Precision Holography for

6D Super Yang-Mills

> Valentina Ciangreco Puletti Universily of Iceland

August 12, 2022 @ "What's new in gravity?" Marienlyst, Helsingoer
based on JHEP O3 (2022) 018
in collaboralion wilh Friôrik Freyr Caukason
twork in progress with Friôrik Freyr Caukason, Konskancin Zarembo

+ work in progress with Pieler Bomans, Friôrik Freyr Caukason

An overview

- The main character: 1/2-BPS Wilson loop (WL) in maximally supersymmetric Yang-Mills (MSYM) on S^{5}. Its vev can be computed at large N and for all " λ " (t Hooft coupling) via localisation.
- Our main goal is to compute its vev by means of its holographic dual at large N and up to one-loop in a large " λ " expansion.
- The key words here: precision, holography, non-conformal setting, MSYM.

Oulline

- Motivations
- On the field theory side:
- SD MSYM on S^{5}
-1/2-BPS WL.
- On the string theory side:
- the dual
- preparing for the computations
- the computations
- The makching
- Outlook

Motivations and declaration of intent

- Why precision holography in a non-conformal setting? We want to understand kop-down holography beyond the conformal paradigm but still in a mathematically detailed level.
- Why WL operators? These are among the simplest gauge-invariant nonlocal observables we can study in a gauge theory. Their holographic dual is known and their vev can be computed via localisation.
- I will focus on 2 aspects here:
- the role and the nature of UV/IR divergences,
- the role of the dilation.
- I will underline what is in common and what not to AdSE/CFT4 (AdS4/CFT3). NB. Long tradition of study WL. in AdS/CFT!

On the field theory side: SD MSYM on $S^{5}(*)$

- The Lagrangian [Blau 'oo][Minahan, Zabzine '16]:

$$
\mathscr{L}=-\frac{1}{2 g_{\mathrm{YM}}^{2}} \operatorname{Tr}\left(|F|^{2}-\left|D \Phi_{I}\right|^{2}-\bar{\Psi} D \Gamma \Psi-\frac{1}{2}\left[\Phi_{I}, \Phi_{J}\right]^{2}+\bar{\Psi} \Gamma^{I}\left[\Phi_{I}, \Psi\right]\right)
$$

- The Lagrangian is obtained via dimensional reduction from 10D SYM on a flat spacetminimal coupling of the $S^{5}+$ other terms to preserve 16 real supercharges.
- Scalar indices $I, J=0,6, \ldots, 9, A_{\mu}(\mu=1, \ldots, 5), \Phi_{I}, \Psi$ transform in the adjoint of the gauge group SU(N).
- I have 16 real components and obey $\Gamma_{11} \Psi=\Psi$.
- Euclidean: the above Lagrangian needs to be Wick-rokaked $\left(\phi^{0} \rightarrow i \phi^{0}\right)$.

On the field theory side: SD MSYM on S^{5}

- The symmetries: The global symmetry supergroup is $\operatorname{SU}(4 \mid 1,1)$. The Rsymmetry group is $S U(1,1) \times S O(2)$. The space transformation group: SO(6).
- The parameters: \mathscr{R} is the radius of the s-sphere where the theory lives on, N is the rank of the gauge group, $g_{Y M}^{2}$ is the coupling constant which has dimension [L]. The t Hooft coupling constant is

$$
\xi=\frac{g_{\mathrm{YM}}^{2} N}{2 \pi \mathscr{R}}
$$

- SD SYM is not renormalizable, at high energies it is UV completed in the (2,0) SCFT [Douglas '10][Lambert, Papageorgakis, Schmidt-Sommerfeld '10]

On the FT side: 1/2-BPS WL on SD SYM

- The theory can be Localised [Pestun'o7][Minahan, Zabzine'15][Minahan'15][Gorantis, Minahan, Nasser '17] on a Locus where: $A_{\mu}=0$ and $\phi_{I}=0$ when $I \neq 0, \phi_{0}$ is used to construct a Hermitian $N \times N$ matrix M.
- The vel of 1/2-BPS WL. [Maldacena'98][Bobev, Bomans, Gautason, Minahan, Nedelin '19] which wraps the equator of S^{5} is

$$
\langle W\rangle=\left\langle\operatorname{Tr}\left(P e^{i \oint A_{\mu} d x^{\mu}+i \oint d s \phi^{0}}\right)\right\rangle
$$

For us: $A_{\mu}=0$ (s-dimensional gauge field)

- Il can be computed from the matrix model:

$$
\langle W\rangle=\frac{N}{\xi}\left(e^{\xi}-1\right)+\vartheta\left(\frac{1}{N}\right)
$$

at large N but for any t Hooft coupling ξ

On the FT side: 1/2-BPS WL on SD SYM

- The vel of $1 / 2$-BPS WL which wraps the equator of S^{5} at large t Hooft coupling ξ and large N

$$
\langle W\rangle=\frac{N}{\xi} e^{\xi}+\mathcal{O}\left(e^{-\xi}\right)+\mathcal{O}\left(\frac{1}{N}\right)
$$

- What are we looking at? classical leading contribution in the Large ξ limit

$$
\langle W\rangle=\frac{M}{\xi} e^{\xi}+O\left(e^{-\xi}\right)+O\left(\frac{1}{N}\right)
$$

This is the subleading contribution in the large ξ limit which we want to compute

On the string theory (ST) side: the dual 10D geom I

- The holographic dual of MSYM on S^{5} is a stack of N D4-branes with spherical worldvolume in 10D [Bobev, Bomans, Gautason'18]. The 10D

$$
d s_{10}^{2}=\ell_{s}^{2}\left(N \pi e^{\Phi}\right)^{2 / 3}\left[\frac{4\left(d \sigma^{2}+d \Omega_{5}^{2}\right)}{\sinh ^{2} \sigma}+d \theta^{2}+\cos ^{2} \theta d s_{d S_{2}}^{2}+\frac{\sin ^{2} \theta d \phi^{2}}{1-\frac{1}{4} \tanh ^{2} \sigma \sin ^{2} \theta}\right]
$$

and the non-constant dilation is (\neq AdS case!)

$$
e^{\Phi}=\frac{\xi^{\xi 3 / 2}}{N \pi}\left(\operatorname{coth}^{2} \sigma-\frac{1}{4} \sin ^{2} \theta\right)^{3 / 4}
$$

- The radial direction is $0 \leq \sigma<\infty$ (UV is at $\sigma \rightarrow 0$ and IR $\sigma \rightarrow \infty$)
- The background symmetry: $S O(6) \times S O(1,2) \times S O(2)$

On the ST side: the dual 10 geom II

- The dimensionless parameters here are: N, ξ
- Al $\sigma \rightarrow \infty$ (IR) (set $\left.r=e^{-\sigma}\right)$: Che s-sphere smoothly shrinks to zero

$$
d s_{10}^{2} \rightarrow \ell_{s}^{2}\left(N \pi e^{\Phi}\right)^{2 / 3}\left[16\left(d r^{2}+r^{2} d \Omega_{5}^{2}\right)+d \theta^{2}+\cos ^{2} \theta d s_{d S_{2}}^{2}+\frac{\sin ^{2} \theta d \phi^{2}}{1-\frac{1}{4} \sin ^{2} \theta}\right], \quad \Phi \rightarrow \frac{1}{2} \log \frac{\xi^{3}}{\pi^{2} N^{2}}
$$

- At $\sigma \rightarrow 0(U V)\left(\operatorname{sel} U=\sinh ^{-2} \sigma\right)$: Che metric of flal-space D4 brane sol

$$
d s_{10}^{2} \rightarrow \xi \ell_{s}^{2}\left[4 U^{3 / 2} d \Omega_{5}^{2}+\frac{d U^{2}+U^{2} d s_{d S_{4}}^{2}}{U^{3 / 2}}\right]
$$

$$
\Phi \rightarrow \frac{1}{2} \log \frac{\xi^{3} U^{3 / 2}}{N^{2} \pi^{2}}
$$

On the ST side: the dual 10 geom II (*)

- The gauge potentials are

$$
B_{2}=\frac{\xi \ell_{s}^{2}}{2} \cos ^{3} \theta \operatorname{vol}_{d S_{2}}, \quad C_{1}=\frac{i N \pi \xi \ell_{s}}{2}\left(N \pi e^{\Phi}\right)^{-4 / 3} \sin ^{2} \theta d \phi, \quad C_{3}=-i N \pi \ell_{s}^{3} \cos ^{3} \theta d \phi \wedge \operatorname{vol}_{d S_{2}}
$$

and so the NSNS and RR fields:

$$
H_{3}=d B_{2}, \quad F_{2}=d C_{1}, \quad F_{4}=d C_{3}-H_{3} \wedge C_{1}
$$

On the ST side: the dual of $1 / 2-$ BPS WI I

- The holographic dual of a circular WL is a fundamental string in this 10D background, whose worldsheet ends on the loop at the boundary [Maldacena '98]
- The vel of the circular WL. is then given by the string partition function

$$
\langle W\rangle=Z_{\text {string }}
$$

- and at strong coupling $(\xi \gg 1)$

$$
\log Z_{\text {string }} \approx-S_{\text {classical }}-\underbrace{S_{F T}-\Gamma_{\mathbb{K}}}=-S_{\text {classical }} \underbrace{-S_{F T}+\log \operatorname{Sdet}^{-1 / 2} \mathbb{K}}
$$

this is what we want to compute!

On the ST side: the dual of $1 / 2-$ BPS WI. II

- For us: the classical solution is [Bobev, Bomans, Gautason, Minahan, Nedelin '19]
equator of $S^{5}, \theta=0$, any fixed point on the internal space

- In static gauge the us coordinates are (τ, σ): the equator of S^{5} is parameterised by τ and σ is the radial coordinate

$$
d s_{2}^{2}=e^{2 \rho}\left(d \sigma^{2}+d \tau^{2}\right), \quad \sqrt{\gamma}=e^{2 \rho}=\frac{4 \xi \ell_{s}^{2}}{\tanh \sigma \sinh ^{2} \sigma},
$$

On the ST side: The classical contribution

- The vel of the circular WL. is then given by the string partition function

$$
\log Z_{\text {string }} \approx-S_{\text {classical }}-S_{F T}+\log \operatorname{Sdet}^{-1 / 2} \mathbb{K}=-S_{\text {classical }}-S_{F T}-\Gamma_{\mathbb{K}}
$$

- The classical contribution is the area of the minimal us. The classical regularised action is [Bobev, Bomans, Craukason, Minahan, Nedelin 19]:

$$
S_{c l a s s i c a l}+S_{c t}=\frac{1}{2 \pi \ell \ell_{s}^{2}} \int \sqrt{\gamma} d \sigma d \tau+S_{c t}=-\xi
$$

and it matches the leading contribution of $\langle W\rangle$ at strong coupling.

On the ST side: the one-loop wis string action I

- The one-toop action comprehends two terms:

1. The Fradkin-Tseytlin action [Fradkin, Tseytlin '85, '86]:

$$
S_{F T}=\frac{1}{4 \pi} \int_{M} \sqrt{\gamma} \Phi R^{(2)}+\frac{1}{2 \pi} \int_{\partial M} \Phi K d s
$$

- It is 'classical': in terms of the 'bare' string tension $T=\frac{1}{2 \pi \ell_{s}^{2}}$, it is of order T^{0}, but it contributes to the quantum corrections (see also [Chen-Lin, Medina-Rincon, Zarembo '17])
- If the dilation is constant then we get $S_{F T}=\chi \Phi_{0}$ (it would contribute as $\sim g_{s}^{-\chi}$ to the vev).
- It classically violates the Weyl invariance of the ws theory and has UV divergences: not when considered together with the rest of the one-Loop term (fluctuations).

On the ST side: the one-toop as string action II
2. The effective action from the one-loop fluctuations of the string wa

$$
\Gamma_{\mathbb{K}}=-\log \int[D \zeta D \theta D \bar{\theta}] e^{-S_{K}}=-\log S \operatorname{Set}^{-1 / 2} \mathbb{K} \quad \text { with } \quad S_{K}=\frac{1}{4 \pi \ell_{s}^{2}} \int \sqrt{\gamma}\left(\zeta^{a} \mathscr{K}_{a b} \zeta^{b}+\bar{\theta}^{a} \mathscr{D}_{a b} b^{b}\right) d^{2} \sigma \text {. }
$$

- The action S_{K} can be computed by expanding the Polyakov action at quadratic order and the GS string action (e.9. [Drukker, Gross, Tseytlin 'oo]). For us: Type IIA.
- These are second order fluctuations around the classical string solution: 8 bosonic fluctuations transverse to the wis $\left(\zeta^{a}, a=1, \ldots, 8\right)$ and 8 ©S fermionic fluctuations $\left(\theta^{a}\right)$.
- The path integral for the fluctuations is Gaussian, and it can be evaluated by means of functional determinants (Set ${ }^{-1 / 2} \sqrt{K}$).

On the ST side: the one-Loop wis string action III

$$
S_{\mathbb{K}}=\frac{1}{4 \pi \ell_{s}^{2}} \int \sqrt{\gamma}\left(\zeta^{a} \mathscr{K}_{a b} \zeta^{b}+\bar{\theta}^{a} \mathscr{D}_{a b} \theta^{b}\right) d^{2} \sigma .
$$

$$
\mathscr{K}_{a}=e^{-2 \cdot} \tilde{\mathscr{K}}_{a}, \quad \tilde{\mathscr{K}}_{a}=\underbrace{-\partial_{\sigma}^{2}-\partial_{\tau}^{2}+E_{a}}_{\text {"FLAT OPERATORS }}
$$

$$
E_{x}=\partial_{\sigma}^{2} \rho+\left(\partial_{\sigma} \rho\right)^{2}-1=\frac{7+8 \cosh 2 \sigma}{\sinh ^{2} 2 \sigma}, \quad E_{y}=\frac{1}{2} \partial_{\sigma}^{2} \rho=\frac{1+2 \cosh 2 \sigma}{\sinh ^{2} 2 \sigma}, \quad E_{z}=-\partial_{\sigma}^{2} \rho+h^{2}\left(\partial_{\sigma} \rho\right)^{2}-1=\frac{3}{\sinh ^{2} 2 \sigma}
$$

- The x directions: fluctuations transverse to the equator on the s-sphere. The y directions: fluctuations on 2 -sphere. The z directions are the fluctuations in R^{2} obtained by combining the θ, ϕ directions.

On the ST side: the one-toop ws string action IV

$$
S_{\mathbb{K}}=\frac{1}{4 \pi \ell_{s}^{2}} \int \sqrt{\gamma}\left(\zeta^{a} \mathscr{K}_{a b} \zeta^{b}+\bar{\theta}^{a} \mathscr{D}_{a b} \theta^{b}\right) d^{2} \sigma .
$$

- The fermionic operator is:

$$
\begin{aligned}
& \text { "FLAT" OpERATOR }
\end{aligned}
$$

Here τ are the Pauli matrices.

- The action is computed starting from ES action for type IIA [Civetic, Lu, Pope, stelle, '99], and reduced to 820 fermions. Here we have a degeneracy, so we ended up with one fermionic operator.

On the ST side: the one-Loop wis string action V

$$
\log Z_{\text {string }} \approx-S_{\text {classical }}-S_{F T}+\log \operatorname{Sdet}^{-1 / 2} \mathbb{K}=-S_{\text {classical }}-S_{F T}-\Gamma_{\mathbb{K}}
$$

- The one-loop terms continuously talk to each other: they both contribute to the divergences, they both contribute to the cancellation of the Weyl anomaly.
- We want to compute $\Gamma_{\mathbb{K}}$. It is easier to compute functional determinants for differential operators in flat space. We really want to compute $\Gamma_{\tilde{K}}$, that is for the 'flat' operators.
- Logic here: (5) the theory is Weyl invariant, then we can strip off the Weyl factor and claim

$$
S_{F T}+\Gamma_{\mathbb{K}}=\tilde{S}_{F T}+\Gamma_{\tilde{K}}
$$

On the ST side: the one-Loop wis string action VI

- This means that we want to Weyl rescale the wis metric (i.e. remove $e^{2 \rho}$)

$$
d s_{2}^{2}=e^{2 \rho}\left(d \sigma^{2}+d \tau^{2}\right), \quad \sqrt{\gamma}=e^{2 \rho}=\frac{4 \xi \ell_{s}^{2}}{\tanh \sigma \sinh ^{2} \sigma}
$$

- BUT: $e^{2 \rho} \rightarrow 16 \ell_{s}^{2} \xi e^{-2 \sigma}=16 e_{s}^{2} \xi r^{2}$ as $\sigma \rightarrow \infty \quad\left(r=e^{-\sigma} \rightarrow 0\right)$, that is the Weyl factor is ill defined at the center of the as [Cagnazzo, Medina-Rincon, Zarembo '17].
- How do we deal with this? We cut a little disk at the center of the us, ie. at $\sigma=R$, where R is an IR cut-off [Cagnazzo, Medina-Rincon, Zarembo '17].

On the ST side: the one-loop us string action VII

- Also for the fluctuations: we want to compute the spectra, so we really need a compact manifold, so now we have fluctuations on a cylinder: this is good!
- But, we are changing the topology: from a disk to a cylinder [Cagnazzo, Medina-Rincon, zarembo '17].

- We need to put the 'central' little disk back!
- Here the fluctuations are free since all the potentials vanish. They contribute only with pure divergences. We will take into account the divergences in $\Gamma_{\tilde{\mathbb{K}}}$.

On the ST side: the one-loop ws string action VIII

- But what about the FT term?
- At the center of the ws, the dilaton is constant:

$$
\Phi \rightarrow \frac{1}{2} \log \frac{\xi^{3}}{\pi^{2} N^{2}} \text { as } \sigma \rightarrow \infty
$$

- Then the FT-action gives

$$
\tilde{S}_{F T}=\chi \Phi_{\mid \sigma=\infty}=-\log \frac{N \pi}{\xi^{3 / 2}}
$$

On the ST side: the one-Loop wis string action IX

- Recap: after the Weyl rescaling we expect:
- The FT-action contributes from the small central disk which we cut-off:

$$
\tilde{S}_{F T}=\chi \Phi_{\mid \sigma=\infty}=-\log \frac{N \pi}{\xi^{3 / 2}}
$$

- The fluctuations contribute from the cylinder with a finite and a divergent part:

$$
\tilde{\Gamma}_{\mathbb{K}}=\text { finite terms + divergent terms }
$$

On the ST side: Weyl anomaly I

- The classical Weyl rescaling of the FT action is cancelled by the anomaly of the one-loop fluctuations of the string (e.g. [Callan, Thorlacius '89])

$$
\left.\left\langle T_{i}^{i}\right\rangle=\left\langle T_{i}^{i}\right\rangle_{\mathbb{K}}+\left(T_{i}^{i}\right)_{F V}\right)=-\frac{1}{2} R^{(2)}
$$

- There is a crucial contribution now from the dilation: The classical Weyl anomaly of the FT-action is proportional to $e^{-2 \rho} \partial_{\sigma}^{2} \Phi$.
- It does not happen in AdSs/CFT4! [Drukker, Gross, Tseytlin '00], [Forini, VGMP, Griguolo, Seminara, Vescovi '16], [Cagnazzo,Medina-Rincon,Zarembo '17].

On the ST side: Weyl anomaly II

- Then, we are expected to see a logarithmic divergence controlled by x (e.g. [Drukker, Gross, Tseytlin '00])

$$
\frac{1}{2 \pi} \int\left\langle T_{i}^{i}\right\rangle \operatorname{vol}_{\gamma}=-\chi=-1
$$

- This is cancelled against extra contributions due to the 'rotation' of the GS 10D to id fermions and to the measure [Alvarez '83] [Drukker, Gross, Tseytlin 'oo.
- We do not include these contributions.

On the ST side: Weyl anomaly III

- In concrete: the one-loop effective action will have a log divergence as

$$
\begin{gathered}
\Gamma_{\mathbb{K}}=\chi \log \left(\Lambda e^{-R}\right)+\text { finite terms } \\
\langle W\rangle=Z_{\text {string }} \approx e^{-S_{c l}} e^{-S_{F T}-\Gamma_{K}}
\end{gathered}
$$

- This divergence is universal, it is found for fluctuations near any minimal surface with a disk topology in AdS [Drukker, Gross, Tseytlin '00], [Forini, VGMP, Griguolo, Seminara, Vescovi '1s], [Giombi, Tseytlin '20].
- We confirm the universality and the topological nature of these divergences in a more general consistent string background.

On the ST side: Computation of $\tilde{\Gamma}_{\mathbb{K}}$

- We use the phase shift method (e.g. [Chen-Lin, Medina-Rincon, Zarembo '17][Cagnazzo, Medina-Rincon, Zarembo '17]) to compute the contribution from the fluctuations with 'flat' operators

$$
\tilde{\Gamma}_{\mathbb{K}}(R)=\frac{1}{2} \log \frac{\left(\operatorname{det} \tilde{\mathscr{K}}_{x}\right)^{4}\left(\operatorname{det} \tilde{\mathscr{K}}_{y}\right)^{2}\left(\operatorname{det} \tilde{\mathscr{K}}_{z}\right)^{2}}{\left(\operatorname{det} \tilde{\mathscr{D}}^{8}\right.}
$$

- And the answer is...

$$
\tilde{\Gamma}_{\mathbb{K}}(R)=2 \log \pi+1 \log \left(\Delta e^{-R}\right)
$$

- NB. $1=\chi$ and R is the IR cutoff where we cut the small disk.

The matching I

- Recap: We want to reproduce the vel of the circular WL at strong coupling

$$
\log \langle\mathscr{W}\rangle \approx \xi+\log \frac{N_{S Y M}}{\xi}
$$

- Recap: We have computed

$$
\log Z \approx-S_{\text {classical }}-S_{F T}-\Gamma_{\mathbb{K}}=\xi+\log \frac{N_{S Y M}}{\xi^{3 / 2} \pi}-\log \left(\Lambda e^{-R_{S Y M}}\right)
$$

- We have to deal with the cutoffs $\Lambda, R_{S Y M}$. The only way is to consider a ratio of string partition functions with the same topology [Forini,VGMP, Griguolo,Seminara, Vescovi '1s][Faraggi,Pando Zayas, silva, Trancanelli '16] [Forini,Tseytlin,Vescovi '17][Cagnazzo,Medina-Rincon,Zarembo '17][MedinaRincon, Tseytlin,Zarembo '18], thanks to the fact that the divergences are universal and 'topological'.

The makching II

- But be careful! R should be replaced by a diffeo invariant regulator [Cagnazzo,Medina-Rincon,Zarembo '17]:

$$
A=\frac{2 \pi}{\ell_{s}^{2}} \int_{R}^{\infty} e^{2 \rho} d \sigma
$$

The IR cut-off is transtated into the ws area that we cut off when computing the spectra for the fluctuations [Cagnazzo,Medina-Rincon,Zarembo '17]

- Here we have:

$$
A=16 \pi \xi e^{-2 R_{S M}}
$$

$$
\log Z_{S Y M}^{\text {string }} \approx \xi+\log \frac{4 N_{S Y M}}{\xi \sqrt{\pi}}-\log (\Lambda \sqrt{A})
$$

The matching III

- We are ready. But we divide by what? To keep type IIA set-up, we compute the partition function for a circular string in $A d S_{4} \times C P^{3}$.
- The value of the dual 1/2-BPS WL. [Drukker, Trancanelli '09] in ABJM is known via Localisation [Kapustin, Willett, Yaakov '09][Marino, Putrov '09][Drukker, Plefka, Young '08][Drukker, Marin, Putrov '10]

$$
\langle\mathscr{W}\rangle_{A B J M} \approx \frac{N_{A B J M}}{4 \pi \lambda} e^{\pi \sqrt{2 \lambda}}, \quad \lambda \gg 1, \quad g_{s}=\left(32 \pi^{2} \lambda^{5}\right)^{1 / 4} N_{A B J M}^{-1}
$$

where λ is the t Hoof coupling.

- The string partition function for a circular string in $A d S_{4} \times C P^{3}$ has been computed by with different methods [Kim, Kim, Lee '12][Aguilera-Damia,Faraggi,Pando Zayas, Rathee, Silva '18] [Giombi, Tseytlin '20].

The matching IV (*)

- But we need to use the same regularisation scheme to meaningfully consider the ratio. We compute the partition function for a circular string in $A d S_{4} \times C P^{3}$ at one loop in the large λ limit using the phase shift method.
- The classical solution [Drukker,Plefka, Young '08][Chen, Wu '08] wraps the equator of S^{3} inside $A d S_{4}$ and it is constant on the compact space.
- and the answer is

$$
\left.\log Z_{A B J M}^{\text {string }}=\pi \sqrt{2 \lambda}+\log \frac{N_{A B J M}}{\pi^{3 / 2} \lambda}-\log (\Lambda \sqrt{A})\right)
$$

- NB. This is the holographic dual of ABJM in Bd!

The makching VI

- Recap: on the string side, we computed up tp one-Loop:

$$
\log Z_{S Y M}^{\text {string }}=\xi+\log \frac{4 N_{S Y M}}{\xi \sqrt{\pi}}-\log (\Lambda \sqrt{A}) \quad \log Z_{A B J M}^{\text {string }}=\pi \sqrt{2 \lambda}+\log \frac{N_{A B J M}}{\pi^{3 / 2} \lambda}-\log (\Lambda \sqrt{A})
$$

- To be compared with the vevs up to one-toop:

$$
\langle W\rangle_{S Y M}=\frac{N_{S Y M}}{\xi} e^{\xi} \quad\langle W\rangle_{A B J M}=\frac{N_{A B J M}}{4 \pi \lambda} e^{\pi \sqrt{2 \lambda}}
$$

- Then ik is clear:

$$
\frac{\langle W\rangle_{S Y M}}{\langle W\rangle_{A B J M}}=\frac{Z_{S Y M}^{\text {string }}}{Z_{A B J M}^{\text {String }}} .
$$

Summary and ...

- We have computed the holographic dual of the vel of a 1/2-BPS circular WL in MSYM on a S^{5} at one-Loop in ξ (the t Hoof coupling).
- In doing this, we have faced a few issues: the role of the dilation in the Weyl anomaly as well as in the finite result, IR and UV divergences.
- By means of a ratio with a the string partition function for a circular string in $A d S_{4} \times C P^{3}$, we find an agreement with the field theory results.
... outlook I (work in progress with Friơrik Freyr Gautason and Pieter Bomans)
- We need more examples of precision tests in non-conformal settings.
- A possibility: MSYM on S^{3}. The 1/2-BPS WL is known at any ξ [Bobev, Bomans, Gautason, Minahan, Nedelin '19]:

$$
\log \langle W\rangle=\log \frac{3}{\xi^{3}}(\xi \cosh \xi-\sinh \xi) \approx \xi-2 \log \xi+\log \frac{3}{2}+\ldots, \quad \xi \rightarrow \infty
$$

where ξ is related to the t Hooft coupling, N is the rank of the gauge group, and \mathscr{R} is the radius of the 3 -sphere:

$$
\xi^{3}=6 \pi^{2} \lambda, \quad \lambda=N g_{Y M}^{2} \mathscr{R}
$$

- The holographic dual is a fundamental string (with the proper boundary conditions) in a 10D background realised by D2 spherical branes [Bobev, Bomans, Gautason '18] [Bobev, Bomans, Gautason, Minahan, Nedelin '19].
- The classical contribution was matched in [Bobev, Bomans, Gautason, Minahan, Nedelin '19].
- We want to reproduce the one-toop contributions from the corresponding string partition function:

$$
\log \langle W\rangle=\log \frac{3}{\xi^{3}}(\xi \cosh \xi-\sinh \xi) \approx \xi-2 \log \xi+\log \frac{3}{2}+\ldots, \quad \xi \rightarrow \infty
$$

- So far: We have checked the Weyl anomaly, preliminarily computed the contributions from the fluctuations, however here the problem is that the dilation is IR and UV divergent.
... outlook II (work in progress with Friörik Freyr Gautason and Konstantin Zarembo)
- We need more examples of precision tests in non-conformal settings.
- Another possibility: $\mathcal{N}=2^{*}$ SYM on S^{4}. This is a mass deformation of $\mathcal{N}=4$ MSYM in 4D.
- The vel of 1/2-BPS WL can be computed via Localisation at Large N [Pestun '07]. It depends on the t Hooft coupling λ and on the (dimensionless) mass parameter $M \mathscr{R}$, where \mathscr{R} is the radius of the 4 -sphere and M is mass deformation.
- At large λ, at leading (classical) and next-to-leading order (one-loop), the vev for the circular WL was computed from the matrix model for any MЯ [Buchel, Russo, Zarembo '13] [Chen-Lin, Gordon, Zarembo '13].
- The holographic dual of $\mathcal{N}=2 *$ SYM on S^{4} is numerically known [Bobev, Elvang, Freedman, Pufu'13] [Bobev, Gautason, van Muiden '18]. It is a generalisation of the holographic dual of $\mathcal{N}=2 *$ SYM on R^{4} [Pilch, Warner 'oo].
- The classical ven was holographically reproduced for any mass parameter [Bobev, Gautason, van Muiden '18].
- The one-loop vel was holographically reproduced in the large mass limit ('decompactification' Limit) [Chen-Lin, Medina-Rincon, Zarembo '17]. The geometry here is given by the PW background.
- We want to compute the one-loop ven Γ_{1} for small and large mass parameter from the string side:

$$
\log \langle W\rangle \approx \sqrt{\lambda\left(1+M^{2} \mathscr{R}^{2}\right)}-\Gamma_{1}
$$

where

$$
\Gamma_{1}= \begin{cases}a_{0} M \mathscr{R}+a_{1} \log (M \mathscr{R})+a_{2}, & M \mathscr{R} \rightarrow \infty \\ b_{0} M^{2} \mathscr{R}^{2}, & M \mathscr{R} \rightarrow 0\end{cases}
$$

- N.B. The small mass limit corresponds to correction to $\mathcal{N}=4$ SYM (holographically dual to $A d S_{5} \times S^{5}$), while the large mass limit corresponds to correction to $N^{*}=2$ on flat space (holographically dual to the PW background).

Thanks!

Bonus track: The 2d geometry of the dual of $1 / 2-$ BPS WL

- The $2 d$ Ricci scalar is $\quad R^{(2)}=\frac{\tanh \sigma}{4 \ell_{s}^{2} \xi}\left(\operatorname{sech}^{2} \sigma-4\right)$

$$
\begin{aligned}
& R^{(2)} \rightarrow-\frac{3}{4 \ell_{s}^{2} \xi \sqrt{U}} \text { as } \sigma \rightarrow 0 \quad(U \rightarrow \infty) \\
& R^{(2)} \rightarrow-\frac{1}{\ell_{s}^{2} \xi} \text { as } \sigma \rightarrow \infty \quad\left(r=e^{-\sigma} \rightarrow 0\right)
\end{aligned}
$$

- To be compared with the corresponding solution in AdSS \times SS, where the worldsheet metric is Ads2 [Drukker, Gross, Tseyllin 'oo].

Bonus track: the one-loop wis string action I

- The wis action for the fluctuations is $S_{\text {bosons }}+S_{\text {fermions }}$
- In static gauge, the bosonic action can be written in terms of the 8 fluctuations transverse to the ws [Forini, VGMP, Griguolo, Seminara, Vescovi '15]:

$$
\mathscr{L}_{\text {transv }}=\sqrt{\gamma}\left(\gamma^{i j} \mathrm{D}_{i} \zeta^{a} \mathrm{D}_{j} \zeta_{a}-M_{a b} \zeta^{a} \zeta^{b}\right)
$$

Here $a=1, \ldots, 8$, and $i, j=c u r v e d$ us indices. The transverse fluctuations are defined as

$$
\zeta^{\hat{\mu}}=\zeta^{\mu} E_{\mu}^{\hat{\mu}}=N_{a}^{\hat{\mu}} \zeta^{a}
$$

Here $\hat{\mu}$ are 10D flat indices, μ are 10D curved indices, $N_{a}^{\hat{\mu}}$ are 8 orthonormal vector fields orthogonal to the ms, $E_{\mu}^{\hat{\mu}}$ are the vierbein.

- For our classical configuration: $\mathrm{D}_{i}=\partial_{i}$.

Bonus track: the one-loop ws string action II

- The mass kerm is constructed from che 10D Riemann kensor and from the extrinsic curvakure. For our classical solution: $K_{i j}^{\mu}=0$, then

$$
M_{a b}=R_{\hat{\mu} \hat{\lambda}, \hat{\nu} \hat{\kappa}} E_{\mu}^{\hat{\lambda}} \partial_{i} X^{\mu} E_{\hat{\nu}}^{\hat{\kappa}} \partial^{i} X^{\nu} N_{a}^{\hat{\mu}} N_{b}^{\hat{\nu}}
$$

- Explicitly the final transverse bosonic action reads as:

$$
\mathscr{L}_{\text {transv }}=-\zeta^{a} \delta^{i j} \partial_{i} \partial_{j} \zeta_{a}-e^{2 \rho} M_{a a} \zeta^{a} \zeta^{a} \equiv \zeta^{a} \tilde{\mathscr{K}}_{a} \zeta^{a},
$$

where

$$
E_{x}=-e^{2 \rho} M_{x}=\partial_{\sigma}^{2} \rho+\left(\partial_{\sigma} \rho\right)^{2}-1=\frac{7+8 \cosh 2 \sigma}{\sinh ^{2} 2 \sigma}, \quad E_{y}=-e^{2 \rho} M_{y}=\frac{1}{2} \partial_{\sigma}^{2} \rho=\frac{1+2 \cosh 2 \sigma}{\sinh ^{2} 2 \sigma}, \quad E_{z}=-e^{2 \rho} M_{y}=\frac{1-3 h^{2}}{2} \partial_{\sigma}^{2} \rho+h^{2}\left(\partial_{\sigma} \rho\right)^{2}-h^{2}=\frac{1+2 h^{2}+2\left(1-h^{2}\right) \cosh 2 \sigma}{\sinh ^{2} 2 \sigma}
$$

- The x directions: fluctuations transverse to the equator on the s-sphere. The y directions: fluctuations on 2-sphere. The z directions are the fluctuations in R^{2} obtained by combining the θ, ϕ directions.

Bonus track: the one-loop wis string action III

- The fermionic action is computed starting from CS action for type IIA [Cretic, Lu, pope, stelle, '99]

where Γ_{μ} are the 10D Gamma matrices, the projector is $P^{i j}=\sqrt{\gamma} \gamma^{i j}-i \epsilon^{i j} \Gamma_{11}$, the covariant derivative is $D_{j}=\partial_{j}+\frac{1}{4} \partial_{j} X^{\mu} \omega_{\mu}^{\hat{\mu} \hat{\nu}} \Gamma_{\hat{\mu} \hat{\nu}}$. We fix the κ-symmetry with the projector $\mathscr{P} \equiv \frac{\left(1-i \Gamma_{\hat{\sigma} \hat{t}} \Gamma_{11}\right)}{2}$.

- Explicitly the kinetic term is

$$
\not D=\mathrm{e}^{-\rho}\left(\Gamma_{\hat{\sigma}} \partial_{\sigma}+\Gamma_{\hat{\tau}} \partial_{\tau}+\frac{1}{2} \partial_{\sigma} \rho \Gamma_{\hat{\sigma}}\right)
$$

- Explicitly the flux terms are $F_{2}=d C_{1}=\frac{h N \pi i \ell_{s}}{\xi} \tanh ^{2} \sigma \operatorname{vol}_{R_{z}^{2}}, \quad F_{4}=d C_{3}=-3 N \pi \ell_{s}^{3} \operatorname{vol}_{R_{2}^{2}} \wedge \operatorname{vol}_{R_{y}^{2}} \quad H_{3}=0$

Bonus Erack: Weyl anomaly

- The Weyl anomaly is closely related to the \log divergences in the partition function

$$
\left\langle T_{i}^{i}\right\rangle_{\mathbb{K}}=\frac{2 \pi}{\sqrt{\gamma}} \frac{\delta \Gamma_{\mathbb{K}}}{\delta \rho}
$$

- The RHS can be expressed in terms of the so called seeley-De Witt coefficients $b_{2}(F), b_{2}(B)$

$$
\begin{gathered}
\delta \log \operatorname{det} \mathscr{K}=-2 a_{2}(\delta \rho \mid \mathscr{K}), \quad \delta \log \operatorname{det} \mathscr{D}^{2}=-2 a_{2}\left(\delta \rho \mid \mathscr{D}^{2}\right), \\
a_{2}(f \mid O)=\frac{1}{4 \pi} \int \sqrt{\gamma} f b_{2}(O)+\text { boundary terms }
\end{gathered}
$$

Here f is a test function, \mathscr{K} is a bosonic operator, \mathscr{D} is the fermionic operator.

- The Seeley-De Witt coefficients control the logarithmic divergences of the bosonic and fermionic fluctuations

$$
\left\langle T_{i}^{i}\right\rangle_{\mathbb{K}}=\frac{1}{4} \operatorname{Tr} b_{2}\left(\mathscr{D}^{2}\right)-\frac{1}{2} \operatorname{Tr} b_{2}(\mathscr{K})
$$

- The bosonic and fermionic contribution proportional to $R^{(2)}$ is in AdSs/CFT4 [Drukker, Gross, Tseytlin '00]

$$
8 \frac{R^{(2)}}{6}+\frac{R^{(2)}}{12} \operatorname{Tr}(\mathrm{I})=8 \frac{R^{(2)}}{6}+8 \frac{4 R^{(2)}}{12}=4 R^{(2)}
$$

As in AdSE/CFT4 we have 8 2d fermions but these are GS fermions [Drukker, Gross, Tseytlin '00]

On the field theory side: SD MSYM on $S^{5}(*)$

- The Lagrangian [Blau 'oo][Minahan, Zabzine '1s]:

$$
\mathscr{L}=-\frac{1}{2 g_{\mathrm{YM}}^{2}} \operatorname{Tr}\left(\frac{1}{2} F_{M N} F^{M N}-\bar{\Psi} \Gamma D \Psi+\frac{1}{2 \mathscr{R}} \Psi \Gamma^{089} \Psi+\frac{4}{\mathscr{R}^{2}} \phi^{A} \phi_{A}+\frac{3}{\mathscr{R}^{2}} \phi_{i} \phi^{i}+\frac{2 i}{3 \mathscr{R}}\left[\phi^{A}, \phi^{B}\right] \phi^{C} \varepsilon_{A B C}-K_{m} K^{m}\right)
$$

- The Lagrangian is obtained via dimensional reduction from 10D SYM on a flat spacetminimal coupling of the $S^{5}+$ other terms to preserve 16 real supercharges.
- Euclidean: the above Lagrangian needs to be Wick-rokated $\left(\phi^{0} \rightarrow i \phi^{0}\right)$.
- $M, N=0, \ldots 9$ are Lorentz indices, and they split into spacetime indices on S^{5} and scalar indices $I, J=0,6, \ldots, 9$. I, J are further broken ko $i, j=6,7$ and $A, B=0,8,9$.
- Ψ have 16 real components and obey $\Gamma_{11} \Psi=\Psi . K_{m}$ are auxiliary fields.

On the FT side: The matrix model I (*)

- The theory can be localised [Pestun 'or][Minahan, zabzine '16][Minahan '16][Gorantis, minahan, Naseer '17] on a Locus where: $A_{\mu}=0$ and $\phi_{I}=0$ when $I \neq 0 . \phi_{0}$ is used to construct a Hermitian $N \times N$ matrix M.
- The large N matrix-model partition function is (up to nonperturbative corrections): [Minahan, Zabzine '15][Minahan '15][Gorantis, Minahan, Naseer '17]

$$
Z=\frac{1}{N!} \int \prod_{i=1}^{N} d \mu_{i} e^{-S_{\text {eff }}} \text { with } \quad S_{e f f}=\frac{2 \pi^{2} N}{\xi} \sum_{i=1}^{N} \mu_{i}^{2}-\sum_{j \neq i}^{N} \sum_{i=1}^{N} \log \left|\sinh \left(\pi\left(\mu_{i}-\mu_{j}\right)\right)\right|
$$

where μ_{i} are the eigenvalues of the Hermitian $N \times N$ matrix M

On the FT side: The matrix model II (*)

- The saddle point equation:

$$
N \frac{2 \pi}{\xi} \mu_{i}=\sum_{j \neq i} \operatorname{coth} \pi\left(\mu_{i}-\mu_{j}\right), \quad \quad i, j=1, \ldots, N
$$

- We introduce an eigenvalue distribution $\rho(\mu):=\frac{1}{N} \sum_{i=1}^{N} \delta\left(\mu-\mu_{i}\right)$
- We take the large N continuum limit: the saddle point eq is

$$
\frac{2 \pi}{\xi} \mu=\mathrm{PV} \int_{-b}^{b} \rho\left(\mu^{\prime}\right) \operatorname{coth}\left(\mu-\mu^{\prime}\right) d \mu^{\prime}
$$

NB. it is an eq for ρ and b (thormalization condition)

On the FT side: The matrix model III (*)

- The matrix-model partition function as well as the corresponding integral eq are well-known since they appear in the matrix formulation of Chern-simons theories on S^{3} [Kim, Kim '12].
- Solutions [Marino '04]: $\quad \rho(\mu)=\frac{2}{\xi} \arctan \left(\frac{\sqrt{e^{\xi}-\cosh ^{2}(\pi \mu)}}{\cosh (\pi \mu)}\right) \quad$ with $\quad b=\frac{1}{\pi} \operatorname{arccosh}\left(e^{\xi / 2}\right)$

On the FT side: $1 / 2-$ BPS WL on SD SYM

- The vel of 1/2-BPS WL [Maldacena '98][Bobev, Bomans, Gaukason, Minahan, Nedelin '19] which wraps the equator of S^{5} is

$$
\langle W\rangle=\left\langle\operatorname{Tr}\left(P e^{i \oint A_{\mu} d x^{\mu}+i \oint d s \phi^{0}}\right)\right\rangle
$$

For us: $A_{\mu}=0$ (s-dimensional gauge field)

- Using the density of eigenvalues ρ and baking the continuum limit:

$$
\langle W\rangle=N \int_{-b}^{b} \rho(\mu) e^{2 \pi \mu} d \mu+\emptyset\left(\frac{1}{N}\right)=\frac{N}{\xi}\left(e^{\xi}-1\right)+0\left(\frac{1}{N}\right)
$$

at large N but for any $*$ Hooft coupling ξ

On the ST side: Weyl anomaly I (*)

- The Weyl anomaly is closely related to the \log divergences in the partition function

$$
\left\langle T_{i}^{i}\right\rangle_{\mathbb{K}}=\frac{2 \pi}{\sqrt{\gamma}} \frac{\delta \Gamma_{\mathbb{K}}}{\delta \rho}
$$

The trace of the quantum energy-momentum tensor is defined by the variation of the effective action w.r.t. the Weyl factor ρ.

- The RHS can be expressed in terms of the so called Seeley-De witt coefficients $b_{2}(F), b_{2}(B)$
- The Seeley-De Witt coefficients control the logarithmic divergences of the bosonic and fermionic fluctuations

$$
\left\langle T_{i}^{i}\right\rangle_{\mathbb{K}}=-\frac{1}{2}\left(b_{2}\left(\mathscr{D}^{2}\right)+b_{2}(\mathscr{K})\right)
$$

On the ST side: Weyl anomaly II (*)

- The 8 bosons contribute with [cilkey'96]

$$
b_{2}(\mathscr{H})=\operatorname{Tr}\left(\frac{R^{(2)}}{6}-e^{-2 \rho} E\right)
$$

- The 8 ad fermions contribute with [Gilkey'9s]

$$
b_{2}\left(\mathscr{D}^{2}\right)=\frac{R^{(2)}}{12} \operatorname{Tr}(\mathbf{I})-\frac{1}{4} \operatorname{Tr}\left(\tau^{i} \mathscr{M}_{F} \tau_{i} \mathscr{M}_{F}\right)-\frac{1}{4} \operatorname{Tr}\left(\tau^{i} \mathscr{M}_{F}^{i} \tau_{i} \mathscr{M}_{F}^{i}\right) .
$$

where the fermionic 'mass' is related to (rescaled) $a^{2}-v^{2}$ in \mathscr{D}, and τ are the Pauli matrices.

On the ST side: Weyl anomaly III (*)

- The bosonic and fermionic contribution proportional to $R^{(2)}$ is in AdSS/CFT4 [Drukker, Gross, Tseytlin '00]
- The bosonic and fermionic 'mass' contribution to the logarithmic divergences is:

$$
\operatorname{Tr}\left(e^{-2 \rho} E\right)+\frac{1}{4} \operatorname{Tr}\left(\tau^{i} \mathscr{M}_{F} \tau_{i} \mathscr{M}_{F}\right)+\frac{1}{4} \operatorname{Tr}\left(\tau^{i} \mathscr{M}_{F}^{\dagger} \tau_{i} \mathscr{M}_{F}^{\dagger}\right)=R^{(2)}+\underbrace{2 e^{-2 \rho} \partial_{\sigma}^{2} \Phi}_{!!}
$$

It does not happen in AdSs/CFT4! [Drukker, Gross, Tseyllin '00], [Forini, VGMP, Griguolo, Seminara, Vescovi '16], [Cagnazzo,Medina-Rincon,Zarembo '17]

- Indeed the classical Weyl anomaly of the FT-action is

$$
\left(T_{i}^{i}\right)_{F T}=-\partial_{i} X^{\mu} \partial^{i} X^{\nu} \nabla_{\mu} \nabla_{\nu} \Phi
$$

Comments on the Ciombi-Tseytlin's proposal I (*)

- Proposal to match the strong coupling expansion of circular WL in $\mathcal{N}=4$ SYM and ABJM (for a string with a disk topology):

$$
\langle W\rangle=Z_{\text {string }} \approx \frac{1}{g_{s}} \sqrt{\frac{T}{2 \pi}} e^{2 \pi T} e^{\bar{\Gamma}_{1}}
$$

- where T is the effective string tension: $e^{-S_{\text {classical }}}=e^{\operatorname{vol}\left(A d S_{2}\right) T}$:

$$
\mathrm{AdS}_{5}: T=\frac{\sqrt{\lambda}}{2 \pi}, \quad \mathrm{AdS}_{4}: \quad T=\frac{\sqrt{2 \lambda}}{2}
$$

- where $\bar{\Gamma}_{1}$ is the ratio of the one-loop det's computed by means of the heat kernel

$$
\mathrm{AdS}_{5}: \bar{\Gamma}_{1}=\frac{1}{2} \log (2 \pi), \quad \mathrm{AdS} S_{4}: \bar{\Gamma}_{1}=0
$$

Comments on the Ciombi-Tseytlin's proposal II (*)

- How does this compare with us? Let's read the effective tension from the classical action: $e^{-S_{\text {classical }}}=e^{\xi}$ then $\xi \sim T$.
- What is the term \sqrt{T} ? This is nothing but our \sqrt{A} !
- What is the term g_{s}^{-1} ? This is nothing but our FT-term.
- Our finite berm $\bar{\Gamma}_{1}$ is different, but we are employing a different method with a different regularisation scheme (the matching has been 'adjusted' for the heal kernel method)
- We confirm the CT-proposal for the first time outside a conformal selling.

On the ST side: Computation of $\tilde{\Gamma}_{\mathbb{K}} I(*)$

- We use the phase shift method (e.g. [chen-Lin, Medina-Rincon, zarembo '17][Cagnazzo, Medina-Rincon, Zarembo '17]) to compute the contribution from the fluctuations with 'flat' operators

$$
\tilde{\Gamma}_{\mathbb{K}}(R)=\frac{1}{2} \log \frac{\left(\operatorname{det} \tilde{\mathscr{K}}_{x}\right)^{4}\left(\operatorname{det} \tilde{\mathscr{K}}_{y}\right)^{2}\left(\operatorname{det} \tilde{\mathscr{K}}_{z}\right)^{2}}{\left(\operatorname{det} \tilde{\mathscr{D}}^{8}\right.}
$$

- This amounts to solve a one-dimensional schrödinger problem once we have Fourier-expanded w.r.t. $\tau \rightarrow i \omega$. For example for the bosonic operators:

$$
\tilde{\mathscr{K}}_{a} \eta_{\omega}(\sigma)=\left(-\partial_{\sigma}^{2}+\omega^{2}+E_{a}(\sigma)\right) \eta_{\omega}(\sigma)=\lambda \eta_{\omega}(\sigma)
$$

- The solutions behave as waves at large σ (since the potentials vanish there). Then the dispersion relation is $\lambda=\omega^{2}+p^{2}$. The effect of the 'scattering' is only to shift the waves:

$$
\eta_{\omega} \rightarrow C \sin (p \sigma+\delta(\omega, p))
$$

On the ST side: Computation of $\tilde{\Gamma}_{\mathbb{K}}$ II (*)

- The goal is to compute the phase shift $\delta(\omega, p)$ for all the operators.
- It is a Schrödinger problem with Dirichlet boundary conditions:

$$
\eta_{\omega}(\sigma=0)=0, \quad \eta_{\omega}(\sigma=R)=0
$$

where R is a IR cutoff. This gives the quantisation condition and the distribution of eigenvalues:

$$
p R+\delta(\omega, p)=\pi k, \quad \rho=\frac{d k}{d p}=\frac{1}{\pi}\left(R+\frac{d \delta(\omega, p)}{d p}\right)
$$

- The functional determinant is then

$$
\log \operatorname{det} \tilde{\mathscr{K}}=\sum_{\omega} \int_{0}^{\infty} \frac{d p}{\pi}\left(R+\frac{d \delta(\omega, p)}{d p}\right) \log \left(p^{2}+\omega^{2}\right)
$$

On the ST side: Computation of $\tilde{\Gamma}_{\mathbb{K}}$ III (*)

- After integrating by parts over p, transforming the sum over Matsubara frequencies as a contour integral (it picks up poles $\omega= \pm i p$) we have (e.g. [Chen-Li, Medina-Rincon, Zarembo '17][Cagnazzo, Medina-Rincon, Zarembo '17])

$$
\tilde{\Gamma}_{\mathbb{K}}(R)=-\int_{0}^{\infty} d p\left[\operatorname{coth}(\pi p)\left(4 \delta_{x}+2 \delta_{y}+2 \delta_{z}\right)-\tanh (\pi p)\left(4 \delta_{+}+4 \delta_{-}\right)\right]-\underbrace{R}
$$

\mathbb{R} cut-off

- We can compute the bosonic phase shifts $\delta_{x}, \delta_{y}, \delta_{z}$ analytically. We have to compute the fermionic phase shifts δ_{+}, δ_{-}numerically.
- And the answer is...

$$
\tilde{\Gamma}_{\mathbb{K}}(R)=2 \log \pi+1 \log (\Delta \underbrace{e^{-R}})
$$

IR cut-dff
W divergence:
a large p out-off

The matching IV (*)

- But we need to use the same regularisation scheme to meaningfully consider the ratio.
- We compute the partition function for a circular string in $A d S_{4} \times C P^{3}$ at one loop in the large λ limit using the phase shift method.
- The classical solukion [Drukker,Plefka, Young 'of] [Chen, Wu '08] wraps the equator of S^{3} inside $A d S_{4}$ and it is constant on the compact space.
- The us metric is $d s^{2}=e^{2 \rho}\left(d \sigma^{2}+d \tau^{2}\right), \quad e^{2 \rho}=\frac{\pi \sqrt{2 \lambda} \ell_{s}^{2}}{\sinh ^{2} \sigma}$
- The (regularised) classical action:

$$
S_{c l a s s i c a l}=-\pi \sqrt{2 \lambda}
$$

The matching $V(*)$

- The dilation is constant and the FT term gives:

$$
S_{F T}=\chi \log g_{s}=-\log \frac{N_{A B J M}}{\sqrt{\pi}(2 \lambda)^{5 / 4}}
$$

- The contributions from the fluctuations with the phase shift method is:

$$
\Gamma_{A d S_{4}}=2 \log \pi+\log \left(\Lambda e^{-R_{A B J M}}\right)
$$

- The diffeo invariant IR regulator is $A_{A B J M}=4 \pi^{2} \sqrt{2 \lambda} e^{-2 R_{A B J M}}$
- Collecting all together:

$$
\log Z_{A B J M}^{s t r i n g} \approx \pi \sqrt{2 \lambda}+\log \frac{N_{A B J M}}{\pi^{3 / 2} \lambda}-\log (\Lambda \sqrt{A})
$$

... outlook III (*)

- We need more observables. Is there an analogue of the 'Latitude' 1/4-BPS WL of $\mathcal{N}=4$ SYM in 4 d? See [Mezei, Pufu, Wang '18] (Che holographic dual is a fundamental string which ends on a circle at the boundary of $A d S_{5}$ and on a Latitude (at angle θ_{0}) on a $S^{2} \subset S^{5}$ [Drukker, Fiol 'os] [Drukker' 'ob] [Drukker, ciombi, Ricci, Trancanelli 'or])
- We have the free energy of MSYM on a S^{5} at any ξ in the planar limit. The leading order at strong coupling was computed and matched in [Bobev, Bomans, Gautason, Minahan, Nedelin '19]. It would be interesting to holographically compute the next-to-leading order corrections in ξ.
- SD SYM is supposed to flow to (2,0) theory in 6D [Douglas '10][Lambert, Papageorgakis, Schmidt-Sommerfeld '10] in the UV. There the WL. should correspond to a BPS surface operator. On the holographic side: M2-brane in AdS 7 . Classically we checked, but what about at one-loop?

