ko Koy, Ky Koy K )

e « l

R 0) ) AR A P
K, e I, ==~ (<,4)
\w
L
Z FLAT OFfERNTOR.S
Aty 5% _ 7+ 38cosh2e gl 5 _ 1+2cosh2o vy 5 SR
b AT O R sinh22¢ oy 2()0'0 ~ sinh?26 B S %l T eI S sinh? 2¢

o The x directions: fluctuations transverse to the equator on the S-sphere. The y
directions: fluctuations on 2-sphere. The 2 directions are the fluctuations in R?
obtained by combining the 0, ¢ directions.



O the ST side: the OMQ“LCL}OF WS sEng ackion IV

S [P att + P2 o

g Arl’2

o The fermionic operator is:

: ; . 3
QZ= D=itr-d+na+v, a i Y = 2sinlha

o )
S 2 cosho

“FT S FERATOR
Here 7 are the Pauli wakrices.

@ The actiown is campu&ed starting from &S action for type 1IA
[Cvetic, Lu, Pope, Stelle, '99], and reduced ko ¥ 2D “f@\"MEOMS. Here we
have a degeneracy, so we ended up with ohe fermionic operator.



O the ST side: the OMQ“LOOP s skring action V

lOg = L SFT + lOg Sdet_l/ZK — = Oclassical — SFT S FK

string ™ classical

@ The omeﬂmop Eerms «com&muousij talle bo each obher: &hﬁj both cownbribute
to the divergences, they both conbribute to the cancellation of the Weyl
amomalv‘

® We want to compute | . It is easier to compute functional determinants for

differential operators in flat space. We really want to compute I, that is for
the ‘“flat’ operators.

o Logic here: (f)the theory is Weyl invariant, then we can strip off the
Weyl foactor and claim

SFT_l_FK — SFT_l_FIK



On the ST side: the one-loop ws string action VI

o This means that we want to W@.vi. rescale the ws mekbric (i.e. remove
2,0)
e

4¢¢72

tanh o sinh? ¢

dS22 — ezp(dGZ + dT2> ! \/}_/ = 62,0 =3

® BUT: e — 16L”52§e_2" — 162/”35  as 6o 00 (r=e°—0), that is the Wﬁjl factor
is il defined ot the center of the ws [Cagnazzo, Medina-Rincon, Zarembo '17].

o How do we deal with this? We cut a Litktle disk at the center of the ws,

e, at 0 = R, where R is an IR &u&-ﬂoﬂ: [Cagnazzo, Medina-Rincon, Zarembo
LK



On the ST side: the one-loop ws string action V11

o Also for the fluctuations: we want to compute the spectra, so we really need a
compact manifold, so now we have fluctuaktions on a cylinder: this is good!

o Bul, we are changing the topology: from a disk to a cylinder [Cagnazzo, Medina-Rincon,
Zarembo 17].

o We need ko put the ‘cenbral’ Likkle diske bacle!

o Here the fluctuations are free since all the potentials vanish. They contribute only with
pure divergences. We will take into account the divergences n I'y .



O the ST side: the one-loop ws string action VIIiI

o Bub what about the FT term?

o At the cenber of the ws, the dilatown is constant:

), 11 53
— —1o
i gﬂzNz

AS 00— 0

@ Then the FT-action gives

~ Nr



O the ST side: the OMQ“LGOP ws skring action IX

o Recap: after the Weyl rescaling we expect:

o The FT-action conbributes from the small central disk which we cub-off:

Nr

Srr = Pl = SR @

o The fluctuations conkribute from the cvtamd@x with a finite and a diverqgenkt
part:

[ = finite terms + diverqgent terms



On the ST side: W@jt amamatv I

o The classical Weyl rescaling of the FT action is cancelled by the anomaly
of the onhe-loop fluctuations of the string (e.q. [Callan, Thorlacius '¥9])

(1) = (T +(THi = - SR

o There is a crucial contribution now from the dilaton: The classical
Weyl anomaly of the FT-action is proportional to e~ 0D,

o It does not hQPF’QM th AASS/CFT 4! [ Drukiker, Gross, ‘T‘sevﬂm ‘00,
[Forini, VGMP, Griquolo, Seminara, Vescovi ‘18],
[Cagmazaa,Medmawf?;maom,l’;arembo '17].



O the ST side: Wevt amamatv i1

2 Then, we are expec&ec:&. to see a logarithmic divergence controlled b? ¥ (e.q.
[ Drukicer, Gross, Tseytlin ‘o0

1 l
2—72. <Ti>VOl},=—)(:—1,

o This is cancelled against exbra contributions due to the ‘rotation’ of the
S 10D to 24 fermions and to the measure [Alvarez ‘¥3][ Drukker, Gross,
Tseytlin ‘o0,

o We do not tnclude bthese conkributions.



On the ST side: Wevi amamaiv 111

o In concrete: the one-loop effective action will have a log divergence as
[' = ylog (Ae‘R) b ﬂfi&»\i&@. terms

(W) = 2., e O @ TIFT LK

[ring

o This divergence is universal, it is found for fluctuations near any
minimal surface with a disk Eopotagv A AAS [Drukieer, Gross, Tseytlin ‘o0],
[Forini, VGMP, Griguolo, Seminara, Vescovi ‘18], [Glombi, Tseytlin 20].

o We confirm the universality and the topological nature of these
divergences in a more general consistent string background.



On the ST side: Computation of '

o We use the Pkase Skiﬁ& mebthod (Qa.sﬁ [Chen-Lin, Medina-Rincon, Zarembo "1"7][6‘.&9&»\&1&0,
Medina-Rincon, Zarembo ‘17]) ko compute the conbribution from the fluctuations
with ‘flat’ operators

" 1 (detF)*(det # )*(det K )
2 (det 2)8

o And the answer is...

[(R) = 2log m+ | log(Ae %)
G e i
W divergence . Atk
(= N ‘Qa&f%{ = Cﬂ:\-’ &-p

@ NB. | =y and R is the IR cub-off where we cut the small disk.



The matching I

o Recap: We want to r@.prodwﬁ:@. the vev of the circular WL at strong coupling

N
log{# ) ~ &+ log i&YM

@ Q@.&QP: We have c:ompu%ed

lOgZ ~ = Oclassical SFT g F[K o 5 T IOg

® We have to deal with the cub-offs A, Ry The only way is to consider a

ratic of skring partition functions with the same topology

[Forini, VGMP,Grriquolo,Seminara Vescovi ‘18 ][ Faraqqi,Pando Z»avas,Sﬁtva, Trancanelli '16]
[Forini, TseytlinVescovi ‘17 J[Cagnazzo,Medina-Rincon,Zarembo ‘17 ][ Medina-
Rincon,Tseytlin,Zarembo ‘1%], thanks to the foact that the diverqgences are
universal and ‘EQFOLOSL(:&L"



The matching 11

o Bul be careful! R should be replaced by a diffeo invariant regulator
[Cagnazzo,Medina-Rincon,Zarembo ‘17]:

ol
:_ZJ epda
At

The IR cub-off is translated into the ws area that we cub off when
aampu&y\g the sFoé.c:&ra for the fluctuakions [CagnazzoMedina-Rincon,Zarembo 17]

o Here we have: A = 167 ¢ *Rovu




The matching 111

o We are r@.o\civ‘ Bubt we divide bv what? To keep type IIA seb-up, we compute
the partition function for a circular skring in AdS, X CP°,

o The value onf the dual 1/2-BPS WL [Drukier, Trancanelli '09] i ARIM is khnowi
via localisation {Kapus&im, Willett, Yaakov ‘09 ][ Marino, Putrov ‘09 ][ Drukier, Plefika, Younq
‘0% [ Drukieer, Marino, Putrov ‘10]

Nipim ﬂ /4
<W>ABJM ~ 4—72-/16 \@ » > | ) £ e (3271'2/15) AI%JM

where 1 is the t Hooft coupling.

® The string partition function for a circular string in AdS, X CP° has been
computed bj with different mebthods [Kim, Kim, Lee ‘12][Aquilera-Damia,Faragqgi,Pando
Z,a\ja\s, Rathee, Silva "1¥ ][ Giombi, ‘T‘sevﬂm o],



The makching IV ()

o Bub we need to use the same reqularisation scheme to meamivxgnfuuj
consider the ratio, We compute the partition function for a circular

skring in AdS,; X CP° ot one loop in the large 4 Llimit using the phase shift
mebhod,

o The classical solution [Drulkicer,Plefka, Younq ‘0% J[Chen, Wu ‘0% ] WTapS
the equator of S° inside AdS, and it is constant on the compact space.

o and the answer is

string __ ABIM
logZ, ..o = m\/24 + log T YRR

@ NB. This is the holographic dual of ABIM in 3d!



The makbching VI

o Recap: on the string side, we aompu&ec& up tp one-loop:

. 4N . N
log Zgg’;g = £+ log ; SZM log(A\/Z) log ngﬁi = m\/ 24 + log 7;;}/32]24 ~ log(A\/Z)

o To be aampar@.d with the vevs up to one-loop:

Nsym N
W)sym = g8 W) agim = e 1

& 41A

string
ZS YM

@ Thewn it s clear: <W>SYM

AW )ang Zinn



Su,mmar:j anad ...

o We have computed the holographic dual of the vev of a 1/2-BPS circular
WL in MSYM on a S° ak one-loop i ¢ (the t Hooft coupling).

o In doing this, we have faced a few issues: the role of the dilaton in the
Weyl anomaly as well as in the finite resull, IR and UV diverqences.

o By means of a ratio with a the string partition function for a circular
skring in AdS,; X CP°, we find an agreement with the field theory resulks,



... outlook I (work in progress with Fridrik Freyr Grautason and Pieker Bomans)

o We need more examples of precision tests in non-conformal settings.

@ A F’stibdi&sz MSYM on S°. The 1/2-BPS WL is khown at any E [Bobev, Bomamns,

CGraukason, Minahan, Nedelin '19];

3 3
log(W) = log (écoshf—sinhaf)x§—210g<§+10g5+... ; E— 0.

g
where ¢ is related to the t Hooft coupling, N is the rank of the gauge
group, and X is the radius of the 3-sphere:

E° =6 Ae™ A= Ng; %

o The holographic dual is a fundamental string (with the proper boundary
conditions) in a 10D background realised bj D2 spherical branes [Bobey,
Bomans, Grautason ‘1% ] [Bobev, Bomans, Gauktason, Minahain, Nedelin ‘19].



o The classical conkribution was makched i [Bobev, Bomans, Gautason, Minahan,
Nedelin 197,

o We want to repra»duae the one-loop conbributions from the ﬁarrespwv\cﬁi.,;r\g
skring partition function:

3
log(W) = log

g (cfcoshf— Sinhf) NG 210%5"‘10%%"‘--- »

o So far: We have checked the Weyl anomaly, preliminarily &Qmpuéec& the
contributions from the fluctuations, however here the problem is that the
dilaton is IR and UV divergemnt.



... outlook 11 (work tn progress with Fridrik Freyr Gautasoi and Konstantin Zarembo)

o We need more examples of precision tests in non-conformal settings,

 Anocther possibility: / =2%* SYM on S*. This is a mass deformation of
N =4 MSYM in 4D,

o The vev of 1/2-BPS WL can be compu&ed via localisation at large N [Pestun
‘07]. It depends on the T Hooft coupling 4 and o the (dimensionless)

mass parameter MR, where X is the radius of the 4-sphere and M is
mass deformation,

@ At large 4, at leading (classical) and next-to-leading order (omewloap),
the vev for the circular WL was Cumpuﬁed from the mabrix model for any

MR [RBuchel, Russo, Zarembo 13] [Chen-Lin, Gordon, Zarembo '13].



® The holographic dual of / =2% SYM on S is numerically known [Bobey,
Elvaing, Freedman, Pufu '13] [Bobey, Gautason, van Muiden ‘1%, It is a

generalisation of the holographic dual of /' =2% SYM on R* [Pilch, Warner
‘'o0o],

o The classical vev was holographically reproduced for any mass parameter [Bobey,
Grautason, van Muiden 1% ],

o The ov\@_mi.oap VEV wWaAS hotagraphicaﬁv répradu{:@d in the large mass Limik
(‘d@.ﬁompaﬁﬁﬂfiﬁaﬁmw Limi&) [Chen-Lin, Medina-Rincon, Zarembo ‘17]. The
geometry here is given by the PW background.,



° We want to compute the one-loop vev I} for small and large mass
parameﬁer from the skring side:

log(W) ~ 1/ A(1 + M*R?) —@

ayMA + a, log(MR) + a,, MA — oo
boM*R> MA — 0

where

Flz

2 N.B, The small wass Limik carresgzomds to correction tbo S =4 SYM
(katograpkwauj dual ko AdSs X S°), while the large mass Limit

acrrespamds to correction to /* =2 on flak space (hcawgrapkmauv dual
to the PW background).
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Bownus track: The 24 geometry of the dual of 1/2-B7PS WL

o The 24 Riccl scalar is R — oo (sechza— 4)
402
(2) 3
R > ——— a8 0—-0 (U- x)
4028\ U
(2) I —
R _)_f_Z as o> (r=e°-0)

o To be compared with the corresponding solution in AdSs x S8, where the
worldsheet metric is AdS2 [Drukker, Gross, Tseytlin ‘oo,



Bonus track: the one-loop ws string action I

% Th@ WIS &&&EOM "fC}T' Hﬁs@. “ft%ﬂ%%&&i@hs LS SbOSOFLS e Sfermians

o In skatic qauqe, the bosonic action can be written in terms of the ¥ fluctuations
transverse to the ws [Forini, VGMP, Griquolo, Seminara, Vescovi ‘18]

ij a .2 asb
Z transy = \/7_/( D¢ DjCa M, C°¢ )
Here a=1,...,%, and i j=curved ws indices, The transverse fluctuations are defined as
F o i — NHFa
(= ¢rE, = NyG

Here [ are 10D flat indices, u are 10D curved indices, Ng are ¥ orthonormal vector fields orthogonal to the ws, EZ are the vierbein.

@ For our classical ﬁowﬁgura&mw D.=o,.



Bonus track: the one-loop ws string action 11

o The mass term is constructed from the 10D Riemann tensor and from the exbrinsic curvature. For our
classical solution: Kl’]’ =0, then

M,, = R;; ;.E, 0,X" E; X" N;N;

o Explicitly the final Eransverse bosonic action reads as:

Zrvansy = — (6900, — €M, L% = LKL,

fransv
where
7 + 8 cosh 26 | 1 +2cosh2c 1 — 342 1 + 2h% + 2(1 = h®)cosh 26
E.=—e*M,=0;p+(0,p)"—1= , E,=—e’M,=—02p = , E,=—e*M, = 0sp + h*(0,p)* — h* =
x x SR b y el : y et D) S he 5

o The x directions: fluctuations transverse to the equator on the S-sphere. The y directions: fuctuations
on 2-sphere. The = directions are the fluctuations in R? obtained bj combining the 0, ¢ directions,



Bonus track: the one-loop ws string action 111

o The fermionic action is aampu&d starting from &S action
%F(;)T Ejpﬁ I11A [Cvetic, Lu, Pope, Stelle, '99]

1

Sfermions — _m

/ {z'épifripje — %épijruriﬂ”ﬂwe + %eq’Q_PijFi(—Fan + F4)rj0} ,

where ') are the 10D Gamma matrices, the projector is Pl = \/}_/}/’7 — ie'T";, , the covariant derivative
(1—il50)
2 ¢

| -
is D;=0+ ZéjX”a)Z”Fﬂﬁ‘ We fix the K=symwmebry with the prqje&&mr P

3 Expiwiﬂv the kinetic term is

1
D=e"” (F&aa +1':0; + 5(90,01“&) .

hNrit ; :
? Explicitly the flux terms are F, =dC, = : tanh” o volg., Fy=dC3 = — 3Nat volg, A VOIR% Hy, =0




Bonus tracke: Wefjl amomabj

o The Weyl anomaly is closely related to the log divergences in the partition function

27z BFK

@ The RHS can be expressed in bterms of the so called Seeley-De Witk coebficients b, (F), b,(B)
4 Y 2 2

ologdet # = — 2a,(op | K), Slogdet 9% = — 2a,(0p | D),

|
a,(f| O) = i J\/? fb,(O)+ boundary terms

Here § is a test function, & is a bosonic operator, D is the fermionic operator.

o The Seeley-De Witk coefficients control the logarithmic divergences of the bosonic and fermionic fluctuations

l. 1 e
(o= ZTr b,(D“) — ETI by(K)



® The bosonic and fermionic conkribution proportional to R@ is in AdSS/CFT4 [Drukker, Gross, Tseytlin ‘00 ]
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As i ADSS/CFT4 we have ¥ 24 fermions bub these are &S fermions [Drukker, Gross, T seytlin ‘00]



On the field theory side: §D MSYM on § L)

o The Lagrangian [Blau ‘oo][Minahan, Zabzine ‘18]
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o The Lagrangian is obtained via dimensional reduction from 10D SYM on a flat
spacetrminimal coupling of the S+ other terms to preserve 16 real supercharges.

@ Euclidean: the above Lagrangian needs to be Wick-rotated (p° — ip").

@ M,N=9, ... 9 are Lorentz indices, and they split into spacetime indices on S°
and scalar indices 1,9=0,6,...,9. 1,9 are further broken to L, J=6,7 and AB=0,%,9,

° ¥ have 16 real components and obey I')}'¥ =Y. K, are auxiliary fields.



O the FT side: The matrix wmodel I (*x)

o The E!«em“j can be Localised [Pestun ‘07 Minahan, Zabzine ‘15 Minahan ‘15[ Gorantis,
Minahan, Naseer '17] o a Locus where: AM =0 and ¢, =0 when [ #0, ¢, is

used to construct a Hermitian N X N mabrix M.

o The large N matrix-model partition function is (up to non-
F‘QTEMTbO\EEVQ &03’1‘@.&&&09\5)2 [ Minahain, Zabzine 18] Minahan ‘18 ][ Gorantis, Minahain, Naseer '17]
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~here y; are the eiqgenvalues of the Hermitian N X N wmakrix M



On the FT side: The mabrix model II (*)

o The saddle point equation:

| &
o We inkroduce an etgenvalue Aiskribution p) 1= N Z oy — ;)
=1

o We talke the large N continuum Limit: the saddle point eq is

27[ b / / /
—5 u=PV | p(u) coth(u — u')du
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NB, it is an eq for p and b (rnormalizakion condition)



On the FT side: The makbrix model III (x)

o The matrix-model partition function as well as the correspohding
integral eq are well-known since they appear in the matrix formulation

of Chern-Simons theories on S° [Kim, Kim ‘12].

! 5 \/e‘f — cosh? (JZ',M) 1
o Solukiowns [ Marine ‘04 ], p(u) = — arctan wikh b = —arccosh (e*?)
S cosh (ﬂ'//t) T




O the FT side: 1/2-BPS WL on 8§D SYM

o The vev of 1/2-BPS WL [Maldacena 9% [Robev, Bomans, Grautason, Minahan, Nedelin
'19] which wraps the equator of S° is

(W) = <Tr (Peis%Aﬂdx” ia%ds¢0>>

For us: AM = 0 (8-dimensional gauge {ietd)

o Using the demsi&v of eigenvalues p and taking the continuum Limit:

; > 1 N ]
(W) = N[_bpw)e ey + O (N) =2 (- 1) 40 (N)

at Llarge N but for any t Hooft coupling ¢




On the ST side: Weyl anomaly I ()

o The Weyl anomaly is closely related to the log divergences in the partition function

The trace of the quantum energy-momentum tensor is defined bv the variation of the
effective action w.rt. the Weyl factor p.

® The RHS can be expressed in terms of the so called Seeley-De Witk coefficients by(F), by(B)

o The Seeley-De Witk coefficients control the logarithmic divergences of the bosonic and fermionic
fLuctuakions

- |
(T ) = — 5 (6)(D?) + by(K))



On the ST side: Weyl anomaly I1I ()

o The ¥ bosons conkribubte with {G&Ufév ‘98]

R(X)
by(K) = Tr F e PE

o The ¥ 24 fermions conkribute with [Gilkey ° Bs |
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where the fermionic ‘mass’ is related to (rescaled) a? —1? in D, and 7 are the Pauli makbrices.



On the ST side: Weyl anomaly 111 ()

® The bosonic and fermionic conkribution proportional to R™ is in ALSS/CFT4 [Drukier,
Gross, Tseytlin ‘00 ]

o The bosonic and fermionic ‘wmass’ conbribution ko the Logaribthmic diveraqences is:
9 9
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1k does not happen in ALSE/CFT 4! [ Drulkieer, Gross, Tseytlin ‘o0], [Forini, VGMP, Griquolo, Seminara, Vescovi ‘15,
[Cagnazzo,Medina-Rincon,Zarembo ‘17]

o Indeed the classical Weyl anomaly of the FT-action is

(THpr = — 0X"OX*V, V,®



Comments on the Gmmbéw'fsevﬂm’s Proposai 1 (*)

@ ’Propasat to match the sktrong aaupi.ma expamsiom 0{ circular WL in J =4
SYM and ABIM (for a skring with a disk Eopoi.o»gv):

| T =
<W> 5 Zstring o _eZnTeFI
g.\ 2m

-5

classical =— e

- where T is the effective skring tension: e )]

AdS. : Tzﬂ, AdS,: T=—
2T 9

- where ['; is the ratio of the one-loop del’s Campuﬁed b3 means of the heak
kernel

& | .
ACS TR Elog(Zﬂ), AAS,: T, =0



Commentks o the Gmmbiﬂ"sevﬁm’s Proposat 11 (*)

How does this compare with us? Let’s read the effective tension from the
classical action: e dasica = ¢¢ thewn & ~ T.

What is the term \/T? This is hothing but our \/A°

What is the term g7'? This is nothing but our FT-term.,

Our finite term I is different, but we are employing a different method
with a different reqularisation scheme (the matching has been ‘ad justed’
for the heat kernel method)

We confirm the GT-proposal for the first time outbside a conformal
sekting.



On the ST side: Computation of 'y I (x)

o We use the F’hQSQ Skb‘& mebhod (quq [Chen-Lin, Medina-Rincon, Zarembo ‘17 ][Cagnazzo,
Medina-Rincon, Zarembo ‘17]) to compute the conbribution from the fluctuations
with flat’ operators

] 1 (detF )*(det H ) (det K )°
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o This amounts to solve a one-dimensional Schrodinger probi.@.m once we
have Fourier-expanded wrt. 7 = io. For example for the bosownic operators:

H  1,(0) = (—0z+ o” + E (0)) n,(0) = 11,(0)

® The solutions behave as waves at larqge o (since the poEev\%mLs vanish

there). Then the di,sp@.rsmm relation is 1 = w” + p°. The effect of the
'scattering’ is only to shift the waves:

n, — Csin(po + o(w, p)) .



Own the ST side: Computation of I'y II (*)
® The qoal is to tampu&e the Pkase shift 6(w,p) for all the OF’QT’O&OTS‘

o It is a Schrodinger Prabi.em with Dirtchlek bouv\ciarj conditions:
n,(c=0)=0, n,(c=R)=0

where R is a IR cub-off. This gives the quantisation condition and the
distribution oﬂf eigenvalues:

SR d5(o,
PR + 8(w, p) = ik, p=—=—(R+M>
dp « dp

o The functional determinant is then

2 ~d do(w,
logdet & = Z [ ik (R | i p)) log(p* + w?)
e [ dp




On the ST side: Computation of I 111 (%)

° After integrating by parts over p, transforming the sum over Matsubara

ﬂfrequ@.mcms as a contour integral (it picks up poles v == ip) we have (e.q.
[Chen-Li, Medina-Rincon, Zarembo '17][Cagnazzo, Medina-Rincon, Zarembo ' 1‘7])

’ C
I (R) = — rdp [coth(np)(ztéx + 28, + 28,) — tanh(zp)(45, + 45_)] -R,
. \_ cant- ot

@ We can aompu&e the bosonic phase shb&s O, 5y, 0, o\matvéixrauvﬂ We have to
compute the fermionic phase shifts 6,,0_ numerically,

a And bhe answer is...

' (R) = 2log n+ log(@gf)
¢ ‘/ L. cut- &E
N o'.\vQ('%Qr\CD. :
o Qom%g D cut- o



The makching IV ()

But we need to use the same reqularisation scheme to meamivnguuv
consider the ratio.

We compute the partition function for a circular string in AdS, X CP’ ok
one loop in the large A Limit using the phase shift method.,

The classical solution [Drukier,Plefika, Young ‘0¥ J[Chen, Wu ‘0% ] WTapsS
the equator of S° inside AdS, and it is constant on the compact space,

T\ 24 €7

sinh? o

The ws mebric is ds? = 2P (d02 4 d1-2), o2 —

 The (reqularised) classical action:

Sclassical gl ﬂ\/ﬂ



The matching V (x)

o The dilaton is constant and the FT term gives:
NABJM

ﬁ(z 1)5/4 ’

o The contributions from the fluctuations with the phase shift method is:

Spr= ¥ 0G5 =00

1—wAalS4 = 2log n + log(Ae _RABJM)
o The diffeo invariant IR regulator is A, .. = 47°/21 e~ *asm

o Collecting all together:

N
longg’J’ﬁN m\/ 24 + log L g g(A\f A)




... outloolk 111 (*x)

o We need more observables. Is there an analoque of the ‘latitude’ 1/4-BPS
WL of /=4 SYM in 4d? See [Mezei, Pufu, Wang '1%] (the holographic dual is a
fundamental string which ends on a circle at the boundary of AdSs and
on a latitude (ot angle 6)) on a § 2 C S° [Drudeer, Fiol ‘05] [Drukdéer ‘o8] [Drukdcer,
Grionbi, Rioct, Trancanelli ‘07])

® We have the free enerqgy of MSYM on a S° at any ¢ in the planar Limit, The
leading order at strong coupling was aampu&ed& and mabtched i [Bobey,
Bomans, Gautason, Minahan, Nedelin '19]. It would be interesting to

holographically compute the next-to-leading order corrections in .

@ §D S/M is suppased to flow to (2,0) %heorj A 6D [Douglas ‘10][Lambert,
Papageorgakis, Schmidb-Sommerfeld ‘10] the UV. There the WL should iiOT’TQSPOMd

to a BPS surface operator. On the holographic side: M2-brane in AdS..
Classically we checked, but what about at one-loop?



